解析几何之圆的方程
解析几何结论大全

解析几何结论大全
解析几何结论大全是一个非常广泛的主题,涵盖了许多方面。
以下是一些常见的解析几何结论:
1. 两点之间的距离公式:$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
2. 直线方程:点斜式 $y-y_1=m(x-x_1)$,斜截式 $y=mx+b$,两点式$y=\frac{y_2-y_1}{x_2-x_1}x+y_1$
3. 圆的方程:$(x-a)^2+(y-b)^2=r^2$,圆心 $(a,b)$,半径 $r$
4. 圆与圆的位置关系:相交、相切、相离
5. 圆锥曲线的标准方程:椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 或 $\frac{y^2}{a^2}-
\frac{x^2}{b^2}=1$,抛物线 $y^2=2px$ 或 $x^2=2py$
6. 圆锥曲线的焦点、准线、离心率等性质
7. 空间向量的加法、数乘、向量的模
8. 向量的数量积、向量积、向量的混合积
9. 向量的坐标表示:$(a,b,c)$,向量的模 $\sqrt{a^2+b^2+c^2}$
10. 空间直角坐标系中的点 $(x,y,z)$ 与其相邻三个坐标面围成的单位体积为$\frac{1}{6}$。
以上只是解析几何的一部分结论,还有许多其他结论和定理,可以根据需要进行查阅和学习。
第二章 解析几何初步(二)圆

.
;此时直线 l:x+y
21.已知圆 x2+y2=4 与圆 x2+y2﹣4x+4y﹣12=0 交于 A,B 两点,则|AB|=
.
22.已知圆 C1:x2+y2+2x+8y﹣8=0 和圆 C2:x2+y2﹣4x﹣4y﹣2=0 相交于 A,B 两点,则直线
AB 的方程是
,线段 AB 的长度是
.
23.已知△ABC 的三个顶点 A(1,﹣2),B(0,5),C(﹣3,﹣4). (1)求过 B 点且与点 A,C 距离相等的直线方程; (2)求三角形的外接圆方程.
A.外切
B.内切
C.相交
D.外离
16.已知直线 l:y=x+m 与曲线
A.
B.
有两个公共点,则实数 m 的取值范围是( )
C.
D.
17.若圆 x2+y2﹣2kx﹣4=0 关于直线 2x﹣y+3=0 对称,则 k 等于( )
A.
B.﹣
C.3
D.﹣3
第4页共8页
第二章 解析几何初步(二)—圆
18.若直线 l:y=kx+3﹣k 与曲线 C:y=
相交:d<r ;相切:d=r;相离:d>r ②代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.
由
消元,得到一元二次方程的判别式△
相交:△>0; 相切:△=0; 相离:△<0.
第1页共8页
第二章 解析几何初步(二)—圆 5.圆与圆的位置关系及其判定 (1)圆与圆的位置关系
(2)圆与圆的位置关系的判定 设两圆圆心分别为 O1,O2,半径分别为 r1,r2,|O1O2|=d 利用两圆的圆心距与两圆半径的关系判断 ①外离(4 条公切线):d>r1+r2 ②外切(3 条公切线):d=r1+r2 ③相交(2 条公切线):|r1﹣r2|<d<r1+r2 ④内切(1 条公切线):d=|r1﹣r2| ⑤内含(无公切线):0<d<|r1﹣r2|
(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。
2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。
3. 一般式:Ax + By + C = 0,其中A、B、C是常数。
二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。
2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。
三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。
2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。
六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。
如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。
2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。
七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。
解析几何复习系列之四(圆的方程)

圆的方程【复习要点】 1、圆的标准方程:222()()x a y b r -+-=,其中圆心为(,)a b ,半径为r2、圆的一般方程:220x y Dx Ey F ++++=(2240D E F +->),其中圆心为(,)22DE-- 3、以11((,)A x y ,22(,)B x y 为直径端点的圆的方程为:1212()()()()0x x x x y y y y --+--=【强化训练】1、点(51,12)P a a +在圆22(1)1x y -+=的内部,则实数a 的取值范围是2、曲线214y x =与圆C :225x y +=的交点坐标是 3、由点(1,3)P 作圆C :229x y +=的切线,则切线长为4、过点M 的圆C :229x y +=的切线方程为5、过圆2246120x y x y +-+-=内一点(1,0)P -的最长弦所在的直线方程是6、方程224250x y mx y m ++-+=表示圆的充要条件是7、以点(3,4)-为圆心,且与x 轴相切的圆的方程为8、与圆22(1)(1)1x y -+-=相切,且与x 轴、y 轴都相切的圆的个数是9、“240D F -=”是“圆220x y Dx Ey F ++++=与x 轴相切”的 条件10、若直线l 将圆22240x y x y +--=平分,且不过第三象限,则直线l 斜率的取值范围是11、圆02422=++-+a y x y x 与y 轴相交于A 、B 两点,圆心为M ,若 90=∠AMB ,则a 的值等于 ,12、若圆422=+y x 和圆044422=+-++y x y x 关于直线l 对称,则直线l 的方程是13、方程|x |-1=2)1(1--y 表示的曲线( )A 、一个圆B 、两个半圆C 、一个半圆D 、两个圆14、求圆心在直线4y x =-上,且与直线l :10x y +-=相切于点(3,2)P -的圆的方程.15、已知(1,2)P 为圆229x y +=内一定点,过P 作互相垂直的两条射线P A 、P B 交圆于,A B 两点,求A B 中点M 的轨迹方程.16、已知圆22440x y x y m +-+-=关于直线20x y --=对称的圆是C ,且圆C 恰好与直线 34400x y +-=相切,求实数m 的值.。
解析几何复习圆的方程

代数方法
求圆心坐标及半径r (配方法)
圆心到直线的距离d (点到直线距离公式)
(x a)2 ( y b)2 r 2
Ax
By
C
0
消去y(或x)
px2 qx t 0
d r : 相交 d r : 相切 d r : 相离
0 : 相交 0 : 相切 0 : 相离
圆与圆的 五 种 位置关系
中点公式求D, kDG kMN 1
DG
O
x
M
kMN ( yM yN ) /(xM xN )
小结:两圆相切的性质
C、C’为圆心,N为切点
y
C、N、C '三点共线
① kCN kC ' N
②点C’在直线CN上
C’
N CB
x
P44 A7
• 求圆 C : x2 y2 x 2y 0 关于直线 l : x y 1 0
所求圆的方程为
D 4
E
6
F 12
x2 y2 4x 6 y 12 0
即 (x 2)2 (y 3)2 25
P134 A3
3.已知圆C的圆心在直线 x 2 y 1 0 上,并
且经过原点和点A(2,1),求圆的标准方程。
解:设所求圆的方程为:
(x a)2 (y b)2 r2
a 2b 1 0 (0 a)2 (0 b)2 r 2 (2 a)2 (1 b)2 r 2
所求圆的方程为
rba2 122156009
(x 6)2 ( y 1 )2 29
5
10 20
待定系数法
例:以C(1,3)为圆心,并且和直线3x-4y-
7=0 相切的圆.
y
解:设所求圆的半径为r
圆的解析几何方程

〖圆的解析几何方程〗圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。
和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
〖圆与直线的位置关系判断〗平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F=> 圆心坐标为(-D/2,-E/2)1.点与圆的位置关系设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有:(1)d>r 点M在圆外;(2)d=r 点M在圆上;(3)d<r 点M在圆内.2.直线与圆的位置关系设圆C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,b)判别式为△,则有:(1)d<r 直线与圆相交;(2)d=r 直线与圆相切;(3)d<r 直线与圆相离,即几何特征;或(1)△>0 直线与圆相交;(2)△=0 直线与圆相切;(3)△<0 直线与圆相离,即代数特征,3.圆与圆的位置关系设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有:(1)d=k+r 两圆外切;(2)d=k-r 两圆内切;(3)d>k+r 两圆外离;(4)d<k+r 两圆内含;(5)k-r<d<k+r 两圆相交.4.其他(1)过圆上一点的切线方程:①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).(2)相交两圆的公共弦所在直线方程:设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.(3)圆系方程:①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).1.求经过M(1,2)N(3,4),并且在Y轴上截得的弦长为1的圆的方程。
平面解析几何中的圆方程

平面解析几何中的圆方程在平面解析几何中,圆是一个非常重要的几何形状。
通过方程的表示,我们可以了解圆的性质和特征。
本文将介绍平面解析几何中的圆方程,并探讨一些相关的概念和性质。
1. 标准圆方程我们首先来讨论圆的标准方程。
设一个圆的圆心坐标为(h, k),半径为r,则圆的标准方程可以表示为:(x - h)^2 + (y - k)^2 = r^2其中,圆心坐标为(h, k),表达了圆心在平面坐标系中的位置;半径为r,表示了圆的大小。
2. 圆的一般方程除了标准方程外,圆还可以表示为一般方程。
一般方程的形式为:Ax^2 + Ay^2 + Bx + Cy + D = 0其中,A、B、C、D为常数,并且A和C不同时为0。
通过圆的一般方程,我们可以推导出标准方程来反推圆的性质。
3. 圆心和半径的确定对于给定的圆方程,我们可以通过观察方程的形式,来确定圆的圆心和半径。
在标准方程中,圆心的坐标即为方程中的(h, k),而半径r可以通过方程=r^2来求解。
在一般方程中,首先需要将方程恢复到标准方程的形式。
可以通过平方完成平方项的系数,并移项整理得到标准方程。
再通过比较系数的方法,可以求解出圆的圆心和半径。
4. 圆的性质圆作为一个重要的几何形状,具有许多重要的性质。
以下是一些常见的圆的性质:4.1 切点和切线:在圆上任意一点,都可以作出一条切线,切线与半径垂直。
4.2 弦:连接圆上任意两点的线段称为弦。
直径是一条通过圆心的弦,有特殊的性质。
4.3 弧:圆上两点之间的部分称为弧。
整个圆的弧称为周长。
4.4 弧度制:角度的度量单位有弧度和角度制两种。
圆的周长为360°或2π弧度。
4.5 圆与直线的关系:在平面解析几何中,我们可以通过方程的求解,来研究圆与直线的交点和切点等问题。
5. 圆的相关定理在平面解析几何中,存在许多与圆相关的定理和性质。
以下是一些常见的圆相关定理:5.1 切线定理:如果一条直线与圆相切,那么切点到圆心的距离与切线的斜率之积等于-1。
圆系方程知识点总结

圆系方程知识点总结圆系方程的一般形式可以表示为:Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0其中A、B、C、D、E、F是常数,通常要求A、B、C不全为零。
根据A、B、C的取值不同,圆系方程可以表示不同的曲线形状。
在接下来的内容中,我们将从圆系方程的基本知识开始,逐步深入讨论圆、椭圆、双曲线和抛物线,并介绍它们在数学和物理中的应用。
1. 圆的方程圆是平面上与定点的距离等于定长的点的集合。
它的方程可以表示为:(x - h)^2 + (y - k)^2 = r^2其中(h, k)是圆的圆心坐标,r是圆的半径。
通过这个方程,我们可以得到圆的各种性质,如直径、周长和面积等。
2. 椭圆的方程椭圆是平面上到两个定点的距离之和等于定长的点的集合。
它的一般方程可以表示为:((x - h)^2)/a^2 + ((y - k)^2)/b^2 = 1其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆的中心坐标。
通过椭圆的方程,我们可以得到椭圆的长轴、短轴、焦点、离心率等性质。
3. 双曲线的方程双曲线是平面上到两个定点的距离之差等于定长的点的集合。
它的一般方程可以表示为:((x - h)^2)/a^2 - ((y - k)^2)/b^2 = 1其中(a, b)是双曲线的半长轴和半短轴,(h, k)是双曲线的中心坐标。
通过双曲线的方程,我们可以得到双曲线的渐近线、离心率等性质。
4. 抛物线的方程抛物线是平面上到定点的距离等于定长的点的集合。
它的一般方程可以表示为:y = ax^2 + bx + c其中(a, b, c)是抛物线的常数,a不等于零。
通过抛物线的方程,我们可以得到抛物线的焦点、顶点、对称轴等性质。
除了这些基本的圆系方程,我们还可以将它们进行适当的平移、旋转和缩放,得到不同形式的方程。
这些变换可以帮助我们更好地理解和利用圆系方程。
在数学中,圆系方程有着重要的应用。
例如,在几何学中,我们可以通过圆系方程研究曲线的性质和特征,解决曲线的相关问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 解析几何之圆的方程
*定义:平面内到定点的距离等于定长的点的集合
*
基本要素:定位→圆心O 、定形→半径r
*圆的标准方程与一般方程
(1)标准方程:
,圆心(a ,b ),半径为r ;
圆心(0,0),半径为r
(2)一般方程:
特点:(必要非充分条件) a .x ²、y ²的系数相同且不等于0; b .不含
xy 的二次项.
①
>0→圆(A=C ≠0,B=0)
圆心,半径为;
②=0时,表示点
;
③
<0
时,不表示任何图形。
*点与圆的位置关系:
1.利用点到圆心的距离来判定: 点
与圆
(r >0),
若,则
(1)点P 在圆外;
(2)点P 在圆上;
(3)
点P 在圆内。
2.利用圆的标准方程来判定:
*圆的切线方程(注意:对k 是否存在分类讨论!!!) Ⅰ.常见情况: (1)已知:圆
①若切点
在圆上→切线只有一条,
其方程是
②当
在圆外,必有两条切线:
→
过两切点的切点弦方程
→设
→相切条件→k
→斜率k →设y=kx+b →相切条件→b (2)已知圆, ①过圆上
的切线方程:
②斜率为k 的圆的切线方程:
Ⅱ.求法:
(1)切线与圆仅有一个交点
①代数法:
设切线方程→直线方程代入圆的方程→△=0求解 ②几何法:d=r (2)过定点:
①过圆上一点的切线方程:
a)与圆
相切与点
的切线方程
是
b)与圆
相切于(rcos θ,rsin θ)
的切线方程是xcos θ+ysin θ-r=0
c)与圆 (X-A)²+ (Y-B)=r²相切于点(X1,Y1)的切线方程是(X1-A)(X-A)+(Y1-B)(Y-B)=r²
d)与
圆相切于
点
的切线方程是
②过圆外一点的切线方程
设
外一点,求过P0点的圆的切线.
方法l :设切点,解方程组
→切点P1的坐标→写出切线方程。
方法2:
设切线方程是
∵→待定系数k
→写出切线方程.
注意:观察图形→是否有垂直于x轴的切线!!!!
*直线与圆、圆与圆的位置关系
直线与圆
1.认识:
2.性质:
(1)直线l和⊙O相交 d<r
(2)直线l和⊙O相切 d=r;
(3)直线l和⊙O相离 d>r。
3.判定方法:
(1)代数法:判断直线Ax+By+C=0和圆
x2+y2+Dx+Ey+F=0的位置关系,可由
推出mx2+nx+p=0,利用判别式△进行判断.
△>0相交;△=0相切;△<0相离.
(2)几何法
+性质
(3)弦长的计算(见参数一章):弦长公式or几何法or两点式
圆与圆
1.认识
2.方法:
(1)几何法+两圆公切线条数
(2)代数法:联立两圆方程→一元二次方程
注意:x值可能对应两个y值!!!【慎用】
*轨迹方程
1.一般步骤(直接法):
(1)建系设点
(2)列式→代入
(3)简化→证明
2.常用解法:①直接法②定义法③相关点法
④待定系数法⑤参数法⑥交轨法
*几种特殊位置的圆的方程:
*圆系方程
(1)定义:所有的圆都有相同的圆心,但r 不同的圆的总和or r 相同,但圆心不同的圆的总和。
(2)应用:求圆方程;证明四点共圆
*关于点、直线对称的圆的方程
*与圆有关的最值问题 *相交弦所在直线的方程(方法:将两圆方程相减)
习题:
● 直线与圆2015-Z1
● 对角互补的四边形一定四点共圆吗?2015-Z19
●
一道直线恒过定点问题的多证、探源及拓展2015-Z19
● 2015湖北高考理科第14题探究2015-Z18
● 圆系方程及运用技巧2011-05 ● 直线系与圆系方程2002-SB ●
巧用圆的性质解题2011-05
补充:韦达定理法:
不求交点坐标,可用韦达定理求解.若直线l 的方程用y=kx+m 或x=n 表示.。