核医学经典资料剖析
核医学讲义

核医学讲义绪论原子弹地爆时的景象苏联第一艘核动力潜艇美国第一艘核动力航空母舰我们看到的这些与核技术有关的武器是一个国家综合国力的体现,改变着世界的格局。
随着核技术的发展和学科的交叉渗透,核技术已经应用到科学技术的各个学科。
核技术是人类科学发展史上的一个里程碑,是科学现代化的标志之一。
再比如:核科学技术与农业的结合--核农学我国科学家利用核射线选育出的“鲁棉一号”以及花卉、水稻等新品种,带来了非常大的经济效益和社会效益,改变着我们的生活!核技术在工业上的应用--核电站目前我国在建和正在运行的核电站达到二十余座,为我国国民经济建设作出了重大贡献!核技术在医学上的应用--核医学(Nuclear medicine)这是一台先进核医学仪器—PET/CT,医生正在给病人作核医学检查。
核医学是医学专业的必修课。
一、概述(一)定义:核医学是核技术与医学相结合的综合性的边缘科学,是用放射性核素诊断、治疗疾病和进行医学研究的医学学科。
着重研究放射性核素和核射线在医学上的应用及其理论的基础。
核医学在现代医学上的应用非常广泛,涉及到医学各个学科。
(二)内容:1、实验核医学(Experimental nuclear medicine):主要以实验核技术研究生命现象本质和物质代谢变化,并侧重实验核技术的方法学探讨以及在基础医学、生物医学等一些学科中的应用。
2、临床核医学(Clinical nuclear medicine):研究核素、核射线在临床诊断和治疗中的应用技术及其理论,可分为:(1)诊断核医学:包括脏器功能测定、脏器显像、微量物质测定等。
(2)治疗核医学:如:131I 的甲亢治疗,32P 的敷贴治疗等。
核医学显像原理X 光 / CT代谢和功能显像 SPECT 或 PET正电子断层扫描(PET )的原理是利用癌细胞会吸收大量葡萄糖,将18F-FDG 注入体内,癌细胞会大量吸收FDG ,接着会侦测出FDG 聚集部位,也就是肿瘤所在位置。
核医学知识点

核医学知识点核医学是一门专注于利用放射性物质来诊断和治疗疾病的学科。
它在医学领域中扮演着重要的角色,为医生提供了一种非侵入性且准确的方法来获取人体内部的结构和功能信息。
在本文中,我将介绍核医学的一些基本知识点,包括放射性同位素的应用、核素扫描技术和核医学的发展前景。
核医学的基础是放射性同位素的应用。
放射性同位素是指原子内核具有相同的质子数,但中子数不同的同一元素。
它们具有放射性衰变的特性,可以通过辐射来释放能量。
在核医学中,常用的放射性同位素包括钴-57、钴-60、碘-131和铊-201等。
这些同位素在医学上被用来标记药物,从而使其在人体内可见。
核素扫描是核医学的重要技术之一。
它利用放射性同位素的衰变来获取有关人体器官结构和功能的信息。
在核素扫描中,医生会向患者体内注射含有放射性同位素的药物。
这些放射性药物会在体内发出放射性粒子,通过专用的摄影机或探测器来探测这些粒子的分布情况。
通过分析和处理这些数据,医生可以获得关于内脏器官、骨骼和血流等方面的信息。
核素扫描技术被广泛应用于心脏、肺部、肝脏、肾脏和骨骼等疾病的诊断和治疗。
核医学的发展前景令人振奋。
随着科学技术的不断进步和创新,核医学在临床应用中变得越来越重要。
一方面,核医学为医生提供了一种无创的、非侵入性的诊断方法,使得患者在检查过程中避免了手术和痛苦。
另一方面,核医学在治疗方面也表现出了巨大的潜力。
例如,放射性碘可以用于治疗甲状腺疾病,放射性铀可用于治疗骨癌。
这些疗法对一些传统治疗方法无效的患者来说,具有重要的临床意义。
然而,核医学也存在一些挑战。
首先,放射性同位素的使用需要严格的安全控制和管理。
这些物质具有放射性,具有一定的辐射风险。
因此,在核医学实践中,必须遵循严格的操作规程和安全标准,以确保医生和患者的安全。
其次,核医学在成本和设备方面也面临一些问题。
一些先进的核素扫描设备价格昂贵,使得它们在某些地区难以普及。
因此,核医学的普及仍然存在一定的挑战。
核医学知识总结

核医学知识总结一、核医学基本概念核医学是一门利用核技术来研究生物和医学问题的科学。
它涉及到核辐射、放射性核素、核素标记化合物以及相关的仪器和测量技术。
核医学在临床诊断、治疗和科研方面都有着广泛的应用。
二、核辐射与防护核辐射是指原子核在发生衰变时释放出的能量。
核辐射可以分为电离辐射和非电离辐射两类。
在核医学中,主要涉及的是电离辐射,它可以对生物体产生不同程度的损伤。
因此,在核医学实践中,必须采取有效的防护措施,确保工作人员和患者的安全。
三、放射性核素与标记化合物放射性核素是指具有不稳定原子核的元素,它们能够自发地释放出射线。
在核医学中,放射性核素可以用于显像、功能研究、体外分析和治疗等多种应用。
标记化合物是指将放射性核素标记到特定的化合物上,使其具有放射性,以便进行测量和分析。
四、核医学成像技术核医学成像技术是指利用放射性核素发出的射线,通过相应的仪器和测量技术,获得生物体内的图像。
目前常用的核医学成像技术包括SPECT、PET和PET/CT等。
这些技术可以在分子水平上对生物体进行无创、无痛、无损的检测,对于疾病的早期发现和治疗具有重要的意义。
五、核素显像与功能研究核素显像是核医学中的一种重要应用,它可以用于显示生物体内的生理和病理过程。
通过注射放射性核素标记的显像剂,利用相应的成像技术,可以获得器官或组织的图像,进而了解其功能状态。
核素显像在心血管、神经、肿瘤等多个领域都有广泛的应用。
六、体外分析技术体外分析技术是指利用放射性核素标记的化合物,通过测量其放射性强度,来分析生物体内的成分或生理过程。
体外分析技术具有高灵敏度、高特异性和定量准确等优点。
常用的体外分析技术包括放射免疫分析、受体结合试验等,它们在临床诊断和科研中都有着广泛的应用。
七、放射性药物与治疗放射性药物是指将放射性核素标记到特定的药物上,使其具有治疗作用。
放射性药物可以用于治疗肿瘤等疾病,通过射线的作用,破坏病变组织或抑制其生长。
核医学重点知识整理

第一章核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。
我国核医学分为临床核医学和实验核医学。
核素(nuclide):具有相同的质子数、中子数和核能态的一类原子同位素(isotope):是表示核素间相互关系的名称,凡具有相同的原子序数(质子数)的核素互称为同位素,或称为该元素的同位素。
同质异能素(isomer):具有相同质子数和中子数,处于不同核能态的核素互称为同质异能素。
稳定性核素(stable nuclide):原子核极为稳定而不会自发地发生核内成分或能态的变化或者变化的几率极小放射性核素(radionuclide):原子核不稳定,会自发地发生核内成分或能态的变化,而转变为另一种核素,同时释放出一种或一种以上的射线核衰变(nuclear decay):放射性核素自发地释放出一种或一种以上的射线并转变为另一种核素的过程,核衰变实质上就是放射性核素趋于稳定的过程衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。
α粒子的电离能力极强,故重点防护内照射。
β-粒子的射程较短,穿透力较弱,而电离能力较强,因此不能用来作显像,但可用作核素内照射治疗。
γ衰变(γdecay):核素由激发态向基态或由高能态向低能态跃迁时发射出γ射线的衰变过程,也称为γ跃迁。
γ衰变只是能量状态改变,γ射线的本质是中性的光子流。
电子俘获衰变:一个质子俘获一个核外轨道电子转变成一个中子和放出一个中微子。
电子俘获时,因核外内层轨道缺少了电子,外层电子跃迁到内层去补充,外层电子比内层电子的能量大,跃迁中将多余的能量,以光子形式放出,称其为特征x射线,若不放出特征x射线,而把多余的能量传给更外层的电子,使其成为自由电子放出,此电子称为俄歇电子内转换(internal conversation)核素由激发态向基态或由高能态向低能态跃迁时,除发射γ射线外也可将多余的能量直接传给核外电子(主要是K层电子),使轨道电子获得足够能量后脱离轨道成为自由电子,此过程称为内转换,这种自由电子叫做内转换电子衰变公式:Nt=No e衰变常数:某种放射性核素的核在单位时间内自发衰变的几率它反映该核素衰变的速度和特性;λ值大衰变快,小则衰变慢,不受任何影响不同的放射性核素有不同的λ一定量的放射性核素在一很短的时间间隔内发生核衰变数除以该时间间隔,即单位时间的核衰变次数;A=dN/dt放射性活度是指放射性元素或同位素每秒衰变的原子数,目前放射性活度的国际单位为贝克(Bq),也就是每秒有一个原子衰变,一克的镭放射性活度有3.7×1010Bq。
核医学重点

1核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。
2核素(nucliide)是指质子数.中子数均相同,并且原子核处于相同能级状态的原子称为一种核素。
3同位素(isotope)凡具有相同质子数但中子数不同的核素互称同位素4同质异能素(isomer)质子数和中子数都相同,所处的核能状态不同的原子5放射性衰变类型;a衰变;B衰变;正电子衰变;电子俘获;r衰变.6a衰变:放射性核衰变时释放出a射线的衰变;B衰变:原子核释放出B射线而发生的衰变称为B``衰变(B``衰变放射出的射线分为B`` B`+射线);正电子衰变:原子核释放出正电子(B+射线)的衰变方式.7SPECT:单光子发射计算机断层成像术. PET:正电子发射计算机断层成像术8核探测仪器的基本原理;电子作用,荧光作用,感光作用9放射性探测仪器按探测原理可分为电离探测仪和闪烁探测仪两类10r照相机基本结构:准直器,晶体,光电倍增管,脉冲幅度分析器,信号分析和数据处理系统.11图像融合技术:是将来自相同或不同成像方式的图像进行一定的变化处理,使其之间的空间位置,空间坐标达到匹配的一种技术。
12放射性药物(radio pharmaceutical)指含有放射性核素供医学诊断和治疗用的一类特殊药物。
用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂。
13放射性药物具有的特点:具有放射性;具有特定的物理半衰期和有效期;计量单位和使用量;脱标及辐射自分解.14放射化学纯度:是指以特定化学形式存在的放射性活度占总放射性活度的百分比。
15化学纯度:是指以特定化学形式存在的某物质的质量占总质量的比例,与放射性无关。
16辐射生物效应(电离辐射作用于机体后,其传递的能量对机体的分子、细胞、组织和器官所造成的形态和(或)功能方面的后果):确定性效应和随机性效应17确定性效应;是指辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。
核医学重点摘要

Nuclear Medicine核医学第一章第二章核物理基础和放射性药物1、核衰变方式:α衰变、β-衰变、β+衰变、电子俘获、γ衰变穿透能力比较:γ>β>α,电离能力比较:α>β>γα衰变用于防护,β衰变用于放射治疗,γ衰变用于显像。
2、临床应用的放射性核素获取途径:加速器生产、反应堆生产、从裂变产物中提取。
第三章核医学仪器和核医学检查法1、γ闪烁探测器的组成:准直器、晶体、光电倍增管和前置放大器。
2、显像仪器包括:γ照相机、SPECT(单光子发射型计算机断层仪)、PET(正电子发射型计算机断层仪)。
3、发射型CT和穿透型CT的比较发射型CT(ECT)穿透型CT射线来源引入体内的放射性核素体外X射线管发出的X线射线种类γ射线X射线分辨率低高原理示踪剂在组织中摄取代谢有差异不同组织对X射线的吸收值有差异第六章内分泌系统一、甲状腺摄131I试验1、原理:甲状腺摄取碘的量和速度与甲状腺功能密切相关。
被甲状腺摄入的131I发出的γ射线量可反映其功能状况。
2、注意事项:检查前停用含碘食物和药物。
3、临床意义:摄131I功能增高:甲亢(峰时前移)、单纯性甲状腺肿。
摄131I功能减低:甲减、亚急性甲状腺炎。
二、甲状腺激素抑制试验1、原理:正常人给予外源甲状腺激素后,负反馈启动,TSH减少,摄碘受抑制。
但甲亢者不受抑制,抑制率<50%。
2、临床意义:特异性诊断甲亢。
三、甲状腺显像1、常用显像剂:131I、99Tc m O4-2、临床应用(1)诊断异位甲状腺;(2)判断甲状腺结节功能(冷、凉、温、热结节,功能从无到高依次增强);(3)冷、凉结节恶变率较温、热结节高;(4)判断甲状腺结节良恶性质:甲状腺动脉灌注显像局部放射性增浓即恶性,局部减低缺损即良性;(5)寻找甲状腺癌转移灶;(6)判断功能自主性甲状腺瘤:注射T3、T4后热结节仍保留,正常部位影像减淡。
第七章神经系统一、脑血流灌注显像1、原理:脂溶性显像剂通过血脑屏障进入脑细胞,分解成水溶性物质滞留于脑组织中,其剂量与脑血流量成正比。
核医学 复习重点总结资料

第一张绪论核医学概念:利用放射性示踪技术探索生命现象、研究疾病机制和诊断疾病的学科;是利用放射性核素及其制品进行内照射治疗和近距离治疗的学科。
第二章核医学物理基础、设备和辐射防护衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。
韧致辐射带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低,多余的能量以x射线的形式辐射出来电子俘获:质子从核外取得电子变为中子。
由于外层电子与内层能量差,形成的新核素的不稳定常产生:特征性X射线-能量转化;俄歇电子:能量使电子脱离轨道。
衰变规律:放射性核素原子数随时间以指数规律减少。
指数衰减规律e-λtN = N(t = 0)时放射性原子核的数目N0:N: 经过t时间后未发生衰变的放射性原子核数目λ:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快带电粒子与物质的相互作用(电离作用、激发作用)γ射线与物质的相互作用(光电效应、康普顿效应、电子对生成)光电效应:康普顿效应:电子对生成:辐射防护目的:防止有害的确定性效应,限制随机效应的发生率,使之达到可以接受的水平。
总之是使一切具有正当理由的照射保持在可以合理做到的最低水平。
非随机效应有阈值正相关;随机效应无阈值严重程度与剂量无关。
基本原则:实践正当化;防护最优化;个人剂量限制。
外照射防护措施:1.时间2.距离3.屏蔽电离辐射生物学效应对机体变化:按效应出现的对象,分为躯体效应(somatic effect)及遗传效应(genetic effect)。
按效应出现的时间,分为近期效应(short-term effect)及远期效应( long-term effect)。
按效应发生的规律,分为随机效应(stochastic effect)及非随机效应( non-stochastic effect)。
核医学总结分析

一、核医学基础知识同位素:同一元素中,有些原子质子数相同而中子数不同,则称为该元素的同位素,如上例各种碘互为碘的同位素。
同质异能素:如果原子的质子数相同,中子数也相同,但是核的能级状态不同,那么它们互为同质异能素。
核素:把质子数相同,中子数也相同,核能级处于同一状态的一类原子,称为一种核素。
核衰变:放射性核素发生核内结构或能级的变化,同时自发地放出而变为出一种或一种以上的射线而转变成另一种核素的过程为“核衰变”。
1、5种衰变方式: α、β─、β╋、k、γα衰变:AZX--A-4Z-2Y+42He+Qα粒子特性:←α粒子实质上是He原子核,←α衰变发生在原子序数大于82的重元素核素←α粒子的速度约为光速的1/10,即2万km/s,2s绕地球1周。
←在空气中的射程约为3-8cm,在水中或机体内为0.06-0.16mm。
←因其质量大,射程短,穿透力弱,一张纸即可阻挡←但α粒子的电离能力很强。
β衰变:←核衰变时放射出β粒子或俘获轨道电子的衰变。
←β衰变后核素的原子序数可增加或减少但质量数不变。
←分β-衰变、β+衰变和电子俘获三种类型。
←β粒子的速度为20万km/s。
β-粒子的特性:←β-粒子实质是负电子;←衰变后质量数不变,原子序数加1。
←能量分布具有连续能谱,穿透力比a粒子大←电离能量比a粒子弱,能被铝和机体吸收,←β-粒子在软组织中的射程为厘米水平。
β+粒子的特性:←β+粒子实质是正电子;←衰变后子核质量数不变,但质子数减1.←β+也为连续能谱;←天然核素不发生β+衰变,只有人工核素才发生。
电子俘获(electron capture,EC):核衰变时原子核从内层轨道(K)俘获一个电子,使核内一个质子转化为一个中子。
它是核内中子数相对不足所致。
γ衰变:核素由激发态向基态或高能态向低能态跃迁时放出γ射线的过程也称为γ跃迁(γtransition);γ衰变后子核质量数和原子序数均不变,只是能量改变。
γ射线特性:←γ射线为光子流,不带电,穿透力强,电离能力弱;←γ射线在真空中速度为30万km/s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核医学经典资料名词解释1、放射性衰变:当原子核质子数过多或过少,或者中子数过多或过少,原子核便不稳定,这是原子核会自发地放出射线,转变成另一种核素,同时释放出一种或一种以上的射线,这个过程叫做放射性核衰变。
2、α衰变:不稳定原子核自发地放射出α粒子而变成另一个核素的过程。
3、β-衰变:放射性核素的核内放射出β-粒子的衰变称为β-衰变。
4、γ衰变:α、β-、β+和电子俘获衰变的子核可能先处于激发态,在不到一微秒的时间内回到基态并以γ光子的形式释出多余的能量,叫做γ衰变。
6、湮没辐射:正电子衰变产生的正电子,在介质中运行一定的距离,当其能量耗尽时可与物质中的自由电子结合,而转化为两个方向相反、能量相等的γ光子而自身消失。
7、电子俘获衰变:EC发生在中子相对不足的核素。
原子核先从核外较内层的电子轨道俘获一个电子,使之与一个质子结合转化为中子,同时发射出一个中微子。
故原子质量数不变而原子序数减少1。
随后较外层的轨道上有一个电子跃入内层填补空缺。
由于外层电子的能量比内层高,多余的能量就以X线的形式释出,或者将多余的能量传给另一轨道电子,使之脱离轨道而释出。
8、放射性活度:表示单位时间内发生衰变的原子数。
9、物理半衰期:指放射性核素数从NO衰变到NO的一半所需的时间。
10、有效半衰期:由于物理衰变与生物的代谢共同作用而使体内放射性核素减少一半所需要的时间。
11、光电效应:γ光子和原子中内层壳层电子相互作用,将全部能量交给电子,使之脱离原子称为自由的光电子的过程。
12、PET:是一种探测体内11C、13N、15O、18F等正电子核素的仪器,注入人体的正电子核素标记物随血液循环分布于组织或器官。
13、SPECT:是在γ照相机基础上发展起来的新一代仪器,分为探头、旋转支架、扫描床、计算机操作系统。
14、电离与激发:带电粒子通过物质时和物质原子的核外电子发生静电作用,使电子脱离原子轨道而形成自由电子的过程称为电离。
如果原子的电子所获得的能量还不足以使其脱离原子,而只能从内层轨道跳到外层轨道,这时原子从稳定状态变成激发状态,叫做激发。
15、过度灌注:局部灶放射性分布异常增高,影像表现为点灶状、团块状、环形或新月形等,常见于癫痫发作前致痫灶、血运丰富的肿瘤、偏头痛发作期、TIA:梗塞亚急性和慢性期时的病灶。
16、交叉失联络现象:表现为一侧大脑皮质局部放射性减低,同时对侧小脑或大脑放射性分布显示见明显减低。
多见于慢性血管病。
17、盗血现象:在脑梗死放射性缺损部位iede周边往往存在部分放射性减低区,所以SPECT 显示的病变范围比CT、MRI的要大,这是梗死、缺血局部的脑组织向周围邻近血管“盗血”、邻近部分血液被“分流”所致。
18、“炸面圈”征:骨显像病灶中心呈放射性缺损区,其周围常因放射性增加形成环状。
19、闪耀现象:患者对化疗、放疗或内照射治疗有较好的治疗反应,骨痛等临床症状改善明显,最明显出现在治疗后3个月,但显像显示原病灶区放射性摄取却增高,范围甚至增大。
20、超级骨显像:全身骨显像放射性摄取普遍显著增加,呈均匀,对称的异常放射性浓聚,软组织活性很少,肾脏膀胱不显影或者极淡。
21、元素:凡质子数相同的同一类原子称为元素。
如:C、H、O。
22、同位素:凡原子核具有相同质子数而中子数不同的元素互为同位素。
如1H、2H、3H23、同质异能素:核内质子数和中子数都相同,但能量状态不同的核素称为同质异能素。
如99m Tc、99Tc24、核素:原子核的质子数,中子数和原子核所处的能量状态均相同的原子属于同一种核素。
如1H、12C、198Au25、核衰变的原因:当原子核中质子数过多或过少,或者中子数过多或过少时,原子核便不稳定,这时的原子核就会自发地放出射线,转变为另一种核素,同时释放出一种或一种以上的射线。
26、β+衰变:由于电子相对不足,导致一个质子转化为中子而放出β+射线的衰变,其结果原子核将前移一位。
27、γ衰变:原子核从激发状态到基态,通过发射γ光子释放过剩能量的过程。
28、α射线:带正电的高速粒子流,本质是氦核。
29、β射线:带负电的高速粒子流,本质是负电子。
30、γ射线:不带电的光子流。
31、电离:带电粒子通过物质时,和物质原子的核外电子发生静电作用,使电子脱离原子轨道而形成自由电子的过程。
32、激发:原子从稳定状态变成激发状态,这种作用称为激发。
33、吸收:射线使物质的原子发生电离和激发的过程中,射线的能量全部耗尽,射线不再存在,称为吸收,其最终结果是使物质的温度升高。
34、康普顿效应:能量较高的γ光子与原子中的核外电子作用时,只将部分能量传递给核外电子,使之脱离原子核束缚成为高速运行的自由电子,而γ光子本身能量降低,运行方向发生改变,称为康普顿效应。
康普顿效应发生几率与光子的能量和介质的密度有关。
介质的密度越大,康普顿效应越明显。
35、照射量:国际单位是:库伦/千克(C/kg)旧制专用单位为伦琴(R),1伦琴=2、58×10-4库伦/千克。
36、照射量率:单位时间内的照射量。
其单位为:库伦/(千克·小时)(或秒)。
照射量仅用于能量在10keV~3MeV范围内的X射线或γ射线。
37、吸收剂量:单位质量被照射物质吸收任何电离辐射的平均能量。
吸收剂量的国际单位为戈(瑞)(Gray),以Gy表示。
它的定义是1千克的物质吸收1焦耳的辐射能量时相应的吸收剂量。
即1Gy=1J/kg,旧制专用单位为拉德,以rad表示,1Gy=100rad。
单位时间内的吸收剂量叫吸收剂量率,其单位为Gy/s。
38、剂量当量:吸收剂量和其他必要修正因子的乘积,并用H表示,即:H=D·Q·N,剂量当量国际单位为希(沃特),以Sv表示,旧制专用单位为雷姆,以ram表示,1Sv=100ram。
39、同位素:质子数相同中子数不同的元素互为同位素,具有相同的化学性质和生物学特性。
40、同质异能素:质子数和中子数都相同但核的能量状态不同的核素互称同质异能素,如99Tc和99m Tc。
41、激发态:原子核处于能量较高状态。
表示方法为m,如99m Tc。
42、放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素核医学技术部分1、放射性核素显像与其他医学影像学技术的关系相同点:1、以形态学改变为其诊断的基本出发点2、显像技术中有辐射存在为主要特点不同点: 1、射线的来源不同(来自体内外)2、诊断的依据不同3、射线的存在时间段不同4、各自的特点不同2、原子核由原子和中子组成。
3、衰变类型:α衰变;β–衰变;β+衰变;电子俘获;γ衰变α衰变α衰变:α粒子是由两个质子和两个中子组成,实际是氦核4He238U→234Pu+4He+Qα粒子的特性:1、由两个质子和中子组成带2个正电荷2、射程短,穿透力弱3、电离辐射生物效应作用强β–衰变β–衰变:β–衰变发生在中子过剩的原子核32P→32S+β–+Ue+1、71MeV衰变时放出一个β–粒子(电子)和反中微子一种β–衰变核素发射β–粒子的平均能量约等于其最大能量的三分之一特性:(1)连续能谱;(2)穿透力较弱;(3)辐射生物效应较强。
β+衰变:正电子衰变是衰变时放出正电子(positron)的衰变,也叫β+衰变18F→18O+ β+ +ⅴ+Q发生在中子缺乏的核素,也可认为是质子过剩/衰变时发射一2)个正电子和一个中微子(neutrino),核中一个质子转变成中子电子俘获电子俘获:由于外层电子与内层能量差,形成的新核素的不稳定常产生:1、特征性X射线:能量转化2、俄歇电子:能量使电子脱离轨道3、内转换电子:激发态核转为基态多余能量使轨道电子脱离4、γ射线:能量较高处于激发态-恢复到基态γ衰变:原子核从激发态(excited state)回复到基态(ground state)时,以发射γ光子释放过剩的能量,这一过程称为γ衰变5、衰变规律定义:放射性核素原子数随时间以指数规律减少。
N=N0e-λt衰变常数λ:原子核发生衰变的几率。
T1/2=0、693/λ分类:1、物理半衰期T1/2:原子数减少一半的时间。
2、生物半衰期:生物体内的放射性核素由于机体代谢从体内排出一半所需要的时间。
3、有效半衰期:放射性物质在生物体内由于物理衰变和生物代谢共同作用下减少一半的时间。
放射性活度:单位时间内原子核的衰变数量。
6、带电粒子与物质的相互作用:1)、电离作用:物质中的原子失去轨道电子而形成正负离子对。
2)、激发作用:原子的轨道电子从低能级变为高能级,激发后的原子退激时放出特征X 射线或产生俄歇电子。
3)、散射作用:带电粒子与物质的原子核碰撞而改变运动方向的过程。
4)、韧致辐射:带电粒子受到物质原子核的电场的作用,运动方向核速度都发生变化,能量减低,多余的能量以X射线的形式辐射出来。
5)、湮没辐射:正电子与物质的电子结合,电荷消失,两电子质量转化为两个能量相等各为511KeV,方向相反γ光子。
7、γ射线与物质的相互作用1)光电效应:γ光子与介质原子的轨道电子碰撞,把能量全部交给轨道电子,使之脱离原子,光子消失。
2)康普顿效应:光子把能量部分传给轨道电子,发射成为Compton电子。
3)电子对生成:光子能量大于1、022MeV,与物质形成一对正、负电子对。
4、放射性药物定义:体内使用含有放射性核素诊断和治疗的化合物。
类型:1)放射性核素分子和离子化合物,例99m Tc、131I 2)与放射性核素相结合(标记)的有机化合物,如99m Tc-MIBI、99m Tc-MDP等。
放射性药物的用量-最优化。
5、放射性核素制备1)核反应堆制备2)医用回旋加速器制备3)放射性核素加速器生产:长半衰期核素产生短半衰期核素,如99Mo(钼)-99m Tc(锝)发生器6、诊断用放射性药物放射性核素选择要求(Tc):1)合适的半衰期(half-life),穿透力强,易探测。
2)衰变方式发射γ或特征性X射线的衰变核素;正电子湮没辐射产生γ光子。
电离密度低。
3)光子的能量100-300Kev7、放射性药物的生物学特性要求1)靶器官吸收快,血液清除快,本底低。
具有较高的靶/非靶比值。
8、治疗用放射性药物治疗用药物特点1)放射性药物不一定要进入细胞通过辐射作用也可以杀伤细胞。
2)由于核素自身或被标记物选择性作用能使病变组织浓度较高。
3)射线射程不同治疗病变范围不同。
9、放射性核素治疗有持续性特点。
治疗性核素的选择(与诊断药物比较)1)半衰期较长。
2)衰变方式目前β-为主,α、俄歇电子是发展方向。
3)治疗性药物体内探测问题10、放射性核素示踪技术定义:以放射性核素或其表记化合物作为示踪剂,用射线探测的方法从体外显示放射性药物在体内(器官和病变组织)的选择性分布。