解析几何专题 圆的方程【精选】

合集下载

高中数学教师备课必备系列圆与方程专题八 圆系方程及其应用 含解析

高中数学教师备课必备系列圆与方程专题八 圆系方程及其应用 含解析

圆系方程及其应用一.常见的圆系方程有如下几种:222??0)?)(x?a)??(y?b(),b(a为圆心的同心圆系方程:.以12222?0??+Dx?Ey?F?0xEyx??yy+Dx?与圆同心的圆系方程为:220??F+DxC:x??yEy0?l:ax?by?c交点的圆系方程为:与圆2.过直线22??)R?)?0+((ax?byx??yc+Dx?Ey?FABClB,A为公共弦的一系列相交圆,其圆心在(1)当直线交于与圆两点时,圆系中的所有圆是以AB的垂直平分线上;公共弦??b??aED),?M(?ACl时,这时圆系的圆心与圆,切于点(2)当直线22?????bEaE?abD?D),b?(a?(?,?)?CM?OM?OC?(?,?)?(?,?)2222222?n?CM=CMn l)b(a,n?,∴,∴而直线∥的法向量2l?CM ACl的过点,且直线的切线.为圆因此,CMCACA?l与重合.又∵(过切点的半径与切线垂直),∴ACCl圆心都,直线外)与圆内切或外切于点是它们的公切线,由此可知,圆系中的所有圆(除圆CA在直线上.22220??FDx?Ey?F?0C:x?yC:x+?yE+Dx?y交点的圆系方程为:.过两圆与322112112????2222??1?0?Dx?Ey?y+Dx?Ey?F??xF?y?x+.221121??E??DED2211),?M(?,可知,圆心??)?)2(12(1?????(E?E)E?(D?DDDE?)ED1111211222)?(?,?)CM(??,?OM?OC?(??,?)11????)2(1??)?2(12(1)2(1?2)2???EDED2211)]?(OC?OC,?)?C[(??,C)?(??2112?????1122221?M,C,CCC M上.因此,点共线,即圆系的所有圆的圆心都在已知两圆的连心线2112CAB?CC AB C BA,为所有两点时,则,且弦(即连心线与公共弦垂直)(1)当圆与圆相交于2211圆的公共弦;CCCC AAM上,圆系的所有圆都与已(2)当圆与圆内切或外切于的连心线点时,则在过切点2121CC A处内切或外切.及圆知的圆在点21注意:22+Dx?EyxC:??yF?0; 1)此圆系不含圆(2222CC和两圆公共弦所在直线交点的圆,可等价转化为过圆(2)为了避免利用上述圆系方程时讨论圆2122?[(D?D)x?(E?E)y?Dx?Ey?F?(F?F)]?x?y0? :系方程211112211???1??*0F)?)y?(F??(D?D)x?(EE称为根轴方程.时,上述方程(3)特别地,当222111根轴的特点:位于已知两圆外的根轴上的任意一点向圆系的所有圆所作的切线的长都相等.CC ABBA,(*)所在直线的方程;与圆两点时,方程于表示公共弦①当两已知圆21C AA C(*)的公切线方程.②当圆点时,方程与圆内切或外切于表示过(内或外)公切点21A外,公切线上的所有点均具有根轴的性质.这时,除点二.圆系方程在解题中的应用2222?2x?yy?1??y?2?03x0x??y3?3x交点和坐标原点的圆的方程..求经过两圆和例122020?x?2y?x?y?4(2,0)3)BA(?1,?,且过点例2.求与圆切于点的圆的方程.222222?0?3)]?(y200x?y?4x?2y???[(x?1)?(x?1)?(y3)?3)A(??1,,构造圆系为点圆解一:视点422??7x?7y?4x?18y?20?0(2,0)B,∴所求的圆的方程为,可得代入点3A(?1,?3)3x?4y?15?0,与已知圆构造圆系解二:过点的已知圆的切线方程为22?(3x?4y??15)?x0?yy?4x?2?20822??7x?7y?4x?18y?20?0(2,0)B代入点,∴所求的圆的方程为,可得7220?1?y??2x4yxC:?0??2:x?y4l的交点且面积最小的圆的方程.求经过直线与圆C: 3.例??22?0?4?x?y2x?y?1+?2xy?4解一:设圆的方程为,即22???)?0?(1?x)?(4?4)xy?y+2(1+,则1584??2222???????()4144r??(41)?(?)?(?),5544.8222??r?26x?12y?5x37?5y?0. 最小,从而圆的面积最小,故所求圆的方程为:∴当时,5作业:222?x?y4)?B(?1,A(1,1) 1.求与圆的圆的方程.切于点,且过点22220x?y?x?4x?y?10x?3y?6?的交点,且与直线2.求过两圆和相切的圆的方程.221)??R,k?k?10)y10k?20?0(kx??y2?kx?(4中,任意两个圆的位置关系如何?3.圆系一.常见的圆系方程有如下几种:222??0)(???x?a)?(yb)()b(a, 1.以为圆心的同心圆系方程:2222?0??+Dx?EyxDxx?y+?Ey?F?0?y同心的圆系方程为:与圆220?c?axl:?by0?EyC:x?y+Dx??F交点的圆系方程为:与圆2.过直线22??)0?(R???x?y+Dx?EyF+(ax?byc)ABClB,A为公共弦的一系列相交圆,其圆心在两点时,圆系中的所有圆是以与圆交于)当直线(1AB公共弦的垂直平分线上;??b??aED,?M(?)ACl,2(时,这时圆系的圆心切于点)当直线与圆22.?????b?abDD?EaE,?)?((??,?)?(?,?)??(a,b)CM?OM?OC?2222222?n?CM=CMn l)bn?(a,,∴,∴而直线∥的法向量2CM?l ACl的切线.,且直线因此,的过点为圆CA?lCACM重合.与(过切点的半径与切线垂直)又∵,∴CCAl是它们的公切线,外)与圆内切或外切于点圆心都由此可知,圆系中的所有圆(除圆,直线CA上.在直线2222+Dx?Ey?F?0C:x?:xy?y+Dx?Ey?F?0C交点的圆系方程为:.过两圆与311222121????2222??10??Eyy?F??Fx??y?+Dxx?yD+x?E.211122??EE??DD2211,M(??),可知,圆心??)??)2(12(1????(E?E)(D?D?DDE?)EDE1111222211)?(?,?)CM(??,?OM?OC?(?,?)?11????)2(122(1??2(1?2(1)?))2???EDDE2211)]?(OC?OC)?)?(??,?[(?C,?C2121????12211??22M,C,CCC M上.共线,即圆系的所有圆的圆心因此,点都在已知两圆的连心线2211CAB?CCC ABB,A为所有(即连心线与公共弦垂直)相交于两点时,则(1)当圆,且弦与圆2211圆的公共弦;CCCC AAM上,圆系的所有圆都与已内切或外切于在过切点与圆点时,则)当圆(2的连心线2121CC A处内切或外切.及圆知的圆在点21注意:22+Dx?Ey?FC:x??y0;1)此圆系不含圆(2222CC和两圆公共弦所在直线交点的圆)为了避免利用上述圆系方程时讨论圆,可等价转化为过圆(22122?[(D?D)x?(E?E)y?Dx?EyF??(F?F)]?0x?y? :系方程221211111???1??*)F?0)E?Ey?(F?x?(DD)?(称为根轴方程.3()特别地,当时,上述方程211221根轴的特点:位于已知两圆外的根轴上的任意一点向圆系的所有圆所作的切线的长都相等.CC ABBA,(*)所在直线的方程;表示公共弦两点时,方程①当两已知圆与圆于21C AA C(*)的公切线方程.内切或外切于点时,方程表示过(内或外)公切点与圆②当圆21A外,公切线上的所有点均具有根轴的性质.这时,除点二、圆系方程在解题中的应用:2222?2x?y3y?1?3x?y?2?03xx0?y??交点和坐标原点的圆的方程.例1 和.求经过两圆22?4x?2y?20?x0?y A(?1,?3)B(2,0)的圆的方程.,且过点切于点例2.求与圆222222?]?3)0?(?20?y[(x?1)?(y?3)1)?0x??y?4x?2y(x?3)1,A(??视点解一:为点圆,构造圆系422??(2,0)B?4x?18yx??7y20?07,可得,∴所求的圆的方程为代入点3A(?1,?3)3x?4y?15?0,与已知圆构造圆系的已知圆的切线方程为解二:过点22?(3x?4y??20?15)?x0?y??4x2y822??7x?7y?4x?18y?20?0(2,0)B,可得代入点,∴所求的圆的方程为72201?y2?x?C:x4?y?0x4??y?l:2的交点且面积最小的圆的方程.与圆C:例3.求经过直线??22?02x?1+y?4??x?xy?2?4y,即解一:设圆的方程为22???)??40?4)yx??y(1+2(1+)x?(,则1584??2222???????4)r??()(41?)1?(?4)?4(,55448222??r5x?5y?26x?12y?37?0. 最小,从而圆的面积最小,故所求圆的方程为:∴当时,5练习:22?yx2?A(1,1)B(?1,?4)的圆的方程.,且过点切于点1.求与圆2222??2)?1)??y(x(x?1)0?(y?解:设所求的圆方程为29????+29=0154???1,yB(?1,?4)x?,,解得代入,得,将∵圆过点15822???15x?15y?447x??7y0将代回圆系方程,得所求的圆方程为522220?4yxx?y??1x?0?x?3y?6 2.求过两圆相切的圆的方程.和的交点,且与直线?14??222222?x??x?y?00x?y?1?x?y?4x?,即解:设所求的圆的方程为????1122?????1441?12?????4?r???(,0),半径圆心?????????1||1??21?1?????2?6||??|?|232??1?d?(,0)0?y?6x?3圆心的距离到直线??||1?2?13?12???8??3|41|2??rd?0?y?6x?3????相切,∴,即∵所求圆与直线??|?11|1?|1|28??2222220xx?y?yx??1??40?x?y?311?323x∴所求的圆的方程为,??222,0?2?d?r0x?4??xy0y3?6?x?的距离又圆的圆心到直线即11|2?6|3?1220x??xy?4∴圆也符合题意,22220??x??32y?3x3?x110y4x?.∴所求的圆的方程为或22?2kx?(4k?10)y?10k?20?0(k?R,xk?y??1)中,任意两个圆的位置关系如何?3.圆系22?10y?20?2k(x?4y?5)?x0?y解:圆系方程可化为:2x?4y?10?0x?2y?5?0??k?R,k??1∵,??2250,C?0?10?2l:x?4y?5)?x5?(y的半径,故直线∴,即??2222x?y?10y?20?0x?(y?5)?5??到直线易知圆心的距离恰等于圆22?5y?5)(x?02xl:?y??5相切,即上述方程组有且只有一个解,从而圆系方程所表示的与圆任意两个圆有且只有一个公共点,故它们的关系是外切或内切.。

圆的方程专题讲义

圆的方程专题讲义

圆的方程专题讲义一、知识梳理圆的定义与方程注意:1确定圆的方程主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.()(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )(4)方程x2+2ax+y2=0一定表示圆.()(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.()(6)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.()题组二:教材改编2.以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是()A .(x -3)2+(y +1)2=1B .(x -3)2+(y -1)2=1C .(x +3)2+(y -1)2=1D .(x +3)2+(y +1)2=13.圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为_______.题组三:易错自纠4.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是( )A .(-∞,-2)∪(2,+∞)B .(-∞,-22)∪(22,+∞)C .(-∞,-3)∪(3,+∞)D .(-∞,-23)∪(23,+∞)5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( )A .-1<a <1B .0<a <1C .a >1或a <-1D .a =±46.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1三、典型例题题型一:圆的方典例 (1)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为__________.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为______________. 思维升华:(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值;②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.跟踪训练 一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________.题型二:与圆有关的最值问题典例 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值.引申探究1.在本例的条件下,求y x的最大值和最小值. 2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值.思维升华:与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -b x -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题.跟踪训练:已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上.(1)求y x的最大值和最小值; (2)求x +y 的最大值与最小值.题型三:与圆有关的轨迹问题典例已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.思维升华:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.跟踪训练 已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求:(1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.注意:利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.四、反馈练习1.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程为( )A .(x +1)2+(y -3)2=29B .(x -1)2+(y +3)2=29C .(x +1)2+(y -3)2=116D .(x -1)2+(y +3)2=1162.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0 3.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4B .(x -2)2+(y -2)2=4C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=44.若a ∈}431,0,2{ ,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3 5.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .1+ 2B .2C.1+22D.2+226.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=17.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.8.若圆C经过坐标原点与点(4,0),且与直线y=1相切,则圆C的方程是__________________.9.已知圆C:x2+y2+kx+2y=-k2,当圆C的面积取最大值时,圆心C的坐标为__________.10.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是__________.11.在平面直角坐标系xOy中,已知圆P在x轴上截得的线段长为22,在y轴上截得的线段长为2 3. (1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.12.已知M为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)若M(m,n),求n-3m+2的最大值和最小值.13.已知圆C:(x-3)2+(y-4)2=1,设点P是圆C上的动点.记d=|PB|2+|P A|2,其中A(0,1),B(0,-1),则d的最大值为________.14.已知圆C截y轴所得的弦长为2,圆心C到直线l:x-2y=0的距离为55,且圆C被x轴分成的两段弧长之比为3∶1,则圆C的方程为_________________.。

解析几何复习圆的方程

解析几何复习圆的方程

代数方法
求圆心坐标及半径r (配方法)
圆心到直线的距离d (点到直线距离公式)
(x a)2 ( y b)2 r 2
Ax
By
C
0
消去y(或x)
px2 qx t 0
d r : 相交 d r : 相切 d r : 相离
0 : 相交 0 : 相切 0 : 相离
圆与圆的 五 种 位置关系
中点公式求D, kDG kMN 1
DG
O
x
M
kMN ( yM yN ) /(xM xN )
小结:两圆相切的性质
C、C’为圆心,N为切点
y
C、N、C '三点共线
① kCN kC ' N
②点C’在直线CN上
C’
N CB
x
P44 A7
• 求圆 C : x2 y2 x 2y 0 关于直线 l : x y 1 0
所求圆的方程为
D 4
E
6
F 12
x2 y2 4x 6 y 12 0
即 (x 2)2 (y 3)2 25
P134 A3
3.已知圆C的圆心在直线 x 2 y 1 0 上,并
且经过原点和点A(2,1),求圆的标准方程。
解:设所求圆的方程为:
(x a)2 (y b)2 r2
a 2b 1 0 (0 a)2 (0 b)2 r 2 (2 a)2 (1 b)2 r 2
所求圆的方程为
rba2 122156009
(x 6)2 ( y 1 )2 29
5
10 20
待定系数法
例:以C(1,3)为圆心,并且和直线3x-4y-
7=0 相切的圆.
y
解:设所求圆的半径为r

圆的解析几何方程

圆的解析几何方程

〖圆的解析几何方程〗圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

〖圆与直线的位置关系判断〗平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F=> 圆心坐标为(-D/2,-E/2)1.点与圆的位置关系设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有:(1)d>r 点M在圆外;(2)d=r 点M在圆上;(3)d<r 点M在圆内.2.直线与圆的位置关系设圆C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,b)判别式为△,则有:(1)d<r 直线与圆相交;(2)d=r 直线与圆相切;(3)d<r 直线与圆相离,即几何特征;或(1)△>0 直线与圆相交;(2)△=0 直线与圆相切;(3)△<0 直线与圆相离,即代数特征,3.圆与圆的位置关系设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有:(1)d=k+r 两圆外切;(2)d=k-r 两圆内切;(3)d>k+r 两圆外离;(4)d<k+r 两圆内含;(5)k-r<d<k+r 两圆相交.4.其他(1)过圆上一点的切线方程:①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).(2)相交两圆的公共弦所在直线方程:设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.(3)圆系方程:①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).1.求经过M(1,2)N(3,4),并且在Y轴上截得的弦长为1的圆的方程。

高中数学圆的方程典型例题及详细解答

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . 上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

平面解析几何中的圆方程

平面解析几何中的圆方程

平面解析几何中的圆方程在平面解析几何中,圆是一个非常重要的几何形状。

通过方程的表示,我们可以了解圆的性质和特征。

本文将介绍平面解析几何中的圆方程,并探讨一些相关的概念和性质。

1. 标准圆方程我们首先来讨论圆的标准方程。

设一个圆的圆心坐标为(h, k),半径为r,则圆的标准方程可以表示为:(x - h)^2 + (y - k)^2 = r^2其中,圆心坐标为(h, k),表达了圆心在平面坐标系中的位置;半径为r,表示了圆的大小。

2. 圆的一般方程除了标准方程外,圆还可以表示为一般方程。

一般方程的形式为:Ax^2 + Ay^2 + Bx + Cy + D = 0其中,A、B、C、D为常数,并且A和C不同时为0。

通过圆的一般方程,我们可以推导出标准方程来反推圆的性质。

3. 圆心和半径的确定对于给定的圆方程,我们可以通过观察方程的形式,来确定圆的圆心和半径。

在标准方程中,圆心的坐标即为方程中的(h, k),而半径r可以通过方程=r^2来求解。

在一般方程中,首先需要将方程恢复到标准方程的形式。

可以通过平方完成平方项的系数,并移项整理得到标准方程。

再通过比较系数的方法,可以求解出圆的圆心和半径。

4. 圆的性质圆作为一个重要的几何形状,具有许多重要的性质。

以下是一些常见的圆的性质:4.1 切点和切线:在圆上任意一点,都可以作出一条切线,切线与半径垂直。

4.2 弦:连接圆上任意两点的线段称为弦。

直径是一条通过圆心的弦,有特殊的性质。

4.3 弧:圆上两点之间的部分称为弧。

整个圆的弧称为周长。

4.4 弧度制:角度的度量单位有弧度和角度制两种。

圆的周长为360°或2π弧度。

4.5 圆与直线的关系:在平面解析几何中,我们可以通过方程的求解,来研究圆与直线的交点和切点等问题。

5. 圆的相关定理在平面解析几何中,存在许多与圆相关的定理和性质。

以下是一些常见的圆相关定理:5.1 切线定理:如果一条直线与圆相切,那么切点到圆心的距离与切线的斜率之积等于-1。

数学高中圆的方程讲解

数学高中圆的方程讲解

数学高中圆的方程讲解
在高中数学中,圆是一个重要的图形。

圆的方程是圆心与半径的函数关系式,常见的圆的方程有一般式、标准式和截距式。

其中,以标准式最为常用。

标准式:设圆心为$(a,b)$,半径为$r$,则圆的方程为
$(x-a)^2+(y-b)^2=r^2$。

根据标准式,我们可以依据圆的性质进行问题的求解。

例如,给定圆心和半径,可以求出圆的方程;给定圆上两点坐标,可以求出圆心和半径;给定圆心和一点坐标,可以求出此点是否在圆上等等。

截距式:设圆心为$(0,0)$,半径为$r$,则圆的方程为
$x^2+y^2=r^2$。

通过截距式,可以依据圆的对称性及其他性质进行问题求解。

除了标准式和截距式外,还有一般式。

一般式是将圆的方程进行形式化处理,得到一般的二次方程。

在一些特殊情况下,一般式会更为方便。

综上所述,高中圆的方程应当熟练掌握,并能够灵活运用。

- 1 -。

解析几何专题2圆的方程及应用

解析几何专题2圆的方程及应用

《高中数学专题题型分类大全》解析专题二圆的方程及应用『知识与方法梳理』?(一)圆的方程的两种形式方程形式方程相关参数意义标准式(x - a)1 2+ (y - b)2= r2圆心(a,b),半径:r一般式2 2x + y2+ Dx + Ey + F = 0 (D2+ E2-4F > 0 )圆心(--D,- E ),半径:r= 2/ D2+ E2- 4F(二)点与圆的位置关系的判定点P(x°, y o). 圆M 方程 (1) (x -a)2 + (y -b)2 = r2;(2) x2 + y2 + Dx + Ey + F = 0.(1) (X0 -a)2+ (y0 -b)2= r2;2 2(2) X0 + y0 + Dx。

+ Ey0 + F = 0.1.点p在圆上.(1) (X0 -a)2+ (y0 -b)2< r2;2 2(2) X。

+ y°+ Dx 0 + Ey 0 + F < 0.2.点P在圆内.(1)(X。

-a)2+ (y°-b)2> r2;2 2⑵ X0 + y°+ Dx0 + Ey°+ F > 03.点P在圆夕卜.圆方程点p(x0, y0)到圆上的切线长1. x2+y2=r2|PT| ^X02+ y02- r22 2 22. (x-a) 2+(y 七)2=r2|PT| 珂(x°- a)2+( y°- b)2- r22 23. x2+y2+Dx+Ey+F=0|PT| 珂X02+ y02+ Dx0 + Ey°+F圆方程切线方程1. x2+y2=r22X0X + y°y = r2 2 22. (x-a)2+(y-b)2=r22(X0 - a)(x - a) + (y0 - b)(y - b) = r2 23. x2+y2+Dx+Ey+F=0X0X + y°y + D号+ 誓+F = 01. 直线I:Ax+By+C=0,圆C: x2+y2+Dx+Ey+F=0 当直线l与圆C相交时,过两交点的圆的方程可设成(三)直线与圆的关系方法已知细d直M圆旳X FD 4 < +2 -2一二A卜+2X线:—直M圆2 22 C1: x +y +D1x+E1y+F1=0C2: x2+y2+D2X+E2y+F2=0(1 )当5与C2相交时,两圆公共弦所在直线方程为(D1 - D2)X + (E1 - E2)y + (F1 - F2) = 0(2)当C1与C2相交时,过两圆交点的圆的方程可设为_x2+y2+D1x+E1y+F1 + X (xhy2+D2x+E2y+F2) = 0_ 或—'"_ _x2+y2+D j x+E 1y+Fj_+ X [(D- D2)x+(E^ - E2)y+(F 1 - F2)] = 0相关运算离距N= ( d心凰=0那+F判M+CDX脚立BV2+尹耽用2x,Ax元{艄《必修2》解析专题、圆的方程及应用圆|G半径D,圆C2半径r2.圆C1与圆C?位置关系.(1)皿施心内含(2)也-呵=15。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【解析】 (1)法一:从数的角度,若选用一般式:设圆的方
程为 x2+y2+Dx+Ey+F=0,则圆心(-D2 ,-E2),
52+22+5D+2E+F=0, ∴32+22+3D+2E+F=0,
2×-D2 --E2-3=0.
解之,得 DE==--180,, F=31.
3.圆的一般方程 x2+y2+Dx+Ey+F=0 表示圆的充要条件是 D2+E2
-4F>0 ,其中圆心为 -D2 ,-E2,半径为 r=
D2+E2-4F
2
.
4.点与圆的位置关系 设圆的标准方程(x-a)2+(y-b)2=r2,点 M(x0,y0) ①点在圆上:(x0-a)2+(y0-b)2 =r2; ②点在圆外:(x0-a)2+(y0-b)2 > r2; ③点在圆内:(x0-a)2+(y0-b)2 < r2.
由a42-+3aa+2>0

a∈R
解得-2
3
32 <a<
3 3
.
∴-2
3
32 <a< 3
3 .
故 a 的取值范围是(-233,23 3).
解法二:由题意,A 在圆外,则需满足
a2+22-4a2 x2+y2+ax+2y+a2>0,

A(1,2)代入,得-2 3
32 <a< 3
∴圆的一般方程为 x2+y2-8x-10y+31=0.
法二:从形的角度,AB 为圆的弦,由平面几何知识 知,圆心 P 应在 AB 中垂线 x=4 上,则由2x=x-4y,-3=
得圆心 P(4,5), ∴半径 r=|PA|= 10. ∴圆的标准方程为(x-4)2+(y-5)2=10.
(2)设圆方程为(x-a)2+(y-b)2=25, 如图,∵|AB|=10-2=8,∴|AD|=4.
,解得ar2==10 ,所以所求圆的
4.过圆 x2+y2=4 外一点 P(4,2)作圆的切线,切点为 A、B,则△APB 的外接圆方程为________.
答案 (x-2)2+(y-1)2=5 解析 连接 OA、OB,由平面几何知识可知 O、A、 P、B 四点共圆,故△APB 的外接圆即为以 OP 为直径的 圆,即圆心为 C(2,1),半径 r=12|OP|=|OC|= 5,故圆的 方程为(x-2)2+(y-1)2=5.
3.(2011·辽宁文)已知圆 C 经过 A(5,1),B(1,3)两点, 圆心在 x 轴上,则 C 的方程为________.
答案 (x-2)2+y2=10 解析 依题意设所求圆的方程为:(x-a)2+y2=r2, 把所给两点坐标代入方程得:
5-a2+1=r2 1-a2+9=r2 方程为 (x-2)2+y2=10.
题型一 方程与圆
例 1 已知方程 x2+y2-2(m+3)x+2(1-4m2)y+16m4+9 =0 表示一个圆.
(1)求实数 m 的取值范围; (2)求该圆半径 r 的取值范围; (3)求圆心的轨迹方程.
【解析】 (1)方程表示圆的充要条件是 D2+E2-
4F>0,即 4(m+3)2+4(1-4m2)2-4(16m4+9)>0,所以-17
思考题 1 已知圆的方程为 x2+y2+ax+2y+a2=0, 一定点 A(1,2),要使过定点 A 的圆的切线有两条,求 a 的 取值范围.
【思路】 ①对方程配方;②点在圆外的条件.
【解析】 解法一:将圆的方程配方得 (x+a2)2+(y+1)2=4-43a2, ∴圆心 C 的坐标为(-a2,-1),半径 r= 4-43a2, 条件是 4-3a2>0,过点 A(1,2)所作圆的切线有两条, 则点 A 必在圆外,∴|AC|>r. 即 1+a22+2+12> 4-43a2, 化简得 a2+a+9>0,
【答案】 (1)-17<m<1 (2)0<r≤477 (3)y=4(x- 3)2-1(270<x<4)
探究 1 (1)二元二次方程 x2+y2+Dx+Ey+F=0 表 示圆的充要条件是 D2+E2-4F>0.
(2)研究圆的相关概念以及点与圆的位置关系问题, 常把一般式化为标准式,一是利用其各量的意义来确定各 量,二是将点代入方程通过判定方程的取值或解不等式来 讨论点与圆的位置关系问题.
<m<1.
(2)r= -7m-372+176≤477,
所以
0<r≤4 7
7 .
(3)设圆心坐标为(x,y),则xy= =m4m+2-3,1. 消去 m,得 y=4(x-3)2-1. 因为-17<m<1, 所以270<x<4,即轨迹为抛物线的一段, y=4(x-3)2-1(270<x<4).
第14课时 圆的方程
2012·考纲
1.掌握确定圆的几何要素. 2.掌握圆的标准方程与一般方程.
请注意!
圆是常见曲线,也是解析几何中的重点内容,几乎每 年高考都有一至二题,以选择填空形式出现,难度不大, 主要考查圆的方程(标准方程、一般方程)及圆的有关性质.
1.圆的定义 在平面内,到 定点 的距离等于 定长 的点的集合 叫 圆. 2.圆的标准方程 (x-a)2+(y-b)2=r2(r>0),其中 (a,b) 为圆心, r 为 半径.
∵|AC|=5,∴|CD|=3.∴a=6,b=±3. ∴所求圆的方程为 (x-6)2+(y-3)2=25 或(x-6)2+(y+3)2=25.
3,
故 a∈(-233,233).
【答案】
(-2
3 的方程
例 2 根据下列条件求圆的方程: (1)经过 A(5,2),B(3,2),圆心在直线 2x-y-3=0 上; (2)半径为 5 且与 x 轴交于 A(2,0),B(10,0)两点; (3)圆心在原点,且圆周被直线 3x+4y+15=0 分成 1:2 两部分.
1.方程 x2+y2+4mx-2y+5m=0 表示圆的条件是
()
1 A.4<m<1
B.m>1
C.m<14
D.m<14或 m>1
答案 D
解析 (x+2m)2+(y-1)2=4m2-5m+1 表示圆,则 4m2-5m+1>0,解得 m<14或 m>1.
2.圆 x2+y2-6x+4y=0 的周长是________. 答案 2 13π 解析 配方得:(x-3)2+(y+2)2=13, ∴r= 13,∴圆的周长 c=2π· 13=2 13π.
相关文档
最新文档