变压器效率特性
变压器的运行特性

变压器的运行特性主要有外特性(副边电压变化率) 变压器的运行特性主要有外特性(副边电压变化率)和效率 一、变压器的外特性 在电源电压不变的情况下, 在电源电压不变的情况下,变压 器二次侧接入负载后, 器二次侧接入负载后,一、二次 绕组都有电流通过,必然产生一、 绕组都有电流通过,必然产生一、 二次侧的内阻抗压降, 二次侧的内阻抗压降,从而使二 次电压随负载的增减而变化。 次电压随负载的增减而变化。 二次电压随二次电流变化的特 性曲线称为变压器的外特性。 性曲线称为变压器的外特性。 利用电压变化率来表示输出额 利用电压变化率来表示输出额 电压变化率 定电流时电压的变化
cos ϕ = 0.8
(超前) 超前)
U
UN
cos ϕ = 1 cos ϕ = 0.8
(落后) 落后)
IN
I
外特性曲线
电压变化率 一般情况下, 一般情况下,外特性曲线近似一条略向下倾斜的直 且倾斜的程度与负载的功率因数有关, 线,且倾斜的程度与负载的功率因数有关,对于感性负 功率因数愈低,下倾愈烈。从空载到满载, 载,功率因数愈低,下倾愈烈。从空载到满载,二次电 压变化的数值与空载电压的比值称为电压变化 变化率 压变化的数值与空载电压的比值称为电压变化率,即
一定功率因数下, 一定功率因数下, η随负载电流的不同而改变
谢谢
铜耗与负载电流的平方成正比,因而也称为可变损耗。 铜耗与负载电流的平方成正比,因而也称为可变损耗。 铜耗
基本铁耗: 基本铁耗:铁心中的磁滞和涡流损耗 附加铁耗: 附加铁耗:结构件中的涡流损耗
铁耗可视为不变损耗。 铁耗可视为不变损耗。
铁 耗
P1 − ∑ p p Fe + p cu P2 ) × 100 % = (1 − ) × 100 % × 100 % = (1 − η = P1 P1 P2 + p Fe + p cu
变压器的技术要求

变压器的技术要求变压器是一种将电能从一个电路传输到另一个电路的电器设备。
它的主要功能是通过改变交流电压的大小而改变电流的大小。
在实际应用中,变压器的技术要求非常重要,一方面是为了保证其正常工作,另一方面是为了提高其效率和可靠性。
首先,变压器的技术要求包括以下几个方面:1.能够承受额定负荷:变压器需要能够承受额定负荷并正常工作,这涉及到变压器的功率、电流和耐热性能等方面。
变压器的额定功率应与电路负载匹配,不能过大或过小。
同时,变压器的铜线和铁芯应具有足够的导电和导磁能力,以确保电流的稳定和磁场的均匀。
2.低损耗:变压器在工作过程中会有一定的损耗,包括铜损和铁损。
铜损耗是指导线内电流通过时产生的热能损耗,而铁损耗是指铁芯中由交变磁场引起的涡流和剩余损耗。
为了降低损耗,变压器应选用低电阻率的铜导线和低磁滞损耗的铁芯,并采取适当的冷却措施,如风冷或油浸冷却。
3.高效率:变压器的效率是指输出功率与输入功率之比。
高效率可以减少能源消耗,降低运行成本,并提高整体系统的效能。
提高变压器效率的方法主要包括降低损耗、减小磁滞、合理设计变压器的磁导率和磁通密度等。
4.良好的温度特性:变压器在使用过程中会产生热量,需要能够良好地散热。
合理的散热设计可以保证变压器在额定负荷下工作时的温度不超过规定的极限值,以确保其安全可靠。
5.良好的绝缘性能:变压器的绝缘性能对于保证其正常工作和安全使用非常重要。
变压器的绕组与铁芯之间、绕组与绕组之间以及绕组与地之间应具有良好的绝缘性能,以防止电流泄漏和击穿现象的发生。
6.可靠性和安全性:变压器的可靠性和安全性是其长期运行的关键要求。
变压器应能够承受各种环境因素的影响,如湿度、温度、振动等,并能够防止漏油、爆炸和火灾等异常情况的发生。
此外,变压器还应具有过载保护、短路保护和漏电保护等功能,以确保正常工作和安全使用。
总结起来,变压器的技术要求主要包括能够承受额定负荷、低损耗、高效率、良好的温度特性、良好的绝缘性能、可靠性和安全性等。
变压器参数测定与特性

7
一、空载试验
空载试验可以测出变压器的励磁参数。为了便于测试 和安全, 空载试验在低压侧施加电压 在不同的电压下, 分别记录I 和P
a A
x
X
接线图
等效电路
8
空载运行时,总阻抗
Z 0 = Z1 + Z m = ( R1 + jX 1σ ) + ( Rm + jX m )
Rm >> R1 , X m >> X 1σ 所以
30 + j310 + 0.1044 + j0.164 + 11.93 + j8.95 = 11.47 + j9.43 = 14.85∠39.43o
2
& = U ∠0 o,则 选U 1 1 &1 U = &1 = I
= 25.59∠ − 39.43。 Z d 14.85∠39.43。 = 19.77 − j16.25
ϕ 2 = 0, sin ϕ 2 = 0,
ΔU R = β R > 0,
* k
U
UN
3. cos ϕ = 0.8
(超前)
U2 < U2N
即端电压随负载增加而下降。 2. 感性负载
IN
1. cos ϕ = 1 2. cos ϕ = 0.8
(落后)
I
ϕ 2 > 0,
sin ϕ 2 > 0,
* * ΔU RL = β ( Rk cos ϕ 2 + X k sin ϕ 2 ) > ΔU R > 0
U2 =
′ 369.24 U2 = = 213.8(V) k 1.727
3
(2)功率因数、功率及效率
变压器的损耗和效率

变压器的损耗和效率一、变压器简介变压器是利用电磁感应原理传输电能或电信号的器件,它具有电压变换、电流变化和阻抗变换及电气隔离的作用。
1、理想变压器工作原理理想变压器基于下述两个假设:1、变压器效率等于1,无任何能量损耗。
即忽略了实际铁芯变压器线圈的电阻以及铁芯在交变磁场作用下所产生的能量损耗。
2、铁芯的磁导率μ趋近于无穷大,没有漏磁通。
线圈的互感磁通等于自感磁通,耦合系数K为1,线圈自感系数L1、L2趋于无穷大,但是,L1/L2为常数,数值上等于原副边匝数比的平方。
理想变压器的工作原理如下:图1理想变压器工作原理(变压器)变压器的主要部件是一个铁心和套在铁心上的两个绕组。
两绕组只有磁耦合没电连接。
在一次绕组中施加交变电压,交变电压产生交变电流,交变电流产生交链一、二次绕组的交变磁通Φ,在一次和二次绕组中分别感应出电动势E1、E2。
理想变压器的绕组电阻为零,有:E1=-U1,E2=-U2假设一次和二次线圈的匝数分别为N1和N2,一次和二次绕组铰链的磁链分别为Ψ1和Ψ2,根据电磁感应定律,下述方程组成立:U1=-E1=-dΨ1/dt=d(N1Φ)/dt=N1dΦ/dt(a)U2=-E2=-dΨ2/dt=d(N2Φ)/dt=N2dΦ/dt(b)(a)式除以(b)式,可得:U1/U2=N1/N2(1)理想变压器效率等于1,一次与二次绕组之间在能量传输过程中没有损耗,可知:U1I1=U2I2联立式(1)可得:I1/I2=N2/N1(2)(1)式除以(2)式,可得:(U1/I1)/(U2/I2)=(N1/N2)2U1/I1及U2/I2分别为一次和二次绕组的阻抗,分别记为Z1和Z2,则:Z1/Z2=(N1/N2)2(3)(1)、(2)、(3)三式分别表示了理想变压器的电压变换、电流变换和阻抗变换关系。
2、实际变压器工作原理实际变压器绕组电阻不为零;实际变压器交变磁通在铁芯中会产生涡流损耗和磁滞损耗;实际变压器铁芯磁导率为有限值,一次绕组产生的磁通会有部分与空气形成磁路,不与二次绕组铰链,称为漏磁通Φσ1,同样,二次绕组也会产生漏磁通Φσ2。
变压器效率和效率特性

一、变压器的损耗
变压器的损耗主要是铁损耗和铜损耗两种。
铁损耗包括基本铁损耗和附加铁损耗。基本铁损耗为磁 滞损耗和涡流损耗。附加损耗包括由铁心叠片间绝缘损伤引起的 局部涡流损耗、主磁通在结构部件中引起的涡流损耗等。
铁损耗与外加电压大小有关,而与负载大小基本无关, 故也称为不变损耗。
(1
P0 2 PSN
)100%
SN c os 2 P0 2 PSN
变压器效率的大小与负
载的大小、功率因数及变压器本 身参数有关。
效率特性:在功率因数一定时,变 压器的效率与负载电流之间的关系 η=f(β),称为变压器的效率特性。 0
max
P1
效率大小反映变压器运行的经济性能的好坏,是表征变 压器运行性能的重要指标之一。
其中
1-
p = 1-
PFe + PCuP1P2 + PFe + PCu
pFe pCu
= =
P0 ( I2
I2N
)2 PSN
= 2 PSN
P2 = 2 SN cos 2
二、变压器的效率及效率特性
效率表达式
一、变压器的损耗
铜损耗分基本铜损耗和附加铜损耗。基本铜损耗是在电 流在一、二次绕组直流电阻上的损耗;附加损耗包括因集肤效 应引起的损耗以及漏磁场在结构部件中引起的涡流损耗等。
铜损耗大小与负载电流平方成正比,故也称为可变损耗。
二、变压器的效率及效率特性
效率是指变压器的输出功率与输入功率的比值。
= P2 100%
变压器的运行特性

电感性滞后
变压器外特性曲线图
Part 3 变压器的效率
由于损耗的存在,变压器在传递能量过程,致使输出功率P2 < 输入功率P1,输出功率P2与输入 功率P1的比值称为效率η
损耗
铁损耗 铜损耗
磁滞损耗 由铁心磁阻所产生的的损耗,硅钢片能减少这种损耗 取决于铁心的磁通大小和交变频率,铁心采用片状结
涡流损耗 构叠加可减少这种损耗
变压器的电压变化率 变压器的外特性 变压器的效率
知识内容
课外拓展 测取实训室变压器的负载特性
产业信息
电力变压器是电力系统的枢纽设备,在变电站中,主 变压器能否安全可靠运行,直接关系到电网的安全 运行。要不断提高主变压器的运行、维护、检修 水平。
本节内容 到此结束
基本铜损 一次、二次绕组内直流电阻所引起 的直流电阻损耗 由集肤效应和邻近效应使绕组有效电阻变大所增加的
附加铜损 损耗
Part 3 变压器的效率
PFE
变压器损耗
PCU
铁损耗(不变损耗)
铁损耗用PFE表示,其 与外加电压大小有关, 而与负载大小基本无关 ,故也称为不变损耗。
铜损耗(可变损耗)
铜损耗用PCU表示,其 大小与负载电流平方成 正比,故也称为可变损 耗。
电机与电气控制技术
Part 1 变压器的运行特性
外特性
运行特性
效率 特性
主要指标:电压变化率、效率
Part 2 电压变化率
变压器一次绕组加额定电压,负载的功率因数一定,空载与额定负载时 二次侧端电压之差(U2N -U2)与额定电压U2N的比值,用ΔU%表示
• 空载时,U20=U2N • 负载时,U2随负载的变化而变化 变化率 电压变化率ΔU%与变压器内阻抗大小、负载电流及负载类型有关,反映了变压器 输出电压的稳定性及电能的质量。
变压器介绍PPT课件

感谢您的观看!
第31页/共31页
几。 让EAB指向12点,Eab指几点该三相变压器联结组的标号数就是几。
第15页/共31页
5、三相变压器联结组标号的确定
1)Yy0联结组
EAB A BC . ..
EA EB EC
“12”
B
XYZ Eab
a bc ...
Ea Eb Ec
EAB
EB
Eab Ea Eb EA EC
Aa
Ec ECA
EBC C
第12页/共31页
图1-15 变压器同名端测定方法接线图
第13页/共31页
5、三相变压器联结组标号的确定 判别三相变压器的联结组标号采用“时钟序数表示法”。
• “时钟表示法”规定:变压器高压边线电势相量为长针,永远指向钟面上的12 点;低压边线电势相量为短针,指向钟面上哪一点,则该点数就是变压器联接组 别的标号。
三相变压器并联运行的条件: 1) 并联运行的各台变压器,其额定电压、电压比要相等 2)并联运行变压器的联结组别必须相同 3)并联运行的各台变压器,其短路阻抗的相对值要相等
第19页/共31页
五、 其他用途的变压器
1、自耦变压器 自耦变压器的结构特点是:一、二次绕组共用一个绕组。
自耦变压器的计算与普通变压器相同。 自耦变压器的输出视在功率(即 容量)有两部分:
第29页/共31页
2、带磁分路的弧焊变压器
在变压器的一次绕组和二次绕组的两个铁芯柱之间,安装一个磁分路动铁芯,由于 磁分路动铁芯地存在,增加了漏磁通,增大了漏电抗,从而是变压器获得迅速下降 的外特性。 通过弧焊变压器外部手柄来调节螺杆,并将磁分路铁心移进移出,使漏磁通增大或 减小,即漏电抗增大或减小,从而改变焊接电流的大小。另外,还可通过二次绕组 抽头调节起弧电压的大小。
变压器的运行特征

一、变压器的运行特征变压器的运行特征主要有外特征与效率特性,而表征变压器运行性能的主要指标则有电压变化率和效率。
1、电压变化率1)外特性变压器一次侧接上额定电压,二次侧开路时,二次侧空载电压就等于二次侧额定电压,外特性是指一次侧加额定电压,负载功率因数cosφ2一定时,二次侧端电压随负载电流变化的关系,即U2=f (I2)。
变压器在纯电阻和感性负载时,外特性是下降的,而客性负载时可能是上翘的。
2)电压变化率负载电流变化,变压器副边端电压将随着发生变化。
电压调整率是变压器负载时副边端电压变化程度的一种程度。
假定变压器原边接电源电压,副边开路时的端电压为额定值,当副边接入负载后,即使原来电压保持不变,副边端电压不再是额定值,原边电压保持为额定值,负载功率因数为常数,空载和负载的副边端电压之差与副边额定电压的比值,即电压变化的标么值称为电压变化率,用⊿U*表示即⊿U*=(U20-U2)/U2N式中U20—副边空载电压U2—时的副边端电压由于副边空载端电压U20等于副边额定电压U2N,经过折算后,公式1可写成⊿U*=(U20-U2)/U2N=(U'2N-U'2)/U'2N=(U10-U'2)/U1N电压变化率是变压器的主要性能指标之一,负载电流变化时,副边端电压变化的原因,是变压器内部存在电阻和漏抗而引起内部电压降。
副边电压的变化程度,即⊿U*的大小,不仅同变压器本身的阻抗有关,而且与负载的大小和性能有关。
综合上述,负载为感性时,φ2角为正值,故电压变化率为正值,即负载时的副边电压恒比空载电压低;负载为容性,φ2角为负值,故电压变化率有可能为负值,亦即负载时的副边电压可能高于空载电压。
为了保证供电电压的质量,尽可能保持副边电压的稳定,这就需要进行调压。
在电力系统中调压的方法很多,例如调节发电机出口电压,用同步调相机,在负载端并联电容器等。
但采用最多、最普遍的还是变压器调压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器运行特性分析与效率曲线
二、理论分析
2.效率和效率特性
变压器运行时将产生损耗。
变压器的损耗分为铜耗和铁耗,每一类又包括基本损耗和杂散损耗。
其中铁耗可视为不变损耗。
基本铜耗是指电流流过绕组时所产生的直流电阻损耗。
杂散铜耗主要是指漏磁场引起电流集肤效应,使绕组的有效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。
变压器的总损耗为
''22
k Fe Cu Fe R mI p p p P +=+=∑ 式中,电阻。
为归算到二次侧的短路为相数;''
R k m
变压器的输入有功功率为1P ,输出功率为2P ,总损耗功率为P ∑,所以效率为 P P
P P P ∑+==2212η 由于电力变压器的效率很高,用直接负载法测量1P 和2P 在算出效率,很难得到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗,由短路试验测出铜耗在计算效率。
此时效率为
kN
O N kN O P I P I S P I P P P 2222221cos 11***+++-=∑-=ϕη 给定以上的参数即可绘制效率曲线。
图3.变压器的效率曲线
有数学分析
2
=
dI
dη
可知在变压器的铜耗等于铁耗时,变压器的效率达到最
大。
图4.效率曲线的最大值
说明:图中铁耗与铜耗值与对应的坐标值并不一一对应。
附程序源代码
3.变压器的效率曲线
function xiaolv1
p0=2.4;
pk=11.6;
sn=1000;
j=0.8;
a=zeros(1,1000);
b=zeros(1,1000);
for i=2:1:1000
a(i)=a(i-1)+0.001;
b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); end
hold on
plot(a,b)
xlabel('I2的标幺值 ')
ylabel('效率 ')
4.效率曲线的最大值
function xiaolv2
p0=2.4;
pk=11.6;
sn=1000;
j=0.8;
a=zeros(1,1000);
b=zeros(1,1000);
cu=zeros(1,1000);
fe=zeros(1,1000);
for i=2:1:1000
a(i)=a(i-1)+0.001;
b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); fe(i)=p0;
cu(i)=(a(i)^2)*pk;
end
fe2=fe/14;
cu2=cu/20;
hold on
plot(a,b,'r-')
plot(a,fe2,'g:')
plot(a,cu2,'b-')。