序列检测器
实验6 序列检测器的设计

实验6 序列检测器的设计一、实验目的1、掌握序列检测器的工作原理2、学习利用用状态机进行简单的数字系统设计,掌握一般状态机的VHDL描述。
二、实验原理1、序列检测器的基本工作原理序列检测器用于检测一组或多组由二进制码组成的脉冲序列信号,在数字通信中有着广泛的应用。
当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出1,否则输出0。
由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置的对应码相同。
在检测过程中,任何一位不相等都将回到初始状态重新开始检测。
2、状态机的基本设计思想在状态连续变化的数字系统设计中,采用状态机的设计思想有利于提高设计效率,增加程序的可读性,减少错误的发生几率。
同时,状态机的设计方法也是数字系统中一种最常用的设计方法。
一般来说,标准状态机可以分为摩尔(Moore)机和米立(Mealy)机两种。
在摩尔机中,其输出仅仅是当前状态值的函数,并且仅在时钟上升沿到来时才发生变化。
米立机的输出则是当前状态值、当Array前输出值和当前输入值的函数。
在本实验中,要设计一个8位序列检测器,外部接口如图6.1所示。
它可以实现对序列码“10001110”的检测。
当它在一串二进制码中连续地检测出8位图6.2 序列检测器的状态转换图(预置码为“10001110”)三、实验内容1、在QuartusII 环境下,编写8位序列检测器的VHDL源程序,文件名为“SERIAL _CHK.VHD”,并对其进行编译和仿真。
(SERIAL _CHK.VHD的参考程序见本实验思考题后)2、对设计的序列检测器进行锁定引脚、编程下载和硬件测试。
建议选用实验电路NO.8,用键7(PIO11)控制复位信号CLR;键6(PIO9)控制状态机工作时钟CLK;待检测串行序列输入DIN接PIO10(左移,最高位在前);输出Y接PIO39~PIO36(显示于数码管6)。
序列检测器原理

序列检测器原理
序列检测器是一种用来检测和识别输入序列中特定模式的设备或算法。
它能够根据事先给定的规则或模型对输入序列进行分析和判断,并输出相应的结果或响应。
序列检测器通常由以下几个组成部分构成:
1. 输入接口:用于接收输入序列的信号或数据。
2. 存储器:存储检测器的状态信息和输入序列的历史数据。
3. 状态机:用于根据输入序列的不同模式进行状态转换和控制。
4. 判决逻辑:根据当前状态和输入序列的特征,判断当前模式是否匹配。
5. 输出接口:根据判决的结果,输出相应的响应或结果。
序列检测器的工作原理如下:
1. 初始化:将序列检测器的状态设为初始状态,准备接收输入序列。
2. 接收输入:逐个接收输入序列的信号或数据。
3. 状态转换:根据当前状态和输入序列的特征,根据事先设定好的规则或模型进行状态转换。
4. 判决匹配:根据当前状态和输入序列的特征,判断当前模式是否匹配。
5. 输出结果:根据判决的结果,输出相应的响应或结果。
6. 循环操作:重复执行2-5步骤,直至所有的输入序列被处理完毕。
通过以上的工作原理,序列检测器可以有效地检测和识别输入序列中的特定模式。
它在许多应用中都有广泛的应用,如通信领域中的错误检测、模式识别等。
序列检测器verilog课程设计

序列检测器verilog课程设计一、课程目标知识目标:1. 掌握Verilog硬件描述语言的基本语法和结构;2. 理解序列检测器的基本原理和工作流程;3. 学会使用Verilog设计并实现序列检测器。
技能目标:1. 能够运用Verilog语言编写简单的数字电路模块;2. 能够对序列检测器进行模块划分,并进行代码编写和仿真;3. 能够分析并解决序列检测器设计过程中遇到的问题。
情感态度价值观目标:1. 培养学生对数字电路设计的兴趣和热情,提高其主动学习的积极性;2. 培养学生的团队协作意识,使其学会在团队中发挥自己的作用;3. 培养学生严谨的学术态度,注重实验数据和结果的分析。
分析课程性质、学生特点和教学要求:本课程为电子与计算机工程专业高年级学生的专业课程,旨在培养学生的硬件设计能力。
学生已具备一定的数字电路基础和Verilog编程能力。
课程要求学生能够独立完成序列检测器的设计和仿真,并在实践中提高自身的问题分析和解决能力。
课程目标分解为以下具体学习成果:1. 能够熟练使用Verilog编写基本的数字电路模块;2. 能够理解和分析序列检测器的工作原理;3. 能够独立完成序列检测器的模块划分、代码编写和功能仿真;4. 能够针对设计过程中遇到的问题进行有效分析和解决;5. 能够在团队项目中发挥自己的优势,为团队贡献力量;6. 能够严谨对待学术问题,注重实验数据和结果的准确性。
二、教学内容1. Verilog基础知识回顾:变量定义、数据类型、运算符、控制语句等;2. 序列检测器原理讲解:序列检测器的功能、应用场景、工作原理及状态机设计方法;3. Verilog模块编写:根据序列检测器原理,编写Verilog代码,包括模块声明、端口定义、逻辑描述等;4. 序列检测器模块划分:对序列检测器进行模块划分,实现模块化设计;5. 代码仿真与调试:使用ModelSim等仿真工具,对Verilog代码进行功能仿真,分析并解决可能出现的问题;6. 实验与分析:结合实际电路,搭建序列检测器,进行验证实验,分析实验结果;7. 团队项目实践:分组进行序列检测器设计,培养学生的团队协作能力和实际操作能力;8. 课程总结与拓展:对本章节内容进行总结,拓展学习其他类型的数字电路设计方法。
EDA实验报告——序列检测器

七、状态图输入法实现序列检测器1、基本知识点序列检测器原理。
状态图输入法。
2、实验设备(1)PC机一台。
(2)DDA系列数字系统实验平台。
(3)QuartusⅡ配套软件。
3、实验概述序列检测器序列检测器是用于从二进制码流中检测出一组特定序列信号的时序电路。
接收的序列号与检测器预设值比较,相同则输出为1,否则输出为0.4、实验内容及步骤用状态图输入法实现序列检测器。
1,新建工程,工程文件夹名称为exp_detect3,工程名称和顶层实体名称均为exp_detect3,选择目标器件为EPF10K20TI144-4.2,状态图输入:选择菜单File——New——State Machine File命令,打开State Machine Editor窗口,选择Tools——State MachineWizard命令,弹出如下状态机创建向导对话框:点击OK,进入下一个页面,如下所示:在上图中选择复位Reset信号为异步,高电平有效,输出端午寄存器,点击Next,进入下图:在四个选框里分别如上图填入名称和控制信号。
进入下一个页面:如上设置后,进入下一个页面,点击finish,完成。
关闭状态机向导,生成所需的状态机,做适当调整,如下图所示:3,保存该设计文件为exp_detect3.smf,并添加到工程文件夹。
4,选择菜单Tools——Generate HDL File命令,打开对话框,选择VHDL,点击OK,分析成功后则自动生成exp_detect3.vhd。
代码如下:LIBRARY ieee;USE ieee.std_logic_1164.all;ENTITY exp_detect3 ISPORT (clock : IN STD_LOGIC;reset : IN STD_LOGIC := '0';din : IN STD_LOGIC := '0';z : OUT STD_LOGIC);END exp_detect3;ARCHITECTURE BEHAVIOR OF exp_detect3 ISTYPE type_fstate IS (s0,s1,s2,s3,s4,s5,s6);SIGNAL fstate : type_fstate;SIGNAL reg_fstate : type_fstate;BEGINPROCESS (clock,reset,reg_fstate)BEGINIF (reset='1') THENfstate <= s0;ELSIF (clock='1' AND clock'event) THENfstate <= reg_fstate;END IF;END PROCESS;PROCESS (fstate,din)BEGINz <= '0';CASE fstate ISWHEN s0 =>IF ((din = '1')) THENreg_fstate <= s1;ELSIF (NOT((din = '1'))) THENreg_fstate <= s0;-- Inserting 'else' block to prevent latch inferenceELSEreg_fstate <= s0;END IF;WHEN s1 =>IF ((din = '1')) THENreg_fstate <= s2;ELSIF (NOT((din = '1'))) THENreg_fstate <= s0;-- Inserting 'else' block to prevent latch inferenceELSEreg_fstate <= s1;END IF;WHEN s2 =>IF ((din = '1')) THENreg_fstate <= s3;ELSIF (NOT((din = '1'))) THENreg_fstate <= s0;-- Inserting 'else' block to prevent latch inference ELSEreg_fstate <= s2;END IF;WHEN s3 =>IF ((din = '1')) THENreg_fstate <= s3;ELSIF (NOT((din = '1'))) THENreg_fstate <= s4;-- Inserting 'else' block to prevent latch inference ELSEreg_fstate <= s3;END IF;WHEN s4 =>IF ((din = '1')) THENreg_fstate <= s1;ELSIF (NOT((din = '1'))) THENreg_fstate <= s5;-- Inserting 'else' block to prevent latch inference ELSEreg_fstate <= s4;END IF;WHEN s5 =>IF ((din = '1')) THENreg_fstate <= s6;ELSIF (NOT((din = '1'))) THENreg_fstate <= s0;-- Inserting 'else' block to prevent latch inference ELSEreg_fstate <= s5;END IF;WHEN s6 =>IF ((din = '1')) THENreg_fstate <= s2;ELSIF (NOT((din = '1'))) THENreg_fstate <= s0;-- Inserting 'else' block to prevent latch inferenceELSEreg_fstate <= s6;END IF;IF (NOT((din = '1'))) THENz <= '1';-- Inserting 'else' block to prevent latch inferenceELSEz <= '0';END IF;WHEN OTHERS =>z <= 'X';report "Reach undefined state";END CASE;END PROCESS;END BEHAVIOR;5,对代码进行编译。
序列检测器

目录第一章设计方案.........................................................11.1设计任务..........................................................11.2设计要求..........................................................11.2.1整体功能要求.................................................11.2.2测试要求.....................................................1第二章设计思路.........................................................22.1数字频率计介绍....................................................22.2设计原理..........................................................22.2.1频率测量的基本原理...........................................22.2.2整体方框图及原理.............................................22.2.3序列器结构框图...............................................2第三章模块介绍.........................................................43.1顶层文件模块......................................................43.1.1顶层文件原理.................................................43.1.2顶层文件模块verilog语言描述程序.............................43.2伪随机序列发生器模块..............................................43.2.1伪随机序列发生器.............................................43.2.2伪随机序列发生器原理.........................................53.2.3伪随机序列发生器模块verilog语言描述程序.....................63.3序列检测器模块....................................................73.3.1序列检测器原理...............................................73.3.2序列检测器模块verilog语言描述程序...........................7第四章序列检测器的实现.................................................84.1序列检测器的verilog语言程序描述及仿真............................84.1.1序列检测器的verilog语言程序描述.............................84.1.2序列检测器的波形仿真.........................................94.2设计中遇到的问题与解决方法.......................................104.2.1设计中遇到的问题.............................................104.2.2解决方法.....................................................10第五章设计小结.........................................................115.1心得体会..........................................................11第一章设计方案1.1设计任务在掌握常用数字电路功能和原理的基础上,根据EDA技术课程所学知识,利用硬件描述语言Verilog HDL、EDA软件Quartus II和硬件平台Cyclone/Cyclone II FPGA进行电路系统的设计。
实验三_用状态机实现序列检测器的设计

实验三_用状态机实现序列检测器的设计引言:序列检测器是一类常用的电子设计电路,它在接收到特定的输入序列时,会产生特定的输出序列。
在许多应用场景中,如通信系统、数字信号处理和自动控制等领域,序列检测器都发挥着重要的作用。
本实验将利用状态机的概念,设计并实现一个简单的序列检测器。
一、序列检测器的设计原理序列检测器的设计原理基于状态机的思想。
状态机是一种抽象的计算模型,它由一组状态、一组输入和一组转移动作组成。
在序列检测器中,输入序列被连续地输入,状态也会根据输入进行不断变化。
当状态机检测到了预设的特定输入序列时,就会产生相应的输出序列。
二、序列检测器的设计步骤1.确定输入和输出序列:首先确定所需检测的输入序列和对应的输出序列,这将决定状态机的状态转移条件。
2.绘制状态转移图:根据输入和输出序列,绘制状态转移图,即用状态变量和状态转移条件表示状态转移关系。
3.设计状态机的状态转移表:根据状态转移图,将所有可能的状态转移关系整理为一个状态转移表。
4.实现状态机的代码逻辑:根据状态转移表,编写代码实现状态机的逻辑功能。
三、设计实例在本实验中,我们以一个简单示例为例,演示序列检测器的设计流程。
假设输入序列为0101,当检测到该输入序列时,输出序列为011.确定输入和输出序列:输入序列为0101,输出序列为012.绘制状态转移图:根据输入和输出序列,绘制状态转移图如下:0/00,S0,1/1/1说明:状态S0表示未检测到特定输入序列,状态S1表示检测到特定输入序列。
3.设计状态机的状态转移表:根据状态转移图,得到状态转移表如下:输当前状态,0,1S0,S0,S1S1,S0,S14.实现状态机的代码逻辑:根据状态转移表,编写代码实现状态机的逻辑功能,伪代码如下:if (当前状态 == S0)if (输入 == 0)当前状态=S0;输出=0;} else if (输入 == 1)当前状态=S1;输出=0;}} else if (当前状态 == S1)if (输入 == 0)当前状态=S0;输出=1;} else if (输入 == 1)当前状态=S1;输出=1;}}四、实验总结本实验利用状态机的思想,设计并实现了一个简单的序列检测器。
序列检测器_实验报告

一、实验目的1. 理解序列检测器的工作原理和设计方法;2. 掌握时序电路的经典设计方法;3. 学习使用Verilog HDL语言进行状态机的设计;4. 通过实验验证序列检测器的功能。
二、实验原理序列检测器是一种同步时序电路,用于检测输入的一串二进制编码。
当输入序列与预设的编码相匹配时,输出高电平;否则,输出低电平。
序列检测器在数字通信、安全防盗、密码认证等领域有着广泛的应用。
序列检测器的基本工作原理如下:1. 预设一个编码序列,称为目标序列;2. 当输入序列与目标序列相匹配时,输出高电平;3. 当输入序列与目标序列不匹配时,输出低电平。
三、实验器材1. PC机一台;2. EDA教学实验系统一台;3. 下载电缆一根(已接好);4. 导线若干。
四、实验步骤1. 设计序列检测器的Verilog代码;2. 在EDA教学实验系统上编译、仿真和下载Verilog代码;3. 连接实验电路,下载Verilog代码;4. 通过逻辑分析仪观察输出波形,验证序列检测器的功能。
五、实验内容1. 设计一个长度为4位的序列检测器,目标序列为1001;2. 设计一个长度为8位的序列检测器,目标序列为11001001;3. 通过实验验证序列检测器的功能。
六、实验代码```verilogmodule seqdet(input clk, // 时钟信号input rst, // 复位信号input [3:0] din, // 输入序列output reg out // 输出信号);// 定义状态localparam [1:0] IDLE = 2'b00,MATCH = 2'b01,NOMATCH = 2'b10;// 状态寄存器reg [1:0] state, nextstate;// 输出函数always @(posedge clk or posedge rst) beginif (rst) beginstate <= IDLE;out <= 1'b0;end else beginstate <= nextstate;out <= (state == MATCH) ? 1'b1 : 1'b0; endend// 激励函数always @() begincase (state)IDLE: beginif (din == 4'b1001) beginnextstate = MATCH;end else beginnextstate = NOMATCH;endendMATCH: beginnextstate = IDLE;endNOMATCH: beginnextstate = IDLE;enddefault: beginnextstate = IDLE;endendcaseendendmodule```七、实验结果与分析1. 长度为4位的序列检测器:当输入序列为1001时,输出高电平;当输入序列不为1001时,输出低电平。
序列检测器实验报告

序列检测器实验报告序列检测器实验报告概述:序列检测器是一种用于判断输入序列是否符合特定规则的工具。
在本次实验中,我们使用了一种基于深度学习的序列检测器模型,并对其进行了性能评估和优化。
1. 实验背景序列检测器在许多领域中都有着广泛的应用,如自然语言处理、语音识别、图像处理等。
本次实验旨在通过搭建一个序列检测器模型,探索其在序列数据处理中的效果和潜力。
2. 实验设计我们选择了一组包含数字序列的数据集作为实验样本。
数据集中的每个序列都由一系列数字组成,我们的目标是通过训练序列检测器模型,使其能够准确地判断输入序列是否符合某种规则。
3. 模型搭建我们采用了一种基于循环神经网络(RNN)的模型来构建序列检测器。
RNN是一类特殊的神经网络,可以有效地处理序列数据。
我们使用了长短期记忆(LSTM)单元作为RNN的基本构建块,以提高模型对长期依赖关系的建模能力。
4. 实验步骤首先,我们将数据集划分为训练集和测试集,其中训练集用于模型的训练和参数优化,测试集用于评估模型的性能。
接下来,我们对训练集进行预处理,将每个数字序列转换为对应的数值表示。
然后,我们构建了一个包含多个LSTM 层的序列检测器模型,并通过反向传播算法对其进行训练。
5. 实验结果经过多次实验和参数调整,我们得到了一个性能较好的序列检测器模型。
在测试集上的评估结果显示,该模型能够以高准确率和较低的误判率判断输入序列是否符合规则。
此外,我们还对模型的训练时间和资源消耗进行了分析,发现其在处理大规模序列数据时表现出较好的效率。
6. 优化探索为了进一步提升序列检测器的性能,我们尝试了一些优化策略。
首先,我们增加了模型的深度,即增加了LSTM层的数量。
实验结果显示,增加模型深度可以提高模型的准确率,但也会增加训练时间和资源消耗。
其次,我们尝试了不同的优化算法和学习率调度策略,以寻找更好的模型参数配置。
最后,我们还尝试了集成学习的方法,将多个序列检测器模型的预测结果进行集成,以进一步提升模型的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
第一章设计方案.........................................................1
1.1设计任务..........................................................1
1.2设计要求..........................................................1
1.2.1整体功能要求.................................................1
1.2.2测试要求.....................................................1 第二章设计思路.........................................................2
2.1数字频率计介绍....................................................2
2.2设计原理..........................................................2
2.2.1频率测量的基本原理...........................................2
2.2.2整体方框图及原理.............................................2
2.2.3序列器结构框图...............................................2 第三章模块介绍.........................................................4
3.1顶层文件模块......................................................4
3.1.1顶层文件原理.................................................4
3.1.2顶层文件模块verilog语言描述程序.............................4
3.2伪随机序列发生器模块..............................................4
3.2.1伪随机序列发生器.............................................4
3.2.2伪随机序列发生器原理.........................................5
3.2.3伪随机序列发生器模块verilog语言描述程序.....................6
3.3序列检测器模块....................................................7
3.3.1序列检测器原理...............................................7
3.3.2序列检测器模块verilog语言描述程序...........................7
第四章序列检测器的实现.................................................8
4.1序列检测器的verilog语言程序描述及仿真............................8
4.1.1序列检测器的verilog语言程序描述.............................8
4.1.2序列检测器的波形仿真.........................................9
4.2 设计中遇到的问题与解决方法.......................................10
4.2.1设计中遇到的问题.............................................10
4.2.2解决方法.....................................................10 第五章设计小结.........................................................11
5.1 心得体会..........................................................11
第一章设计方案
1.1设计任务
在掌握常用数字电路功能和原理的基础上,根据EDA技术课程所学知识,利用硬件描述语言Verilog HDL、EDA软件Quartus II和硬件平台Cyclone/Cyclone II FPGA进行电路系统的设计。
1.2设计要求
1.2.1整体设计要求
1、要求独立完成设计任务。
2、课程设计说明书封面格式要求见《天津城建大学课程设计教学规范》附表1。
3、课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。
4、测试要求:根据题目的特点,采用相应的时序仿真或者在实验系统上观察结果。
5、课程设计说明书要求:
1)说明题目的设计原理和思路、采用方法及设计流程。
2)系统框图、Verilog语言设计程序或原理图。
3)对各子模块的功能以及各子模块之间的关系做较详细的描述。
4)详细说明调试方法和调试过程。
5)说明测试结果:仿真时序图和结果显示图,并对其进行说明和分析。
1.2.2测试要求
(1)可预置时钟信号。
(2)可以在二极管上面显示测试结果。
第二章设计思路
2.1序列检测器的介绍
序列检测器就是将一个指定序列从数字码流中识别出来。
序列检测器在数据通讯,雷达和遥测等领域中用与检测步识别标志。
它是一种用来检测一组或多组序列信号的电路。
序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出1,否则输出0。
由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置数的对应码相同。
在检测过程中,任何一位不相等都将回到初始状态重新开始检测。
2.2设计原理
2.2.1序列检测原理
设X为数字码流的输入,Z为检测出标记输出,高电平表示发现指定的序列1101.考虑码流
在时钟2-5,码流X中出现了指定序列“1101”,对应输出Z在第5个时钟变为高电平—“1”,表示“发现指定序列”,同样地,在时钟13-16码流,X中再次出现指定序列“1101”,Z输出“1”。
注意,在时钟5-8还有一席检出,但它是与第一次检出的序列重叠的,即前者的前面一位同时也是后者的最后一位。
2.2.2序列检测器整体方框图
2.2.3序列检测器结构框图
序列检测器的结构框图如图2-1所示。
图2-1 序列检测器结构框图
本实验有四种状态,即:Idle;Start;Step;Stop。
由上图可知,很显然是莫尔型状态机,总共有四种状态, 4个状态机根据编码原则可以用2位二进制数来表示。
第三章模块介绍3.1顶层文件模块
3.1.1顶层文件原理
采用图形输入方式构成顶层文件,重新构造本系统。
3.1.2顶层文件模块verilog语言描述程序module XULIEQI(clk,reset,din4,LED7S);
input clk;
input reset;。