LC谐振放大器

合集下载

LC谐振放大器的设计

LC谐振放大器的设计

LC谐振放大器的设计摘要:本文是基于LC高频小信号放大电路的设计,它由前级衰减电路、LC谐振放大电路、多级增益放大电路、电源电路组成。

其中前级衰减电路用π型电阻网络实现40dB的衰减;核心LC谐振放大器采用三极管2SC1815构成的单调谐回路选频放大器,实现15MHz的谐振频率和300KHz的带宽调节,增益放大电路由SGM8067组成的三级同相放大电路实现15MHz带宽60dB放大倍数的放大,整个LC放大电路的带内波动不大于2dB;电路所需的3.6V稳定电压由锂电池18650提供。

本设计很好实现谐振频率15MHz、带宽300KHz、增益76dB以及带内波动小于1dB的谐振放大电路,并且本设计采用高频三极管2SC1815和高速高带宽运算放大器SGM8067联合组成LC谐振放大电路,比单纯用高频三极管组成的多级LC 谐振放大电路要简单,调试起来也很容易。

关键词:π形网络;LC谐振;SGM8067Design of the LC resonant amplifierAbstract:This paper is based on LC high frequency amplifier circuit design of small signal, it by the former stage attenuation circuit, LC harmonic oscillator amplifier circuit, multi-level amplifier circuit, the power supply circuit. The top level with π attenuation circuit type resistance network realization of 40 dB attenuation; Core LC resonance with transistor amplifier 2 SC1815 consists of the single tuned circuit choose frequency amplifier, realize the resonance frequency of the 15 MHz of bandwidth and 300 KHz regulation, gain the SGM8067 amplifier circuit of the same phase 3 amplifier circuit realize 15 MHz bandwidth 60 dB magnification magnification, the whole LC amplifier circuit with the fluctuated in not greater than 2 dB; Circuit of 3.6 V voltage stability needed by the lithium battery 18650 provides. This design is very good realize the resonance frequency 15, 300 MHz bandwidth, gain 76 dB KHz and with less than 1 dB fluctuated in resonant amplifying circuit and the design USES high frequency transistor 2 SC1815 and high speed high bandwidth operational amplifier SGM8067 together, LC resonance amplifier circuit, than pure with high frequency transistor composed of multilevel LC resonance amplifier circuit is simple, it is easy to debug.目录1 绪论 (1)1.1 课题意义与背景 (1)1.2高频小信号调谐放大器的原理分析 (1)2 系统的整体方案论证与分析 (3)2.1 系统设计的功能目标 (3)2.2 系统设计方案分析 (3)3 硬件电路设计 (5)3.1 衰减器的设计 (5)3.2 LC谐振电路 (6)3.2.1 LC谐振电路的原理 (6)3.2.2 LC谐振电路的参数计算 (8)3.2.3 LC谐振电路设计 (8)3.3 增益放大电路 (12)3.3.1 双电源同相比例运算电路 (12)3.3.2 单电源运算放大电路 (13)3.3.3 SGM8067基本资料 (15)3.4 增益放大电路的设计 (16)3.5 电源 (17)4 电路的仿真与测试 (18)4.1 电路基于multisim仿真 (18)4.2 系统的测试方案与数据分析 (19)4.2.1 测试仪器 (19)4.2.2 测试方案 (20)4.2.3 测试数据 (20)5 结束语 (21)[参考文献] (22)附录 (23)致谢 (24)1 绪论1.1 课题意义与背景在无线通信中,发射与接收的信号应当适合于空间传输。

LC谐振放大器的实验报告

LC谐振放大器的实验报告

LC谐振放大器设计报告(D题)内容摘要:本文介绍了LC谐振放大器的设计原理,分析了有可能影响LC 谐振放大器的因素以及采取的针对性措施。

在此设计中我们运用衰减器来减小输入电压的值进而方便了放大器电路的测量。

中周电感和聚酯电容来提取频率为15MHz的波。

用三极管来放大电路,并使用其他措施来减小电路误差。

整个系统的-3dB带宽为300kHz。

在较低的外部电压下,放大器电路的整体功耗很小。

关键词:LC谐振放大器衰减器中周电感第一章绪论1.1:设计任务设计并制作一台LC谐振放大器。

设计的大体示意图如下所示:1.2:设计要求1.2.1:基本要求(1)衰减器指标:衰减量40±2dB,特性阻抗50Ω,频带与放大器相适应。

(2)放大器指标:(a)谐振频率:f0=15MHz;允许偏差±100KHz;(b)增益:不小于60dB;(c)-3dB带宽:2Δf0.7=300KHz;带内波动不大于2dB;(d)输入电阻:Rin=50Ω;(e)失真:负载电阻为200Ω,输出电压1v时,波形无明显失真。

(3)放大器使用3.6v稳压电源供电(电源自备)。

最大不允许超过360mW,尽可能减小功耗。

1.2.2:发挥部分(1)在-3dB 带宽不变条件下,提高放大器增益到大于等于80dB。

(2)在最大增益情况下,尽可能减小矩形系数Kr0.1。

(3)设计一个自动增益控制(AGC)电路。

AGC控制范围大于40dB。

AGC控制范围为20lg(Vomin/Vimin)-20lg(Vomax/Vimax) (dB)。

(4)其他。

附录:图二是LC谐振放大器的特性曲线,矩形系数Kr0.1=2Δf0.1/2Δf0.7第二章方案的比较与论证本系统主要有以下几个模块:自制电源衰减器LC谐振放大器等三大功能模块。

2.1自制电源模块:方案一:线性稳压源。

采用效率较高的串联电路,尤其是采用集成三端稳压器,输出电压波纹小,可靠性高,性价比高。

可为后面的谐振放大电路提供不失真保障。

LC谐振放大器

LC谐振放大器

LC谐振放大器LC谐振放大器摘要LC谐振放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。

LC谐振放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。

LC谐振放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器;按频带分为:窄带放大器、宽带放大器;按电路形式分为:单级放大器、多级放大器;按负载性质分为:谐振放大器、非谐振放大器;其中LC谐振放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。

LC谐振放大器理论非常简单,但实际制作却非常困难。

其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。

本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的。

关键词:LC谐振、放大、选频、震荡目录1 方案设计与论证﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍51.1衰减器的选择﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍51.2 选频电路的选择﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍51.3 LC谐振放大选型﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍52 主要技术指标﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍62.1电压增益﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 2.2放大器的通频带﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 2.3放大器矩形系数﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 2.4谐振频率﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 3 电路设计﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍73.1 T型电阻网络﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍73.2 LC并联谐振回路﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍73.3LC谐振放大器电路图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍84 仿真调试﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍84.1 仿真软件﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍84.2测试方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍84.3 衰减器仿真﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍84.4仿真电路图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍94.5谐振频率测试﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍94.6 幅频特性图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍105 设计总结﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍106 实物调试记录解说﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍106.1 制作好的芯片﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍106.2 调试电压显示﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍111.方案设计与论证1.1衰减器的选择方案一:非线衰减网络,根据题目要求频带要与放大器相适应,则要求3dB带宽足够宽,特性阻抗保持50欧,这样时比较难达到的。

LC谐振放大器论文

LC谐振放大器论文

2011年全国大学生电子设计竞赛LC谐振放大器(D题)【本科组】2011年9月3日摘要本系统以高频低噪声放大器2SC3358为核心组成的LC谐振放大器,外加AGC电路进行增益自动控制,在保证信号不明显失真的前提下输出幅值保持稳定。

系统主要由衰减器、谐振放大器、功率放大器、AGC和扩展电路等构成。

LC谐振放大器能将中心频率为15MHz微伏级别的小信号放大最大到约101dB,带宽保持300KHz,输入阻抗50Ω。

AGC电路增益控制范围达到46dB,整个放大器最大功耗约为114.8mW。

后级功放由功放管2SC2053和LC谐振组成,提高了输出级的驱动能力,改善了阻抗匹配性能。

本系统经过测试,抗干扰能力强,加上精致的外壳和防自激电路的设计,放大器具备了很好的稳定性。

关键词:LC谐振AGC 谐振放大器增益小信号目录1系统方案 (1)1.1 谐振放大器的论证与选择 (1)1.2 AGC电路方案的论证与选择 (1)1.3 电源方案的论证与选择 (2)2系统理论分析与计算 (2)2.1 衰减器的分析 (2)2.2 LC谐振放大器的指标的分析 (2)2.2.1 增益 (2)2.2.2 AGC的分析 (2)2.2.3 通频带 (3)2.2.4 矩形系数 (3)2.2.4 放大器的稳定性 (3)3电路的设计 (3)3.1系统总体框图 (3)3.2 衰减器电路 (4)3.3 一级谐振放大器电路 (4)3.4 二级谐振放大器电路 (4)3.5 谐振功率放大器电路 (4)3.6 AGC电路 (4)3.7电源电路 (4)3.8扩展电路 (5)4测试方案与测试结果 (5)4.1测试仪器和设备: (5)4.2 测试方法和步骤: (5)4.2.1 增益测试 (5)4.2.2 功耗测试 (5)4.2.3 带宽和矩形系数测试 (5)4.2.4 AGC增益范围测试 (6)4.3 测试结果及分析 (6)4.3.1测试结果 (6)4.3.2测试分析与结论 (6)附录:LC谐振电路主原理图 (8)LC谐振放大器(D题)【本科组】1系统方案本系统主要由衰减模器、LC谐振放大器、功率放大器、3.6V电源、AGC和扩展电路组成,下面分别论证这几个模块的选择。

LC谐振放大器(宾峰 叶永雄 饶学良)

LC谐振放大器(宾峰 叶永雄 饶学良)

LC谐振放大器(D题)摘要:本作品由衰减器、LC并联谐振选频网络、固定增益放大电路和自动增益控制电路四个模块组成。

衰减器由精密电阻构成的π型衰减网络,各放大器模块之间采用电容耦合,可达到消除前级的零漂对后级的影响,LC并联谐振电路由自绕线圈构成的电感和槽路电容组成,并通过微调磁芯使其谐振频率尽量靠近15MHZ。

在三级LC并联单谐调回路中间加AD8061作跟随器,实现前后级的阻抗匹配。

前级固定增益放大电路由三极管搭建的共射级放大电路构成,后级固定增益放大电路由集成芯片OPA355构成,自动增益控制电路由AGC三极管构成。

放大器所用直流稳压电源采用自制串联型线性电源,合理PCB布局减少板载电容,并采用多级滤波,减少电源纹波对输入小信号的影响及抑制放大器噪声,提高了系统稳定性。

关键词:LC并联谐振、中周、AD8061、OPA355、自动增益控制、串联型线性电源目录LC谐振放大器(D题) (1)1、方案比较与选择 (1)1.1 衰减器设计 (1)1.2 LC谐振放大器设计 (1)1.3 自动增益控制(AGC)设计 (1)1.4 系统整体方案 (2)2、理论分析计算 (2)2.1带宽和矩形系数 (2)2.2静态工作点设置 (3)2.3谐振增益 (5)2.4自动增益控制 (5)3、系统电路设计 (6)3.1衰减器设计 (6)3.2 LC选频放大器 (7)3.3前级固定增益电路设计 (8)3.4后级固定增益电路设计 (8)3.5电源设计 (9)4、测试方案与测试结果 (10)1、测试仪器 (10)2、测试方案和测试结果 (10)(1)-3dB带宽测试 (10)(2)最大不失真输出电压测试 (10)(3)功耗测试 (10)(4)AGC测试 (11)(5) 衰减器衰减量测试 (11)(6) 矩形系数测试 (11)(7) 最大放大倍数 (11)5、总结 (12)6、参考文献 (12)附件A 系统电路图 (13)1、方案比较与选择1.1衰减器设计方案一:增益可控运放。

lc谐振放大器

lc谐振放大器

LC谐振放大器1. 引言LC谐振放大器是一种电子放大器电路,能够在特定频率下实现放大信号的功能。

它使用了电感和电容组合成谐振回路,在谐振频率处具有较高的增益,而在其他频率下的增益较低。

这使得LC谐振放大器在无线电通信、音频放大以及其他需要放大特定频率信号的应用中非常有用。

本文将介绍LC谐振放大器的基本原理、电路结构、工作原理,以及使用LC谐振放大器的注意事项。

2. 基本原理LC谐振放大器的基本原理是利用电感和电容的参与形成谐振回路,使得在谐振频率下能够放大信号。

谐振回路由一个电感和一个电容串联或并联而成,其谐振频率可以通过以下公式计算:$$ f_{res} = \\frac{1}{2\\pi \\sqrt{LC}} $$其中,f res是谐振频率,L是电感的感值,C是电容的容值。

3. 电路结构LC谐振放大器的电路结构可以被分为三个主要部分:输入匹配网络、谐振回路和输出匹配网络。

3.1 输入匹配网络输入匹配网络的作用是将输入信号与谐振频率进行匹配,使得输入信号能够被谐振回路有效地吸收和放大。

输入匹配网络通常由电容和电感构成,其设计原则是使得输入阻抗与输入信号源的输出阻抗匹配。

3.2 谐振回路谐振回路由电感和电容串联或并联而成,用于放大谐振频率的信号。

谐振回路的选择取决于应用需求,常见的有串联LC回路和并联LC回路。

串联LC回路在谐振频率处具有较高的电压增益,适用于需要高电压放大的应用;并联LC回路在谐振频率处具有较高的电流增益,适用于需要高电流放大的应用。

3.3 输出匹配网络输出匹配网络的作用是将谐振回路放大后的信号与负载进行匹配,使得信号能够传递给负载而不损失大量的能量。

输出匹配网络也由电容和电感构成,其设计原则是使得输出阻抗与负载的输入阻抗匹配。

4. 工作原理LC谐振放大器的工作原理可以通过下面的步骤来解释:1.输入信号经过输入匹配网络,使得其阻抗与信号源输出阻抗匹配。

2.匹配后的信号进入谐振回路,在谐振频率处经过放大。

LC谐振放大器的参数选择研究

LC谐振放大器的参数选择研究

LC谐振放大器的参数选择研究首先,我们需要选择谐振频率。

谐振频率是LC谐振电路的共振频率,决定了放大器的工作频率范围。

通常情况下,谐振频率需要和输入信号的频率相匹配。

如果需要放大多个频率,可以选择一个工作范围较宽的谐振频率。

接下来,我们需要选择输入和输出电容。

输入电容决定了输入信号的频率特性。

较大的输入电容可以滤掉高频信号,从而实现对于低频信号的放大。

输出电容决定了放大器的输出阻抗。

较大的输出电容可以提高放大器的低频响应。

然后,我们需要选择电感的数值。

电感的数值决定了谐振电路的频率响应。

较小的电感值会导致谐振频率偏高,较大的电感值会导致谐振频率偏低。

根据需要,我们可以选择合适的电感值来满足所需的频率范围。

此外,还需要选择耦合电容的数值。

耦合电容用于将输出信号传输到下一级电路。

较小的耦合电容值会导致低频信号衰减,较大的耦合电容值会导致高频衰减。

根据所需的频率响应,我们可以选择合适的耦合电容值。

最后,我们需要选择放大倍数。

放大倍数决定了输入信号经过放大器后的输出信号大小。

通过选择合适的电容和电感数值,可以调整放大倍数。

需要注意的是,在设计LC谐振放大器时,要考虑到电路的稳定性和抗干扰能力。

过大的放大倍数可能会导致电路不稳定或易受到干扰。

在研究LC谐振放大器的参数选择时,我们可以通过仿真和实验来验证参数的选择是否符合要求。

通过改变各个参数的数值,观察电路的频率响应和输出信号的放大倍数,来优化参数的选择。

综上所述,LC谐振放大器的参数选择需要考虑到谐振频率、输入输出电容、电感和耦合电容。

通过合理选择这些参数,可以得到满足要求的频率响应和放大倍数。

同时,需要结合仿真和实验来验证参数的选择是否符合设计要求。

LC谐振放大器

LC谐振放大器

高频电路课程设计实习报告LC 谐振放大器学校专业班级学号姓名日期目录序言 (2)1、设计课题 (3)2、实践目的 (3)3、设计要求 (3) (3)4、设计原理. (4) (4)4.2输出电压、功率与效率 (4) (5)4.4电压增益、谐振频率、品质因素、通频带理论计算 (7) (8) (8) (9)5、设计电路 (9)6、心得体会 (11)7、参考文献 (12)序言高频谐振放大器广泛应用于通信系统和其他电子系统中,如在发射设备中,为了有效地使信号通过信道传送到接收端,需要根据传送距离等因素来确定发射设备的发射功率,这就要用高频谐振放大器将信号放大到所需的发射功率;在接受设备中,从天线上感应到的信号是非常微弱的,要将传送的信号恢复出来,需要将信号放大,这就需要用高频小信号谐振放大器来完成。

已知功率是不能放大的,高频信号的功率放大,其实质是在输入高频信号的控制下将电源直流功率转换成高频功率,因此除要求高频功率放大器产生符合要求的高频功率外,还要求尽可能高的转换效率。

高频功放的输出功率范围,可以小到便携式发射机的毫瓦级,大到无线电广播电台的几十千瓦,甚至兆瓦级。

目前,功率为几百瓦以上的高频功率放大器,其有源器件大多为电子管,几百瓦以下的高频功率放大器则主要采用双极晶体管和大功率场效应管。

应当指出,尽管高频功放和低频功放的共同特点都要求输出功率大和效率高,但二者的工作频率和相对频带宽度相差很大,因此存在着本质的区别。

低频功放的工作频率低,但相对频带很宽。

工作频率一般在20--20000Hz,高频端与低频端之差达1000倍。

所以,低频功放的负载不能采用调谐负载,而要用电阻,变压器等非调谐负载。

而高频功放的工作频率很高,可由几百千赫到几百兆赫,甚至几万兆赫,但相对频带一般很窄。

例如调幅广播电台的频带宽度为9kHz,若中心频率取900kHz,则相对频带宽度仅为1%。

因此高频功放一般都采用选频网络作为负载,故也称为谐振功率放大器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LC谐振放大器摘要高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,而且通信距离越远,要求输出功率越大。

所以为了获得足够大的高频输出功率,必须采用高频功率放大器。

由于高频功率放大器的工作频率高,相对频带窄,所以一般采用选频网络作为负载回路。

本次设计先是对高频功率放大器有关理论知识作了一些简要的介绍,然后在性能指标分析基础上进行单元电路设计,最后设计出整体电路图,在软件中仿真验证是否达到技术要求,对仿真结果进行分析,最后焊接并调试电路。

关键词:高频谐振功率放大器谐振回路耦合回路工作状态AbstractHigh frequency power amplifier is an important part of the equipment to send one of communication, circuit, in order to make up for in process of wireless transmission signal attenuation requirements with greater transmitter output power and communications, the farther the distance, the greater the output power requirements. So in order to get enough high frequency output power, must use high frequency power amplifier. Due to the high frequency power amplifier high frequency band, relatively narrow, so the general use of the web as a load circuit choose frequency.The first design of the high frequency power amplifier theory knowledge about some briefly introduced, and then the performance index analysis in based on the circuit design, and in the end the design unit circuit diagram, a whole in software simulation verify whether attain the technical requirements of the simulation results on analysis, the final installation and debugging circuit circuit.Keywords:High-frequency resonant power amplifier Resonant circuitCoupling Loop Working condition一、方案比较与论证1.基本方案根据要求,需要设计并制作一个低压、低功耗的LC谐振放大器;为了便于测试,在放大器的输入端插入一个40dB的固定衰减器。

电路框图如下:图1-1电路基本框图2.各模块方案的确定2.1衰减器衰减器一般采用电阻元件,有两种主要电路形式:π型和T型。

如图1-2所示:图1-2 射频功率衰减器电路类型将很小,由于受引线和焊点的当衰减的分贝数较大时,在T型衰减器中R1影响,阻值过小很难保证其精度,从而影响衰减的准确度。

如题中,输入输出阻抗为50Ω,衰减为40dB时,T型衰减器中R≈49.01Ω,R≈1.00Ω,而π型衰1≈2.5kΩ,所以,当要求衰减较大时用π型衰减器较合适,减器中R≈51.01Ω,R1因此,本电路设计采用π型衰减器。

2.2 LC谐振放大器利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。

根据放大器的流通角θ的范围可分为甲类、乙类、丙类及丁类等不同功率类型的放大器。

电流导通角θ愈小,放大器的效率η愈高。

为了达到题目要求的增益不小于60dB,须采用两级功率放大器,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。

丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。

本设计有以下两种方案:方案一:采用甲类功率放大器,为了提高增益,电路须采用两级甲类放大,但是甲类功放的流通角θ=180o,效率最高也只能达到50%。

方案二:采用一级甲类功率放大器,另一级采用丙类功率放大器,丙类功放的θ<90o ,效率可达到80%,同时又达到题目所要求的增益。

综上所述,我们采用了方案二。

二、主要电路设计与计算1.衰减器的设计1.1电路形式衰减器一般采用电阻元件,对该设计要求的衰减器而言,一般不需要进行阻抗变换,即:输入阻抗和输出阻抗相等,电路呈对称形式,所以R 2和R 3取相同的阻值。

电路如图所示:图2-1 衰减器1.2 电路分析计算设信号源的输出阻抗和负载阻抗均为R 0,电压衰减倍数为A T =V in /V out ,V in 和V out 分别为衰减器的输入电压和输出电压,R 2=R 3=R ,如图2-2所示:图2-2 π型衰减器的计算虚线框内是为了计算方便虚加的。

这样已知R 0和A T ,要确定R 1和R 的值。

根据阻抗匹配条件,从V in 往右看对地阻抗等于信号源的输出阻抗R 0,即:R ∥(R 1+R ∥R 0)=R 0 得:1001)()(R R R RR R R R R RR R R =+++++即:00001R R RR R R RR R -=++根据电压衰减倍数的要求: A T = V in /V out 因为:in out V R R R R R V 010////+=即:则:由以上各式得:即:OT T R A A R 2121-=所以π型电路的计算公式为:011R A A R T T -+=02121R A A R TT -=根据题中给出的特性阻抗为50Ω,衰减量为40dB ,可以计算出 A T =100 R ≈51.01Ω R 1≈2499.75Ω2 LC 谐振放大器的设计2.1谐振功放基本电路组成如图所示为高频功率放大器的基本电路。

为了使高频功率放大器有高效率地输出大功率,常常选择工作在丙类状态下工作。

我们知道,在一元件(呈电阻性)的耗散功率等于流过该元件的电流和元件两端电压的乘积。

由图可知基极直流偏压V BB 使基极处于反向偏压的状态,对于NPN 型管来说,只有在激励信号为正值的一段时间内才有集电极电流产生,所以耗散功率很小。

晶体管的作用是在将供电电源的直流能量转变为交流能量的过程中起开关控制作用,谐振回路中LC 是晶体管的负载,电路工作在丙类工作状态。

+ –v b –i B – + V BB– +V CC– + e c C– +v c L输出i E i c e b图2-3 高频功率放大器基本电路图2-4为谐振功率放大器各级电压和电流波形。

图2-2 谐振功率放大器各级电压和电流波形图2-4 谐振功率放大器各级电压和电流波形2.2 集电极电流余弦脉冲分解 当晶体管特性曲线理想化后,丙类工作状态的集电极电流脉冲是尖顶余弦脉冲。

这适用于欠压或临界状态。

晶体管的内部特性为:i c = g c (e b –V BZ )它的外部电路关系式:e b = –V BB + V bm cos ωt e c = V CC –V cm cos ωt当ωt=0时,(a )(b )(c )(d )ω ti C U o n转移特性iCω tω tω tω tω tU b m-θθu BEu b-θθi CmaxU o n U BBu BE i Bi Cu CE U CC U CEminθθ-θθθ-θU b mU BB(e )i c = i c max因此,i c max = g c V bm (1–cos θc )若将尖顶脉冲分解为傅里叶级数,得i c =I c0+I cm1cos ωt+I cm2cos2ωt+…+I cmn cosn ωt+…由傅里叶级数的求系数法得其中图2-5 尖顶脉冲的分解系数由图可见,当θc≈120︒时,Icm1/Icmax 达到最大值。

在Icmax 与负载阻抗Rp 为某定值的情况下,输出功率将达到最大值。

这样看来,取θc=120︒应该是最佳通角了。

但此时放大器处于甲级工作状态效率太低。

为了兼顾效率和功率,常常取导通角70度左右。

2.3 谐振功率放大器的动态特性 (1)谐振功放的三种工作状态θ / ︒α1/α0=γ1α0α1α2α3α0 , α1 , α2 , α32.0 1.010 30 50 70 90 110 130 150 1700.5 0.4 0.3 0.2 0.1 0)()(max max 10max 0C n C cmn C C cm C C C i I i I i I θαθαθα==)(=1)cos 1)(1(sin cos cos sin 2)()cos 1(sin cos )()cos 1(cos sin )(210c c c c c c n c cc cc c cc c c n n n n n θθθθθπθαθπθθθθαθπθθθθα---⋅=--=--=在非线性谐振功率放大器中,常常根据集电极是否进入饱和区,将放大区的工作状态分为三种:①欠压工作状态:集电极最大点电流在临界线的右方 ②过压工作状态:集电极最大点电流进入临界线之左的饱和区 ③临界工作状态:是欠压和过压状态的分界点,集电极最大点电流正好落在临界线上。

如图2-6为电压、电流随负载变化的波形图。

图2-6 电压、电流随负载变化波形高频放大器的工作状态是由负载阻抗R p 、激励电压V b 、供电电压V CC 、V BB等4个参量决定的。

为了阐明各种工作状态的特点和正确调节放大器,就应该了解这几个参量的变化会使放大器的工作状态发生怎样的变化。

(2) 谐振功率放大器的外部特性 Ⅰ 负载特性如果V CC 、V BB 、V b 这几个参变量不变,则放大器的工作状态就由负载电阻R 决定。

此时,放大器的电流、输出电压、功率、效率等随R p 而变化的特性,就叫做放大器的负载特性。

①欠压状态:B 点以右的区域。

在欠压区至临界点的范围内,根据Vc=R* Ic 1,放大器的交流输出电压在欠压区内必随负载电阻R 的增大而增大,其输出功率、效率的变化也将如此。

相关文档
最新文档