变压器特性汇总
第2章 变压器的运行原理和特性

仅
E U 20 2
Y,d接线 D,y接线
U 1N k 3U 2 N
k
3U1N U2N
由于 R m R1 , X m X 1 ,所以有时忽略漏阻抗,空载等效电路只是一 个Z m元件的电路。在 U1一定的情况下,I 0大小取决于Z m的大小。从运行角度 讲,希望 I 0 越小越好,所以变压器常采用高导磁材料,增大 Z m,减小 I 0 , 提高运行效率和功率因数。
使
用
1 与 I 0成线性关系; 1)性质上: 0 与 I 0 成非线性关系;
– 变压器各电磁量正方向
• 由于变压器中各个电磁量的大小和方向都随时间以 电源频率交变的,为了用代数式确切的表达这些量 的瞬时值,必须选定各电磁量的正方向,才能列式 子。 • 当某一时刻某一电磁量的瞬时值为正时,说明它与 实际方向一致; 当某一时刻某一电磁量的瞬时值为负时,说明它与 实际方向相反。 • 注:正方向是人为规定的有任选性,而各电磁量的 实际方向则由电磁定律决定。
习
(2)二次侧电动势平衡方程
U1
I 0
0
) (I 2
用
E U 20 2
(3)变比
U 1
U2
E 1
使
E 1
1
E 2
U 20
u2
仅
对三相变压器,变比为一、二次侧的相电动势之比,近似为 额定相电压之比,具体为 Y,d接线
U1N k 3U 2 N
8
供
22
仅
F F F 1 2 0 N I 或 N1 I 1 2 2 N1 I 0 N I I ( 2 ) I I ( 2 ) I I 用电流形式表示 I 2 0 0 1L 1 0 N1 k
变压器的运行特性

标么值,就是指某一物理量的实际值与选定的同一单位的基准值的比值,即
1、定义
2、基准值的确定
1)通常以额定值为基准值。
2)各侧的物理量以各自侧的额定值为基准; 线值以额定线值为基准值,相值以额定相值为基准值; 单相值以额定单相值为基准值,三相值以额定三相值为基准值;
变压器负载运行时,由于变压器内部存在电阻和漏抗,故负载电流在变压器内部产生阻抗压降,使二次侧端电压随负载电流的变化而发生变化。 变压器二次电压的大小不仅与负载电流的大小有关,还和负载的功率因数有关。 当纯电阻负载和感性负载时,外特性是下降的;容性负载时,外特性可能上翘。
二、电压调整率和外特性
2、电压调整率
定义:是指一次侧加50Hz额定电压、二次空载电压与带负载后在某功率因数下的二次电压之差,与二次额定电压的比值的百分数,即 电压调整率是表征变压器运行性能的重要指标之一,它大小反映了供电电压的稳定性。
反映了负载的大小。
由表达式可知,电压变化率的大小与负载大小、性质及变压器的本身参数有关。
用相量图可以推导出电压变化率的表达式:
3)
标么值=
实际值
基准值
优点 缺点 额定值的标么值为1。 百分值=标么值×100% ;
(3)折算前、后的标么值相等。线值的标么值=相值的标么值;
单相值的标么值=三相值的标么值;
(4)某些意义不同的物理量标么值相等.
标么值没有单位,物理意义不明确。
1、变压器的外特性 当变压器电源电压 和负载功率因数 等于常数时,二次侧端压 随负载电流 的变化规律,即U2 = f(I2)曲线称为变压器的外特性曲线。
变压器的电压调整
分接开关有两种形式:一种只能在断电情况下进行调节,称为无载分接开关-----这种调压方式称为无励磁调压;另一种可以在带负荷的情况下进行调节,称为有载分接开关-----这种调压方式称为有载调压。
变压器技术参数特性表

40
3.7.2
最低日温度(C)
-25
-25
3.7.3
最大日温差(K)
25
25
3.7.4
最热月平均温度(C)
30
30
3.7.5
最高年平均温度(C)
20
20
3.8
湿度(%
3.8.1
日相对湿度平均值(W%
95
95
3.8.2
月相对湿度平均值(W%
90
90
3.9
海拔(w m)
1000
1000
3.10
太阳辐射强度(Wcm2)
(kW)
负载损耗
(kW
空载电流
(%)
短路阻抗
(%)
轨距AXB
(mrXmi)i
噪声水平
(dB)
50
10
±2X2.5
0.4
D,yn11
0.27
1.0
2.4
4.0
550X550
64
100
0.4
1.57
1.8
550X550
65
160
0.54
2.13
1.6
550X550
66
200
0.62
2.53
1.4
660X550
6.96
1.0
820X820
72
1000
1.77
8.13
1.0
820X820
72
1250
2.09
9.69
1.0
1070X 820
74
1600
2.45
11.73
1.0
1070X 820
74
3、变压器-参数测定和运行特性

课程导入
通过漏磁抗必然产生电压降。
课程讲解
压变化。我们将这种变化规律称之为外特性。
I2≠0
E
U
负载变化导致电流变化,电流变化导致电
1
I1
1
1
E1
σ
Φ1
Φ2
E
Z
σ
σ
2
L
外特性:在一次侧加额定电压,负载功率因
课程总结
数COSφ2一定时,二次侧电压U2随着负载电
U1N=3300V,I0=0.08A,P0=80W,高压侧加电压时的短路试验数据:
课程讲解
UK=180V,I1N=6.06A,PKN=240W,试验温度25℃,求(1)这台变压器的等效电路参数;
(2)这台变压器的I*0,uk,Z*m,Z*k,P*0.
课程总结
课后作业
厚德笃学、砺能敏行
变压器的运行特性
折算到高压侧,应将上式求得数值乘以变比的平方。
二、短路试验
课程导入
☆ 试验方法:将变压器二次侧短路,一次侧施加
一很低的电压,以使一次侧电流接近额定值。测得
一次侧电压 Uk,电流 I1N,输入功率 PkN
课程讲解
(1)试验线路
课程总结
为了方便,选择在高压方一侧。
在低压方做短路试验时,负载损耗值不变,但 Uk太小, Ik 太大,调节设备难以满足要求,
m = =
X m = −
课程总结
课后作业
m = =
=
X m = −
需要强调的是:由于励磁参数与磁路的饱和程度有关,所以应取额定电压下的数据来
计算励磁参数。
变压器的运行特性

电感性滞后
变压器外特性曲线图
Part 3 变压器的效率
由于损耗的存在,变压器在传递能量过程,致使输出功率P2 < 输入功率P1,输出功率P2与输入 功率P1的比值称为效率η
损耗
铁损耗 铜损耗
磁滞损耗 由铁心磁阻所产生的的损耗,硅钢片能减少这种损耗 取决于铁心的磁通大小和交变频率,铁心采用片状结
涡流损耗 构叠加可减少这种损耗
变压器的电压变化率 变压器的外特性 变压器的效率
知识内容
课外拓展 测取实训室变压器的负载特性
产业信息
电力变压器是电力系统的枢纽设备,在变电站中,主 变压器能否安全可靠运行,直接关系到电网的安全 运行。要不断提高主变压器的运行、维护、检修 水平。
本节内容 到此结束
基本铜损 一次、二次绕组内直流电阻所引起 的直流电阻损耗 由集肤效应和邻近效应使绕组有效电阻变大所增加的
附加铜损 损耗
Part 3 变压器的效率
PFE
变压器损耗
PCU
铁损耗(不变损耗)
铁损耗用PFE表示,其 与外加电压大小有关, 而与负载大小基本无关 ,故也称为不变损耗。
铜损耗(可变损耗)
铜损耗用PCU表示,其 大小与负载电流平方成 正比,故也称为可变损 耗。
电机与电气控制技术
Part 1 变压器的运行特性
外特性
运行特性
效率 特性
主要指标:电压变化率、效率
Part 2 电压变化率
变压器一次绕组加额定电压,负载的功率因数一定,空载与额定负载时 二次侧端电压之差(U2N -U2)与额定电压U2N的比值,用ΔU%表示
• 空载时,U20=U2N • 负载时,U2随负载的变化而变化 变化率 电压变化率ΔU%与变压器内阻抗大小、负载电流及负载类型有关,反映了变压器 输出电压的稳定性及电能的质量。
变压器特性解析

变压器特性解析 +一.漏感(LK):指未被利用到之电感,是一种能量损二.失,一般是指泄漏于磁路以外的通过空气耦合之磁场能量,漏感越大损失能量越大,变压器之利用率越低,故漏感越小越好,若漏感值距上限较近,测漏感值至少需比上限值少10%,制程才能控制。
影响漏感原因:1.线包大2、绕线不平,交叉重叠3、疏绕不平,均未缠满线架 4、原设计不合理 5、绕组引出线未直角拉出 6、CORE接触面有异物 7、CORE GAP位置(耦合越好,漏电流越小) 8、绕线方式(疏绕漏感小) 9、包胶布厚度 10、绕线圈数、线径11、GAP大小及控制方式 12、CORE使用错 13、机器差异 14、操作者作业方式 15、环境(温度)三.电压比(V):指当初级边输入某一特定电压后,在次级边能输出之电压,制程中一般以CH-31020KHZ10V接于初级边,于次级边感应出之数值。
影响电压比原因:(主要不良原因绕线位置不对)1.绕线圈数 2、绕线方式 3、GAP位置 4、绕线平整度 5、仪器差异处理方式:1、不良绕组拆除,重绕至规定位置2、移动铁芯靠向PIN端或TOP端3、CORE拆除后重包四.电阻(DCR):影响电阻原因1、铜线长度(线包大,绕线不平)2、线径(铜线拉得过紧将线拉细,套管穿得过多导致铜线拉细,线径间断性偏大偏小,铜线用错)3、绕线圈数4、温度2、5、多股线剪断 6、丝包线呀绞线有断线 7、原设计规格偏上限(DCR要求稳定在一定范围,不允许超出上限,有上下限要求时,不允许超出范围)五.Q值:是衡量一个产品整估品质状况的指标即品质因素也是衡量振波的尖锐程度一种指标,它与产品测量频率、主电感值、线圈阻抗、绕线结构因素有感关,一般主电感越高Q值越低,当前三项因素固定(一般变化不大)则Q值在制程中主要取决于绕线结构,最突出需要控制部分为多股线,绕线时必须紧密平整排列,铜线不可交叉,必须平行,有时一根铜线交叉也可能导致不良。
20(10)KV双电压变压器特性参数分析

U102 R0+ΔR
,P10″=
U102 R0-ΔR
平均损耗为:
P10=
1 2
×( U102 R0+ΔR
transformer
高压绕组 10kV 时, 高压绕组 1 和高压绕组 2
并联,则:
R10=
R0 2
,
I10=2I0
高压绕组 20kV 时, 高压绕组 1 和高压绕组 2
串联,则:
R20=2R0, I20=I0
(注:上式中下标 10 表示 10kV 电压 时 参 数 ,下 标 20 表
示 20kV 电压时参数,下标 0 表示无误差时单个绕组的值,下
P20 =98.04% P10
即 P20=0.98P10
则: Ur20=0.98Ur10
(10)
Ux10=Ux20
(11)
假设 Ux=kUr,k 为系数,则:
Ux10=k10Ur10,Ux20=k20Ur20
由式(10)和式(11)可得,k10=0.98k20。
最新8-S系列变压器汇总

8-S系列变压器“银天使” S系列印刷线路板焊接式电源变压器LI017V5/2010一、特点:1.全封闭印刷线路板直接焊接安装,使用方便、外形美观;2.结构紧凑、坚固、抗振、防潮、阻燃、抗电强度高;3.空载电流小,功率因数高,输入过电压范围宽;4.与T系列相比,具有更高的可靠性,更宽的环境适应能力;5.内置温度保护器,使用更安全。
二、使用环境条件:1.环境温度:-25℃~+70℃;2.相对湿度:温度为40℃时不大于90%;3.大气压力:860~1060mbar (约为650~800mmHg)三、绝缘耐热等级:F级(155℃)四、安全特性:1.绝缘电阻:常态时大于1000MΩ;2.抗电强度:可承受工频3750V/1分钟;3.抗电冲击:可承受脉冲6k V/50μS连续20次冲击;4.阻燃性:符合UL94-V o级;五、安全认证:CE、UL、六、额定功率:0.25VA,0.35VA,0.5VA,0.6VA,0.8VA,1VA,1.2VA,1.3VA,1.5VA,2VA,3VA,4VA, 5VA,8VA,10VA,12VA,15VA,18VA七、额定电压:1.标准系列:初级:220V±25% 50Hz/60HZ次级:单路输出:6V, 7.5V, 9V, 12V, 15V, 18V, 21V, 24V, 27V 双路输出:2×6V, 2×7.5V, 2×9V, 2×12V, 2×15V, 2×18V, 2×21V, 2×24V,2×27V2.非标系列:可按用户要求定制。
八、S系列标准产品通用技术参数序号类别输出功率空载电流空载损耗电压调整率温升重量(g)长×宽×高(mm)31 S0.25 0.25VA ≤2.5mA≤0.10W≤26%≤10℃40 26×22.5×232 S0.35L 0.35VA ≤3.5mA≤0.20W≤45%≤10℃40 32.6×27.6×163 S0.5 0.5VA ≤6mA ≤0.30W ≤30%≤10℃50 26×22.4×264 S0.6 0.6VA ≤3.0mA ≤0.12W≤38%≤11℃60 30.5×27.5×20.55 S0.8 0.8VA ≤4.0 mA≤0.20W≤20%≤12℃75 30.5×27.5×256 S1 1VA ≤6mA ≤0.15W≤20%≤12℃75 30.5×27.5×257 S1L 1VA ≤8.0mA ≤0.17W≤23%≤12℃75 32.6×27.6×22.28 S1.2 1.2VA ≤7.0 mA ≤0.25W≤16%≤15℃100 30.5×27.5×31.259 S1.3L 1.3VA ≤7.5 mA≤0.26W≤17%≤15℃110 43×35×2210 S1.5 1.5VA ≤7.5 mA≤0.20W≤17.5%≤15℃100 30.5×27.5×31.2511 S1.5L 1.5VA ≤8.0 mA≤0.35W≤12.5%≤15℃125 43×35×24.512 S2 2VA ≤7.5mA≤0.20W≤15%≤15℃125 37.5×32×3113 S2L 2VA ≤8.5mA≤0.35W≤15%≤15℃135 44×36×26.514 S2S 2VA ≤12.0mA ≤0.25W≤21%≤15℃135 32.6×27.6×31.2515 S3 3VA ≤8.0 mA ≤0.25W≤15%≤15℃155 37.5×32×3516 S4 4VA ≤16.0mA ≤0.50W ≤13%≤18℃195 45×37×3317 S5 5VA ≤18 mA ≤0.35W≤13%≤18℃195 45×37×3318 S8 8VA ≤20 mA ≤0.80W ≤20%≤18℃275 51×43×33.819 S10 10VA ≤20 mA≤0.65W≤15%≤20℃300 51×43×3620 S10D 10VA ≤20 mA≤0.65W ≤15%≤20℃300 69×43×38.5九、使用注意事项:由于本变压器类产品引出脚数量较多,且引脚材质较硬,为便于插装,建议在设计印制板时,将变压器引脚插孔的尺寸留出余量(如果是0.8mm 的引出脚,可将插孔尺寸设计成 1.2mm ;1mm 的引出脚,可将插孔尺寸设计成1.5mm)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=E1msin (ωt-90°)
电势在相位上永远滞后于它所匝链的磁通90o。
其最大值:E1m=ωN1Фm= 2πf N1Фm
其有效值:E1=E1m/sqrt(2)
= 2πf N1Фm/1.414
= 4.44 f N1Φm
这就是电机学最重要的“4.44”公式。说明了感应电势E1与磁通Φm、频率f、绕组匝数N1成正比。
二.磁势平衡方程式
1.F1+F2=Fm≈F0
I1N1+I2N2=ImN1≈I0N1
I1=I0+(-I2/k)=I0+I1L
I1L=-I2/k为负载后一次侧增加的电流。
I1L+I2/k=0
2.负载后,一次侧绕组中的电流由两个分量组成,一个是其负载分量I1L,另一个是产生磁通的励磁分量I0,I1L产生的磁势与二次侧电流产生的磁势大小相等,方向相反,互相抵消。
空载时一次侧绕组中的电流i0为空载(或叫激磁)电流,磁势F0=I0N1叫励磁磁势。
F0产生的磁通分为两部分,大部分以铁心为磁路(主磁路),同时与一次绕组N1和二次绕组N2匝链,并在两个绕组中产生电势e1和e2,是传递能量的主要媒介,属于工作磁通,称为主磁通Ф。
另一部分磁通仅与原方绕组匝链,通过油或空气形成闭路,属于非工作磁通,称为原方的漏磁通Ф1σ。
铁心由高导磁硅钢片制成,导磁系数μ为空气的导磁系数的2000倍以上,所以大部分磁通都在铁心中流动,主磁通约占总磁通的99%以上,而漏磁通占总磁通的1%以下。
问题6-1:主磁通和漏磁通的性质和作用是什么?
规定正方向:电压U1与电流I0同方向,磁通Ф正方向与电流I0正方向符合右手螺旋定则。电势E与I0电流的正方向相同。
第6章变压器的基本理论
1.分析变压器内部的电磁过程。
2.分析电压、电流、磁势、磁通、感应电势、功率、损耗等物理量之间的关系。
3.建立变压器的等效电路模型和相量图。
4.利用等效电路计算分析变压器的各种性能。
6-1变压器的空载运行
一.空载运行物理分析
一次侧接额定电压U1N,二次侧开路的运行状态称为空载运行(i2=0)。
同样可以推出e2和e1σ的公式:
e2=E2msin(ωt-90°)
E2m=N2Φmω
E2=4.44 f N2Φm
e1σ=-N1dΦ1σ/dt
=N1Φ1σmωsin(ωt-90°)
E1σm=ωN1Φ1σm
E1σ=4.44 f N1Φ1σm
由于漏磁路的磁导率μo为常数,Φ1σm=L1σII0,故E1σ=4.44f N12L1σI0=X1σI0,即E1σ可用漏抗压降的形式表示。
2.变比k等于匝数比。
3.一次绕组的匝数必须符合一定条件:
U1≈4.44 f N1Φm≈4.44 f N1BmS
N1≈U1/4.44fBmS
4.Bm的取值与变压器性能有密切相关。
Bm≈热轧硅钢片1.11~1.5T;冷轧硅钢片1.5~1.7T
b)电压比K:指三相变压器的线电压之比
5.在做三相变压器联结绕组试验时用到电压比K进行计算。
由于磁通在交变,根据电磁感应定律:
e1= -N1dΦ/dt
e2= -N2dΦ/dt
e1σ= -N1dФ1σ/dt
二.电势公式及电势平衡方程式推导
空载时,主磁通Ф在一次侧产生感应电势E1,在二次侧产生感应电势E2,一次侧的漏磁通Ф1σ在一次侧漏抗电势E1σ。
假设磁通为正弦波Ф=Фmsinωt则
e1= -N1dΦ/dt=-N1dФmsinωt/dt
问题6-2:220V、50Hz的变压器空载接到220V、25Hz的电源上,后果如何?
问题6-3:220V、50Hz的变压器空载接到220直流电源上,后果如何?
三.变压器的变比k和电压比K
a)变比k:指变压器1、2次绕组的电势之比。
1.k=E1/E2=(4.44fN1Φm)/(4.44fN2Φm)=N1/N2
以上推导涉及到的电磁量均为正弦变化,可以用相量来表示。用相量时可同时表示有效值和相位。E1σ=-jX1σI0
考虑到一次侧绕组的电阻压降后,其电势平衡方程为U1=-E1-E1σ+R1I0=-E1+jX1σI0+R1I0=-E1+I0Z1
二次侧无电流,故:E2=U2
对于一次侧来说,电阻压降和漏抗压降都很小。所以U1≈-E1=4.44 f N1Φm,可见变压器的磁通主要由电源电压U1、频率f和一次侧绕组的匝数N1决定。在设计时,若电压U1和频率f给定,则变压器磁通由匝数N1决定。对于制成运行的变压器,其磁通Φ可以由电压U1和频率f控制。
-E1=I0Rm+jI0Xm=I0Zm
I0是励磁过程必须的电流(包括磁化电流/有功电流),称为励磁电流。
Xm的物理意义是:
励磁电抗Xm是主磁通Φ的电抗,反映了变压器(电机)铁心的导磁性能,代表了主磁通对电路的电磁效应。
Rm是用来代表铁耗的等效(虚拟的)电阻,称为励磁电阻。Rm+jXm=Zm则称为励磁阻抗。(2)空载时的等效电路
用一个阻抗(Rm+jXm)表示主磁通Φ对变压器的作用,用另一个阻抗(R1+jX1器的等效电路。
R1和X1σ受饱和程度的影响很小,基本上保持不变。
Rm和Xm是随着饱和程度的增大而减小。在实际应用中要注意到这个结论。
变压器正常工作时,由于电源电压变化范围小,铁心中主磁通的变化不大,励磁阻抗Zm也基本不变。
6-2变压器的负载运行
一.负载运行
一次侧接电源U1,二次侧接负载ZL,此时二次侧流过电流I2。一次侧电流不再是I0,而是变为I1,这就是变压器的负载运行情况。
负载后,二次侧电流产生磁势F2=N2I2,该磁势将力图改变磁通Φ,而磁通是由电源电压决定的,也就是说Φ基本不变。
要维持Φ不变,一次绕组的电流将由原来的I0变为I1。I1产生磁势F1= I1N1,F1与F2共同作用产生Φ,F1+F2的作用相当于空载磁势F0,也即激磁磁势Fm。
K=(UAB/uab+UBC/ubc+UCA/uca)/3
四.空载运行时的等效电路和相量图
(1)励磁电流/铁耗电阻、励磁阻抗
空载运行时,电流i0分为两部分,一部分i0w纯粹用来产生磁通,称为磁化电流,与电势E1之间的相位差是90°,是一个纯粹的无功电流。另一部分i0y用来供给损耗,是一个有功电流。I0=I0w+I0r