圆的方程知识点总结和典型例题
高中数学圆与方程知识点归纳与常考题型专题练习(附解析)

高中数学圆与方程知识点归纳与常考题型专题练习(附解析) 知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系 直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆> 直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。
圆系方程-高中数学知识点讲解

圆系方程
1.圆系方程
【知识点的知识】
所谓圆系方程指的是所有的圆都有相同的圆心,但圆的半径不同的圆的总和,还可以是圆的半径相同,但圆心
不同,我们把满足这两种情况的圆的总和就叫做圆系方程;除了圆系,还有直线系(过某一定点)等等.
【例题解析】
例:已知圆系方程x2+y2+2kx+(4k+10)y+5k2+20k=0(k∈R),是否存在斜率为 2 的直线l 被圆系方程表示的任意一圆截得的弦长是定值45?如果存在,试求直线l 的方程;如果不存在,请说明理由.
解:假设存在满足条件的直线方程为y=2x+m,
圆的方程配方可得:(x+k)2+(y+2k+5)2=25.
所以圆心到直线的距离d =1
5|―2푘+2푘+5+푚|=
|5+푚|
,
5
|5+푚|
由垂径定理可得:(2=52―(25)2,
5)
解得m=0 或m=﹣10,
故存在满足条件的直线方程,方程为y=2x 或y=2x﹣10.
这个题可以看出,遇到圆系方程的题,只需知道其概念就可以了,关键还是看圆心、半径、圆心到直线的距离这三个因素,常用的方法就是待定系数法.
【考点分析】
本考点也是在初中就已经学过,对于高考来说,算是个冷门,但也偶尔会考,还是希望大家了解这些基本的概念,争取不漏死角.
1/ 1。
圆的方程数学知识点与练习

圆的方程●圆的方程的三种形式 (1)圆的标准方程(x-a)2+(y-b)2=r 2,方程表示圆心为(a,b),半径为r 的圆. (2)圆的一般方程对于方程x 2+y 2+Dx+Ey+F=0①当D 2+E 2-4F >0时,表示圆心为(-D 2,-E 2),半径为12②当D 2+E 2-4F=0时,表示一个点(-D 2,-E2);③当D 2+E 2-4F <0时,它不表示任何图形.(3)圆的参数方程x a rcos ,y b rsin θθ=+⎧⎨=+⎩,圆心(a,b ),半径r >0,θ∈R. ●点与圆的位置关系圆的标准方程(x-a )2+(y-b)2=r 2,圆心A (a,b ),半径r ,若点M (x 0,y 0)在圆上,则(x 0-a)2+(y 0-b)2=r 2; 若点M (x 0,y 0)在圆外,则(x 0-a)2+(y 0-b)2>r 2; 若点M (x 0,y 0)在圆内,则(x 0-a)2+(y 0-b)2<r 2. ●确定圆的方程的方法(1)确定圆的方程的主要方法是待定系数法.如果选择标准方程,一般步骤为: ①根据题意,设所求圆的标准方程为(x-a )2+(y-b)2=r 2; ②根据已知条件,建立关于a 、b 、r 的方程组;③解方程组,并把它们代入所设的方程中,整理后,就得到所求方程. 求圆的标准方程时,尽量利用圆的几何性质,可以大大地减少计算量. (2)如果已知条件中圆心的位置不能确定,可考虑选择圆的一般方程,圆的一般方程也含有三个独立的参数,因此,必须具备三个独立的条件,才能确定圆的一般方程,其方法仍采用待定系数法.设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由三个条件得到关于D 、E 、F 的一个三元一次方程组,解方程组,求出参数D 、E 、F 的值即可.(3)以A (x 1,y 1),B(x 2,y 2)为直径的两端点的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0. (4)在求圆的方程时,常用到圆的以下几个性质: ①圆心在过切点且与切线垂直的直线上; ②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线. ●与圆有关的最值问题(1)求与圆有关的最值问题多采用几何法,就是利用一些代 数式的几何意义进行转化.如①形如m=y bx a--的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by 的最值问题,可转化为直线在y 轴上的截距的最值问题;③形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间的距离平方的最值问题. (2)特别要记住下面两个代数式的几何意义:yx表示点(x,y )与原点(0,0)连线的直线斜率表示点(x,y )与原点的距离. 1.方程x 2+y 2+4mx-2y+5m=0表示圆的充要条件是( )A.14<m<1 B.m>1 C.m<14D.m<14或m>1解析:若方程表示圆,则(4m)2+(-2)2-4×5m>0,解得m<14或m>1.答案:D2.若点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则a的取值范围是( )A.|a|B.|a|<1C.|a|D.|a|≤1解析:点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则(4a-1+1)2+(3a+2-2)2≤25,即|a|≤1. 答案:D3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为( )A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5解析:圆(x+2)2+y2=5的圆心(-2,0)关于y=x对称的点的坐标为(0,-2),所以,所求圆的方程是x2+(y+2)2=5.答案:D4.已知x、y满足x2+y2-4x-6y+12=0,则x2+y2的最小值为__________.解析:点(x,y)在圆(x-2)2+(y-3)2=1上,故点(x,y)到原点距离的平方即x2+y2的最小值为2答案:5.已知圆x2+y2+kx+2y=-k2,当该圆的面积取最大值时,圆心坐标为__________.答案:(0,-1)自我诊断①若圆x2+y2+(a2-1)x+2ay-a=0关于直线x-y+1=0对称,则实数a的值为__________.答案:3自我诊断②以点A(-3,0),B(0,-3),C(157,247)为顶点的三角形与圆x2+y2=R2(R>0)没有公共点,则圆半径R的取值范围是())∪,+∞) B.( ) )∪(3,+∞)D.(,3)2解析:如图,若圆与△ABC没有公共点,需考虑两种情况,①圆在三角形内部;②圆在三角形外部.当圆在三角形内部时,圆与BC;当圆在三角形外部时,圆过点C,所以选A.答案:A题型一圆的方程的求法【例1】根据下列条件求圆的方程:(1)经过点P(1,1)和坐标原点,并且圆心在直线2x+3y+1=0上;(2)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);(3)过三点A(1,12),B(7,10),C(-9,2).规律方法:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质而求出圆的基本量;(2)代数法,即设出圆的方程,用待定系数法求解. 创新预测1根据下列条件求圆的方程:(1)已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为(2,圆心在直线y=2x上,圆被直线x-y=0截得的弦长为题型二与圆有关的最值问题【例2】已知实数x、y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.规律方法:化x、y满足的关系式为(x-2)2+y2=3,明确yx、y-x、x2+y2的几何意义,数形结合求解.创新预测2已知实数x、y满足方程x2+y2-4x+1=0.(1)求y2x1++的最大值和最小值.(2)求x-2y的最大值和最小值.(3)求点P(x,y)到直线3x+4y+12=0的距离的最大值和最小值.题型三与圆有关的轨迹问题【例3】设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹.\规律方法:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法,直接根据题目提供的条件列出方程;定义法,根据圆、直线等定义列方程;几何法,利用圆与圆的几何性质列方程;代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.创新预测3 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点. (1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求PQ中点的轨迹方程.题型四与圆有关的实际应用问题【例4】有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:A地每千米的运费是B地每千米运费的3倍.已知A、B两地距离为10 km,顾客选择A地或B地购买这件商品的标准是:包括运费和价格的总费用较低.求P地居民选择A地或B地购货总费用相等时,点P所在曲线的形状,并指出曲线上、曲线内、曲线外的居民应如何选择购物地点.规律方法:审清题意,根据题意求轨迹方程.求方程前必须建立平面直角坐标系,否则曲线就不能转化为方程,坐标系选取得当,可使运算过程简单,所得方程也较简单.创新预测4 设有一个半径为3 km的圆形村落,A、B两人同时从村落中心出发,A向东而B向北前进.A出村后不久,改变前进方向,沿着切于村落边界的方向前进,后来恰好与B相遇.设A、B 两人的速度都一定,其比为3∶1,问:两人在何处相遇?精品作业自我测评·技能备考一、选择题:每小题6分,共36分.1.(2009·许昌模拟)P(x,y)是圆x2+y2=1与直线x+y+2m=0(m>0)的公共点,则直线008=0的倾斜角的最大值为( )A.45°B.60°C.90°D.135°答案:A2.(2009·天津汉沽模拟)已知两点A(-2,0),B(0,2),点C 是圆x 2+y 2-2x=0上任意一点,则△ABC 面积的最小值是( )C.3-2D.32 答案:A3.(2009·山东临沂模拟)若直线ax+2by-2=0(a >0,b >0)始终平分圆x 2+y 2-4x-2y-8=0的周长,则1a +2b的最小值为( )A.1B.5 答案:D4.(2008·山东)已知圆的方程为x 2+y 2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )答案:B5.(2009·湖北沙市模拟)直线l:4x-3y-12=0与x、y轴的交点分别为A、B,O为坐标原点,则△AOB内切圆的方程为( )A.(x-1)2+(y+1)2=1B.(x-1)2+(y-1)2=1C.(x-1)2+(y+1)2D.(x-1)2+(y+1)2=2 答案:A解析:A(3,0),B(0,-4),O(0,0),∴内切圆的半径r=OA OB AB2+-=1,由图象知,圆心为(1,-1),∴方程为(x-1)2+(y+1)2=1,故选A.6.(2009·西南师大附中模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为( )A.3B.2C.22D.2 答案:D二、填空题:每小题6分,共18分.7.(2009·江苏江宁高级中学3月模拟)直线ax+by=1过点A(b,a),则以坐标原点O为圆心,OA 长为半径的圆的面积的最小值是______.答案:π解析:直线过点A(b,a),∴ab=12,圆面积S=πr2=π(a2+b2)≥2πab=π.8.(2009·广东华南师大附属中学测试)从圆(x-1)2+(y-1)2=1外一点P(2,3)向这个圆引切线,则切线长为____________.答案:2解析:圆心(1,1),则|PC|2=5,∴切线长9.(2009·浙江金华模拟)已知圆O的方程为x2+y2=4,P是圆O上的一个动点,若OP的垂直平分线总是被平面区域|x|+|y|≥a覆盖,则实数a的取值范围是_____________.答案:a≤1解析:易知OP的垂直平分线即为单位圆的切线,当a≤0时,平面区域即坐标平面,显然满足题意;当a>0时,由图象易知0<a≤1,综上,a≤1.三、解答题:10、11题每题15分,12题16分,共46分.10.(2009·江苏通州调研)如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值.(2)设点P在⊙E上,使△PCD的面积等于12的点P有且只有三个,试问:这样的⊙E是否存在?若存在,求出⊙E的标准方程;若不存,说明理由.11.(2009·江苏盐城模拟)已知以点C(t,2t)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y=-2x+4与圆C交于点M、N,若OM=ON,求圆C的方程.\12.设O 为坐标原点,曲线x 2+y 2+2x-6y+1=0上有两点P 、Q ,满足关于直线x+my+4=0对称,又满足OP ·OQ =0.(1)求m 的值;(2)求直线PQ 的方程.。
圆知识点总结及归纳

第一讲 圆的方程一、知识清单(一)圆的定义及方程定义标准 方程一般方程平面内与定点的距离等于定长的点的会合 (轨迹 )(x - a)2 +(y -b)2= r 2(r>0)圆心: (a , b),半径: rx 2+ y 2+ Dx + Ey +F = 0圆心: - D ,- E,2 2 (D 2+E 2- 4F>0)半径: 1 D 2+ E 2- 4F21、圆的标准方程与一般方程的互化( 1)将圆的标准方程 (x -a)2+( y -b)2= r 2 睁开并整理得 x 2+ y 2- 2ax - 2by + a 2+ b 2- r 2= 0,取 D =- 2a ,E =- 2b , F = a 2+ b 2- r 2,得 x 2+ y 2+ Dx + Ey + F = 0.( 2)将圆的一般方程 x 2+ y 2+ Dx +Ey + F = 0 经过配方后获得的方程为:(x + D 2+ (y + E 2 D 2 +E 2- 4F2 ) 2 ) = 4①当 D 2+E 2- 4F>0 时,该方程表示以 (-D ,- E)为圆心, 1 D 2+ E 2 - 4F 为半径的圆;2 2 2②当 D 2+ E 2- 4F = 0x =- D , y =- E (- D 时,方程只有实数解2 2,即只表示一个点 2 ,-E);③当 D 2+ E 2- 4F<0 时,方程没有实数解,因此它不表示任何图形.22、圆的一般方程的特点是 : x 2 和 y 2 项的系数都为 1 ,没有 xy 的二次项 .3、圆的一般方程中有三个待定的系数 D 、 E 、 F ,所以只需求出这三个系数,圆的方程就确立了.(二)点与圆的地点关系点 M(x 0, y 0)与圆 (x -a)2+(y - b)2 =r 2 的地点关系:( 1)若 M(x 0, y 0)在圆外,则 (x 0- a)2+ (y 0- b) 2>r 2.( 2)若 M(x 0, y 0)在圆上,则 (x 0- a)2+ (y 0- b) 2= r 2.( 3)若 M(x 0, y 0)在圆内,则 (x 0- a)2+ (y 0- b) 2<r 2.(三)直线与圆的地点关系方法一:方法二:(四)圆与圆的地点关系1外离2外切3订交4内切5内含(五)圆的参数方程(六)温馨提示1、方程 Ax2+ Bxy+ Cy 2+ Dx + Ey+ F = 0 表示圆的条件是:( 1)B= 0;( 2) A=C≠0;( 3)D 2+ E2-4AF> 0.2、求圆的方程时,要注意应用圆的几何性质简化运算.( 1)圆心在过切点且与切线垂直的直线上.( 2)圆心在任一弦的中垂线上.( 3)两圆内切或外切时,切点与两圆圆心三点共线.3、中点坐标公式:已知平面直角坐标系中的两点A(x1,y1),B(x2, y2) ,点 M (x, y) 是线段 AB 的中点,则 x=x1x2 ,y=y1y2 .22二、典例概括考点一:相关圆的标准方程的求法【例1】圆22,半径是. x a y bm2 m 0 的圆心是【例2】点 (1,1)在圆 (x- a)2+ (y+ a)2= 4 内,则实数A . (- 1,1)C.( -∞,- 1)∪ (1,+∞ )a 的取值范围是(D. (1,+∞))B. (0,1)【例 3】圆心在 y 轴上,半径为1,且过点 (1,2)的圆的方程为 ()A . x2+ (y-2)2=1B. x2+ (y+ 2)2= 1C.( x- 1) 2+ (y-3) 2= 1D. x2+ (y- 3)2= 1【例 4】圆 (x+2) 2+ y2= 5 对于原点P(0,0)对称的圆的方程为 ()A . (x- 2)2+y2=5B. x2+ (y- 2)2= 5C.( x+ 2) 2+ (y+2) 2= 5D. x2+ (y+ 2)2= 5【变式 1】已知圆的方程为x 1 x 2y 2 y 40 ,则圆心坐标为【变式 2】已知圆 C 与圆x 1221 对于直线 y x 对称,则圆C的方程为y【变式3】若圆 C 的半径为1,圆心在第一象限,且与直线4x- 3y= 0和x 轴都相切,则该圆的标准方程是()A . (x- 3)2+7y- 3 2= 1B. (x- 2)2+ (y- 1)2= 1C.( x- 1) 2+ (y-3) 2= 1D. x- 3 2+(y- 1)2= 12【变式4】已知ABC 的极点坐标分别是 A 1,5 , B 5,5 , C 6, 2 ,求ABC 外接圆的方程 .方法总结:1.利用待定系数法求圆的方程重点是成立对于a, b, r 的方程组.2.利用圆的几何性质求方程可直接求出圆心坐标和半径,从而写出方程,表现了数形联合思想的运用.考点二、相关圆的一般方程的求法【例 1】若方程 x2+ y2+ 4mx- 2y+5m=0 表示圆,则m 的取值范围是()A .1< m< 1 B . m<1或 m> 1 C .m<1D. m> 1 444【例 2】将圆 x2+ y2- 2x- 4y+1= 0 均分的直线是 ()A . x+ y- 1= 0B. x+ y+ 3= 0C. x-y+ 1= 0D. x- y+ 3= 0【例 3】圆 x2-2x+y2- 3=0 的圆心到直线x+3y- 3= 0 的距离为 ________.【变式 1】已知点P是圆C : x2y24x ay 5 0 上随意一点,P点对于直线2 x y 1 0 的对称点也在圆 C 上,则实数a =【变式 2】已知一个圆经过点 A 3,1 、 B 1,3 ,且圆心在3x y 20 上,求圆的方程 .【变式 3】平面直角坐标系中有 A 0,1 , B 2,1 , C 3,4 , D 1,2 四点,这四点可否在同一个圆上?为何?【变式4】假如三角形三个极点分别是O(0,0), A(0,15) , B(- 8,0),则它的内切圆方程为________________ .方法总结:1.利用待定系数法求圆的方程重点是成立对于D, E, F 的方程组.2.娴熟掌握圆的一般方程向标准方程的转变考点三、与圆相关的轨迹问题【例 1】动点 P到点A(8,0)的距离是到点B(2,0)的距离的 2 倍,则动点P 的轨迹方程为()A . x2+ y2=32B. x2+ y2= 16C.( x- 1) 2+ y2=16D. x2+ (y- 1)2= 16【例 2】方程y25 x2表示的曲线是()A. 一条射线B. 一个圆C. 两条射线D. 半个圆【例3】在ABC 中,若点B,C的坐标分别是(-2,0)和(2,0),中线AD的长度是3,则点 A 的轨迹方程是()A. x2y23B. x2y24C. x 2222y 9 y 0 D. x y 9 x 01【例4】已知一曲线是与两个定点O(0,0) ,A(3,0) 距离的比为的点的轨迹.求这个曲线的方程,并画出曲线.【变式 1】方程x 1 12y 1 所表示的曲线是()A. 一个圆B. 两个圆C. 一个半圆D. 两个半圆【变式 2】动点 P 到点 A(8,0) 的距离是到点B(2,0)的距离的 2 倍,则动点P 的轨迹方程为()A . x2+ y2=32B. x2+ y2= 16C.( x- 1) 2+ y2=16D. x2+ (y- 1)2= 16【变式 3】如右图,过点M(- 6,0)作圆 C: x2+y2-6x- 4y+ 9= 0 的割线,交圆C于 A、B 两点,求线段 AB 的中点P 的轨迹.【变式4】如图,已知点A( -1,0)与点长至 D ,使得 |CD |= |BC|,求 AC 与 ODB(1,0), C 是圆 x2+ y2= 1 上的动点,连结的交点 P 的轨迹方程.BC 并延方法总结:求与圆相关的轨迹问题时,依据题设条件的不一样常采纳以下方法:(1)直接法:依据题目条件,成立坐标系,设出动点坐标,找出动点知足的条件,而后化简.(2)定义法:依据直线、圆等定义列方程.(3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点知足的关系式等.考点四:与圆相关的最值问题【例 1】已知圆x2+ y2+ 2x- 4y+ a= 0 对于直线y= 2x+b 成轴对称,则a- b 的取值范围是________【例 2】已知 x, y 知足 x2+ y2= 1,则y-2的最小值为 ________.x- 1【例 3】已知点则|MN|的最小值是M 是直线()3x+ 4y- 2= 0 上的动点,点N 为圆( x+1) 2+ (y+1)2= 1 上的动点,9A. 5B. 14C.5D.135【例 4】已知实数x, y 知足 (x- 2)2+ (y+ 1)2= 1 则 2x- y 的最大值为 ________,最小值为________.【变式 1】 P(x, y)在圆 C: (x- 1)2+ (y- 1)2=1 上挪动,则x2+ y2的最小值为 ________.【变式 2】由直线 y= x+ 2 上的点 P 向圆 C: (x- 4)2+ (y+ 2)2= 1 引切线 PT(T 为切点 ),当|PT|最小时,点 P 的坐标是 ()A . (- 1,1)B. (0,2)C . (- 2,0)D. (1,3)【变式 3】已知两点A(- 2,0), B(0,2),点积的最小值是 ________.C 是圆x2+ y2- 2x= 0 上随意一点,则△ABC面【变式 4】已知圆M 过两点 C(1,- 1), D (- 1,1),且圆心M 在 x+y- 2= 0 上.(1)求圆 M 的方程;(2)设 P 是直线 3x+ 4y+ 8=0 上的动点, PA、 PB 是圆 M 的两条切线, A, B 为切点,求四边形 PAMB 面积的最小值.方法总结:解决与圆相关的最值问题的常用方法(1)形如 u=y-b的最值问题,可转变为定点 (a, b)与圆上的动点 ( x,y)的斜率的最值问题x - a(2)形如 t= ax+ by 的最值问题,可转变为动直线的截距的最值问题;(3)形如 (x- a)2+ (y- b)2的最值问题,可转变为动点到定点的距离的最值问题.(4)一条直线与圆相离,在圆上找一点到直线的最大(小)值: d r (此中d为圆心到直线的距离)。
专题55:圆与方程知识点与典型例题(解析版)

专题55:圆与方程知识点与典型例题(解析版)1、圆的方程(1)圆的标准方程:222()()x a y b r -+-=,其中(,)a b 为圆心,r 为半径(2)圆的一般方程:22220(40)x y Dx Ey F D E F ++++=+->,其中圆心为(,)22D E --只有当22,x y 的系数化为1时才能用上述公式) 注意:已知圆上两点求圆方程时,运用圆心在这两点的垂直平分线上这个条件可简化计算。
1.圆C 的圆心坐标为()0,0,且圆C 经过点()3,4M ,求圆C 的方程.1.2225x y +=. 【分析】求出圆的半径,即可得圆标准方程. 【详解】解:圆C 5=,所求圆的方程为2225x y +=. 故答案为:2225x y +=. 【点睛】本题考查求圆的标准方程,解题关键是确定圆心坐标和半径.2.求过点(1,1),(1,1)A B --,且圆心在直线20x y +-=上的圆的方程.2.22(1)(1)4x y -+-=. 【解析】试题分析:由,A B 的坐标计算可得AB 的垂直平分线方程y x =,进而得到:20y xx y =⎧⎨+-=⎩,解可得,x y 的值,即可得圆心坐标,而圆的半径22r ==,代入圆的标准方程计算即可得到答案.解析:由已知得线段AB 的中点坐标为()0,0,所以()11111AB k --==---所以弦AB 的垂直平分线的斜率为1k =, 所以AB 的垂直平分线方程为y x = 又圆心在直线20x y +-=上,所以20y xx y =⎧⎨+-=⎩ 解得11x y =⎧⎨=⎩即圆心为()1,1圆的半径为22r ==所以圆的方程为()()22114x y -+-=. 3.写出下列方程表示的圆的圆心和半径:(1)2210x y +=; (2)2221x y ;(3)()22325x y ++=; (4)()()22259x y ++-=.3.(1)圆心坐标为()0,0,; (2)圆心坐标为()2,0-,半径为1; (3)圆心坐标为()0,3-,半径为5; (4)圆心坐标为()2,5-,半径为3. 【分析】圆的标准方程为222()(),0x a y b r r -+-=>,则此圆的圆心坐标为(,)a b ,半径为r ,将(1) (2) (3) (4)分别代入即可得解. 【详解】解:(1)由圆2210x y +=的标准方程可得,该圆的圆心坐标为()0,0,,即圆2210x y +=的圆心坐标为()0,0,; (2) 由圆2221x y 的标准方程可得,该圆的圆心坐标为()2,0-,半径为1,即圆2221x y 的圆心坐标为()2,0-,半径为1;(3) 由圆()22325x y ++=的标准方程可得,该圆的圆心坐标为()0,3-,半径为5, 即圆()22325x y ++=的圆心坐标为()0,3-,半径为5;(4) 由圆()()22259x y ++-=的标准方程可得,该圆的圆心坐标为()2,5-,半径为3,即圆()()22259x y ++-=的圆心坐标为()2,5-,半径为3.【点睛】本题考查了圆的标准方程及由标准方程确定圆的圆心坐标与半径,属基础题. 4.求满足下列条件的圆的方程(1)圆C 的圆心坐标为()0,0,且圆C 经过点()3,4M ,求圆C 的方程. (2)过()()()2,0,4,0,0,2A B C 三点的圆的方程. 4.(1)2225x y +=;(2)()()223310x y -+-=. 【分析】(1)根据圆心坐标和圆上点坐标求解出圆的半径,从而圆的方程可求; (2)采用待定系数法求解出圆的方程. 【详解】(1)因为圆心为()0,0且圆经过点()3,4M,所以圆的半径为5R ==, 所以圆的方程为:2225x y +=;(2)设圆的方程为:()()222x a y b R -+-=,代入点的坐标有:()()()222222222242a b R a b R a b R ⎧-+=⎪⎪-+=⎨⎪+-=⎪⎩,所以33a b R ⎧=⎪=⎨⎪=⎩,所以圆的方程为:()()223310x y -+-=. 【点睛】本题考查圆的方程求解,其中涉及利用圆心和半径求圆的方程、待定系数法求圆的方程,难度较易.2、直线与圆的位置关系(1)直线:0l Ax By C ++=,圆222:()()C x a y b r -+-=,记圆心(,)C a b 到直线l的距离d =①直线与圆相交,则0d r ≤<或方程组的0∆> ②直线与圆相切,则d r =或方程组的0∆= ③直线与圆相离,则d r >或方程组的0∆<(2)直线与圆相交时,半径r ,圆心到弦的距离d ,弦长l,满足:l =(3)直线与圆相切时, ①切线的求法:(Ⅰ)已知切点(圆上的点)求切线,有且只有一条切线,切点与圆心的连线与切线垂直; (Ⅱ)已知切线斜率求切线,有两条互相平行的切线,设切线方程为y kx b =+,利用圆心到切线的距离等于半径列出方程求出b 的值;(Ⅲ)已知过圆外的点00(,)P x y 求圆222:()()C x a y b r -+-=的切线,有两条切线,若切线的斜率存在,设切线方程为:00()y y k x x -=-,利用圆心到切线的距离等于半径列出方程求出k 的值;若切线的斜率不存在,则切线方程为0x x =,验证圆心到切线距离是否等于半径。
圆与椭圆例题和知识点总结

圆与椭圆例题和知识点总结一、圆的知识点圆是平面几何中一个非常重要的图形,具有许多独特的性质。
1、圆的定义平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为半径。
2、圆的标准方程圆心为$(a,b)$,半径为$r$的圆的标准方程为$(x a)^2 +(y b)^2 = r^2$。
3、圆的一般方程$x^2 + y^2 + Dx + Ey + F = 0$($D^2 + E^2 4F > 0$),圆心坐标为$(\frac{D}{2},\frac{E}{2})$,半径为$r =\frac{1}{2}\sqrt{D^2 + E^2 4F}$。
4、圆的直径所对的圆周角为直角。
5、圆的弦心距、弦长与半径的关系设圆的半径为$r$,弦心距为$d$,弦长为$l$,则$l = 2\sqrt{r^2d^2}$。
6、圆的切线性质(1)圆心到切线的距离等于半径。
(2)切线垂直于经过切点的半径。
7、圆与圆的位置关系两圆的圆心距为$d$,两圆的半径分别为$r_1$,$r_2$,则有:(1)外离:$d > r_1 + r_2$(2)外切:$d = r_1 + r_2$(3)相交:$|r_1 r_2| < d < r_1 + r_2$(4)内切:$d =|r_1 r_2|$(5)内含:$d <|r_1 r_2|$二、椭圆的知识点椭圆是平面内到两个定点的距离之和等于常数(大于两定点间的距离)的点的轨迹。
1、椭圆的标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$,焦点坐标为$(\pm c, 0)$。
(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$),焦点坐标为$(0, \pm c)$。
圆的方程 知识点+例题+练习

教学过程1.确定一个圆的方程,需要三个独立条件.“选形式,定参数”是求圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数,同时注意利用几何法求圆的方程时,要充分利用圆的性质.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.3.求圆的方程时,一般考虑待定系数法,但如果能借助圆的一些几何性质进行解题,不仅能使解题思路简化,而且还能减少计算量.如弦长问题,可借助垂径定理构造直角三角形,利用勾股定理解题.课堂巩固一、填空题1.(2014·南京模拟)已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是________.2.若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过第________象限.3.(2014·银川模拟)圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是________.4.两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是________.5.(2014·东营模拟)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是________.6.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.7.(2014·南京调研)已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上各点到l的距离的最小值为______.8.若圆x2+(y-1)2=1上任意一点(x,y)都使不等式x+y+m≥0恒成立,则实数m的取值范围是________.教学效果分析。
圆的方程 知识点总结及典例

4.1圆的方程基础知识梳理1.圆的标准方程:222)()(r b y a x =-+-,圆心:),(b a ,半径:r ;2.圆的一般方程:)04(,02222>-+=++++F E D F Ey Dx y x .习题巩固一、选择题1.点(sin θ,cos θ)与圆x 2+y 2=12的位置关系是( ) A .在圆上 B .在圆内C .在圆外D .不能确定2.已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.圆(x -3)2+(y +4)2=1关于直线y =x 对称的圆的方程是( )A .(x +3)2+(y +4)2=1B .(x +4)2+(y -3)2=1C .(x -4)2+(y -3)2=1D .(x -3)2+(y -4)2=15.方程y =9-x 2表示的曲线是( )A .一条射线B .一个圆C .两条射线D .半个圆6.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x 轴和y 轴上.则此圆的方程是( )A .(x -2)2+(y +3)2=13B .(x +2)2+(y -3)2=13C .(x -2)2+(y +3)2=52D .(x +2)2+(y -3)2=527.圆2x 2+2y 2+6x -4y -3=0的圆心坐标和半径分别为( )A .⎝⎛⎭⎫-32,1和194B .(3,2)和192C .⎝⎛⎭⎫-32,1和192D .⎝⎛⎭⎫32,-1和1928.方程x 2+y 2+4x -2y +5m =0表示圆的条件是( )A .14<m <1 B .m >1 C .m <14D .m <1 9.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程是( )A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=010.圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( )A .2B .22C .1D .2 11.已知圆x 2+y 2-2ax -2y +(a -1)2=0(0<a <1),则原点O 在( )A .圆内B .圆外C .圆上D .圆上或圆外12.若圆M 在x 轴与y 轴上截得的弦长总相等,则圆心M 的轨迹方程是( )A .x -y =0B .x +y =0C .x 2+y 2=0D .x 2-y 2=0二、填空题13.已知圆的内接正方形相对的两个顶点的坐标分别是(5,6),(3,-4),则这个圆的方程是_____________________________.14.圆O的方程为(x-3)2+(y-4)2=25,点(2,3)到圆上的最大距离为________.15.如果直线l将圆(x-1)2+(y-2)2=5平分且不通过第四象限,那么l的斜率的取值范围是________.16.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为________.17.已知圆C:x2+y2+2x+ay-3=0(a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a=________.18.已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为________.三、解答题19.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程.20.已知一个圆与y轴相切,圆心在直线x-3y=0上,且该圆经过点A(6,1),求这个圆的方程.21.平面直角坐标系中有A(-1,5),B(5,5),C(6,-2),D(-2,-1)四个点能否在同一个圆上?22.如果方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆.(1)求t的取值范围;(2)求该圆半径r的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的方程知识点总结和经典例题1.圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程(x-a)2+(y-b)2=r2(r>0)圆心:(a,b),半径:r一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)圆心:,(-D2,-E2)半径:12D2+E2-4F注意点(1)求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.(2)对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F>0这一条件.2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.3.直线与圆的位置关系(1)直线与圆的位置关系的判断方法设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.方法位置关系几何法代数法相交d<rΔ>0相切d=rΔ=0相离d>rΔ<0 1.几何法:由圆心到直线的距离d与圆的半径r的大小关系判断.2.代数法:根据直线方程与圆的方程组成的方程组解的个数来判断.3.直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系.(2)过一点的圆的切线方程的求法1.当点在圆上时,圆心与该点的连线与切线垂直,从而求得切线的斜率,用直线的点斜式方程可求得圆的切线方程.2.若点在圆外时,过这点的切线有两条,但在用设斜率来解题时可能求出的切线只有一条,这是因为有一条过这点的切线的斜率不存在.(3)求弦长常用的三种方法1.利用圆的半径r ,圆心到直线的距离d ,弦长l 之间的关系r 2=d 2+2(l2)解题.2.利用交点坐标若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间距离公式计算弦长.3.利用弦长公式设直线l :y =kx +b ,与圆的两交点(x 1,y 1),(x 2,y 2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l =|x 1-x 2|=1+k 2.(1+k 2)[(x 1+x 2)2-4x 1x 2]4. 圆与圆的位置关系(1)圆与圆位置关系的判断方法设圆O 1:(x -a 1)2+(y -b 1)2=r (r 1>0),21圆O 2:(x -a 2)2+(y -b 2)2=r (r 2>0).2方法位置关系几何法:圆心距d 与r 1,r 2的关系代数法:两圆方程联立组成方程组的解的情况外离d >r 1+r 2无解外切d =r 1+r 2一组实数解相交|r 1-r 2|<d <r 1+r 2两组不同的实数解内切d =|r 1-r 2|(r 1≠r 2)一组实数解内含0≤d <|r 1-r 2|(r 1≠r 2)无解易误点:两圆相切问题易忽视分两圆内切与外切两种情形.1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d ;(3)通过d ,r 1+r 2,|r 1-r 2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系. (2)两圆相交有关问题1.圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆的方程可设为:x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1),然后再由其他条件求出λ,即可得圆的方程.2.两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.3.公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.5. 对称问题(1)点关于点成中心对称通常利用中点坐标公式点 P (x ,y )关于Q (a ,b )的对称点为P'(2a -x ,2b -y ).(2)点关于直线成轴对称(3)曲线关于点、曲线关于直线成中心对称或轴对称6. 与圆有关的最值问题的常见解法(1)形如μ=形式的最值问题,可转化为动直线斜率的最值问题.y -bx -a (2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题. 7. 典型例题1.直线3x +4y -5=0与圆x 2+y 2=1的位置关系是( )A .相交 B .相切C .相离D .无法判断【解析】 圆心(0,0)到直线3x +4y -5=0的距离d ==1,又圆x 2+y 2=1的|-5|32+42半径r =1,∴d =r ,故直线与圆相切.2.直线3x +4y +12=0与圆(x -1)2+(y +1)2=9的位置关系是( )A .过圆心 B .相切C .相离D .相交但不过圆心【解析】 圆心(1,-1)到直线3x +4y +12=0的距离d ==<r .【答案】 D|3×1+4×(-1)+12|32+421153.求过点(1,-7)且与圆x 2+y 2=25相切的直线方程.【解析】 由题意知切线斜率存在,设切线的斜率为k ,则切线方程为y +7=k (x -1),即kx -y -k -7=0.∴=5,解得k =或k =-.∴所求切线方程为|-k -7|k 2+14334y +7=(x -1)或y +7=-(x -1),即4x -3y -25=0或3x +4y +25=0.43344.过点A (4,-3)作圆C :(x -3)2+(y -1)2=1的切线,求此切线的方程.【解析】因为(4-3)2+(-3-1)2=17>1,所以点A 在圆外.(1)若所求切线的斜率存在,设切线斜率为k ,则切线方程为y +3=k (x -4).因为圆心C (3,1)到切线的距离等于半径,半径为1,所以=1,即|k +4|=,|3k -1-3-4k |k 2+1k 2+1所以k 2+8k +16=k 2+1,解得k =-.158所以切线方程为y +3=-(x -4),即15x +8y -36=0.158(2)若直线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4.综上,所求切线方程为15x +8y -36=0或x =4.5.求直线l :3x +y -6=0被圆C :x 2+y 2-2y -4=0截得的弦长.【解析】圆C :x 2+y 2-2y -4=0可化为x 2+(y -1)2=5,其圆心坐标为(0,1),半径r =.5点(0,1)到直线l 的距离为d ==,|3×0+1-6|32+12102l =2=,所以截得的弦长为.r 2-d 210106.直线x +2y -5+=0被圆x 2+y 2-2x -4y =0截得的弦长为( )5A .1 B .2C .4D .46【解析】 圆的方程可化为C :(x -1)2+(y -2)2=5,其圆心为C (1,2),半径r =.5如图所示,取弦AB 的中点P ,连接CP ,则CP ⊥AB ,圆心C 到直线AB 的距离d =|CP |==1.在Rt △ACP 中,|AP |==2,故直|1+4-5+5|12+22r 2-d 2线被圆截得的弦长|AB |=4.7.两圆x 2+y 2=9和x 2+y 2-8x +6y +9=0的位置关系是( )A .外离B .相交C .内切D .外切【解析】 两圆x 2+y 2=9和x 2+y 2-8x +6y +9=0的圆心分别为(0,0)和(4,-3),半径分别为3和4.所以两圆的圆心距d ==5.42+(-3)2又4-3<5<3+4,故两圆相交.8.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( )A .外离B .相交C .外切D .内切【解析】 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2),半径长r 2=2;1=r 2-r 1<|O 1O 2|=<r 1+r 2=3,即两圆相交.59.求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.【解析】 联立两圆的方程得方程组Error!两式相减得x -2y +4=0,此为两圆公共弦所在直线的方程.法一:设两圆相交于点A ,B ,则A ,B 两点满足方程组Error!解得Error!或Error!所以|AB |==2,即公共弦长为2.(-4-0)2+(0-2)255法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =5,圆心到直线x -2y +4=0的距离为d =2=3.设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即|1-2×(-5)+4|1+(-2)2550=(3)2+l 2,解得l =,故公共弦长2l =2.55510.求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=所截得的弦长.254【精彩点拨】 联立圆C 1、C 2的方程――→作差 得公共弦所 在的直线―→―→―→圆心C 3到公共弦的距离d 圆的半径r 弦长=2r 2-d 2【解析】设两圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则A ,B 的坐标是方程组Error!的解,两式相减得x +y -1=0.因为A ,B 两点的坐标满足x +y -1=0,所以AB 所在直线方程为x +y -1=0,即C 1,C 2的公共弦所在直线方程为x +y -1=0,圆C 3的圆心为(1,1),其到直线AB 的距离d =,由条件知12r 2-d 2=-=,所以直线AB 被圆C 3截得弦长为2×=.254122342322311.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为( )A .(x +1)2+y 2=1B .x 2+y 2=1C .x 2+(y +1)2=1D .x 2+(y -1)2=1【解析】 由已知圆(x -1)2+y 2=1得圆心C 1(1,0),半径长r 1=1.设圆心C 1(1,0关于直线y =-x 对称的点为(a ,b ),则Error!解得Error!所以圆C 的方程为x 2+(y +1)2=1.12.当动点P 在圆x 2+y 2=2上运动时,它与定点A (3,1)连线中点Q 的轨迹方程为________.【解析】 设Q (x ,y ),P (a ,b ),由中点坐标公式得Error!所以Error!点P (2x -3,2y -1)满足圆x 2+y 2=2的方程,所以(2x -3)2+(2y -1)2=2,化简得2+2=,即为点Q 的轨迹方程.(x -32)(y -12)1213.(1)△ABC 的顶点坐标分别是A (5,1),B (7,﹣3),C (2,﹣8),求它的外接圆的方程;(2)△ABC的顶点坐标分别是A(0,0),B(5,0),C(0,12),求它的内切圆的方程.【解答】解:(1)设所求圆的方程为(x﹣a)2+(y﹣b)2=r2,①因为A(5,1),B(7,﹣3),C(2,﹣8)都在圆上,所以它们的坐标都满足方程①,于是,可解得a=2,b=﹣3,r=25,所以△ABC的外接圆的方程是(x﹣2)2+(y+3)2=25.(2)∵△ABC三个顶点坐标分别为A(0,0),B(5,0),C(0,12),∴AB⊥AC,AB=5,AC=12,BC=13,∴△ABC内切圆的半径r==2,圆心(2,2),∴△ABC内切圆的方程为(x﹣2)2+(y﹣2)2=4.14.已知圆C:x2+(y+1)2=5,直线l:mx﹣y+1=0(m∈R)(1)判断直线l与圆C的位置关系;(2)设直线l与圆C交于A、B两点,若直线l的倾斜角为120°,求弦AB的长.【解答】解:(1)由于直线l的方程是mx﹣y+1=0,即y﹣1=mx,经过定点H(0,1),而点H到圆心C(0,﹣1)的距离为2,小于半径,故点H在圆的内部,故直线l与圆C相交,故直线和圆恒有两个交点.o (2)直线l 的倾斜角为120°,直线l :﹣ x﹣y +1=0,圆心到直线的距离d==1,∴|AB |=2=4.15.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为,求直2线l 的方程.【解】 由题意,直线与圆要相交,斜率必须存在,设为k .设直线l 的方程为y +2=k (x +1).又圆的方程为(x -1)2+(y -1)2=1,圆心为(1,1),半径为1,所以圆心到直线的距离d ===.|2k -1-2|1+k 212-(22)222解得k =1或.所以直线l 的方程为y +2=x +1或y +2=(x +1),即177177x -y -1=0或17x -7y +3=0.。