正比例反比例练习题讲解学习
数学正比例和反比例试题答案及解析

数学正比例和反比例试题答案及解析1.在对圆柱体的认识中,有侧面积、体积公式推导、体积公式,大家一起想一想其中有没有成比例关系的量.圆锥体呢?【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为 ch=圆柱的侧面积(一定),底面周长和高成反比例;圆柱的体积 V=sh(或πr2h),当体积一定时,底面积和高成反比例;圆锥的体积V=πr2h=sh,当体积一定时,底面积和高成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.2.判断题中的两种量是不是成比例,成什么比例,并说明理由.如果 m:6=8:n,那么m 和 n.【答案】成反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为m:6=8:n,则mn=6×8=48(一定),是乘积一定,那么m和n成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.判断两个量是否成正比例或反比例,说明理由:房间的面积一定,铺地砖的块数与每块地砖的面积.【答案】成反比例.【解析】判断铺地砖的块数与每块地砖的面积是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:每块地砖的面积×块数=房间的总面积(一定),也就是每块地砖的面积和块数的乘积一定,符合反比例的意义,所以每块地砖的面积和块数成反比例.点评:两种相关联的量,一种量变化,另一种量随着变化,如果这两种量相对应的积一定,这两种量叫做成反比例的量,它们的关系叫成反比例的关系,用字母表示为yx=k(一定).4.判断变化的量是否成正比例,说明理由.圆的面积和半径.【答案】不成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆的面积S=πr2,所以S:r2=π(一定),即圆的面积与半径的平方的比值一定,但圆的面积与半径的比值不是一定的,不符合正比例的意义,所以圆的面积和半径不成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.5.判断题中两种量是否成比例:每袋面粉的质量一定,面粉的总质量和袋数.理由:.【答案】正比例,面粉的总质量÷面粉的袋数=每袋面粉的质量(一定).【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为面粉的总质量÷面粉的袋数=每袋面粉的质量(一定),符合正比例的意义,所以每袋面粉的质量一定,面粉的总质量和袋数成正比例,点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.判断变化的量是否成正比例,说明理由.一个因数一定,积和另一个数因数.【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为积:另一个因数=一个因数(一定),是积和另一个因数对应的比值一定,所以积和另一个因数成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.判断两种量成什么比例,并说明理由:x=8y,x与y.【答案】成正比【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:成正比例;因为x=8y,x÷y=8(一定),x与y成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.8.先观察下表,再判断正方形周长和边长成正比例吗?为什么?正方形面积和边长成正比例吗?为什么?【答案】成正比例;不成正比例【解析】(1)判断正方形的周长和边长是否成正比例,就看它们是不是比值一定,若比值一定,则成,否则,就不成;(2)判断正方形的面积和边长是否成正比例,就看它们是不是比值一定,若比值一定,则成,否则,就不成.解:(1)因为===…==4(一定),是正方形的周长和边长相对应的两个数的比值一定,符合成正比例的意义,所以正方形的周长和边长成正比例;(2)≠…(不一定);是正方形的面积和边长相对应的两个数的比值不一定,不符合成正比例的意义,所以正方形的面积和边长不成正比例.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.9.买笔记本的数量和钱数的关系如下表:(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)哪个量没变?数量和总价之间成什么比例?(3)从图中可以看出,如果买9本笔记本,需要多少元钱?【答案】单价不变,数量与总价之间成正比例,需要13.5元.【解析】①每本的价格是1.5元,由此可以完成上表,从而完成统计图;②根据数量和总价之间的变化关系得出数量与总价成正比例的特点;③代入数据即可计算得出.解:(1)根据题意可得,每本的价格为1.5元,由此可完成下表:根据表格中数据可在右图中描点连线,得出统计图如右图:(2)单价没有变,数量与总价之间成正比例.(3)9×1.5=13.5(元),答:单价不变,数量与总价之间成正比例,如果买9本笔记本,需要13.5元.点评:此题考查了绘制折线统计图的方法,以及成正比例关系的量的特点.10.一辆汽车每时行90千米.(1)填下表:时间/时123456(3)时间和路成什么比例?为什么?(4)利用图象估计一下,2.5时行多少千米?行400千米大约需要多长时间?成正比例;225千米.4.5小时.【解析】(1)根据速度×时间=路程,列式计算;(2)根据统计表中的数据,先在图中描出时间和路程所对应的点,再把它们按顺序连起来即可;(3)因为汽车在公路上行驶的速度一定,是路程和时间的比值一定,所以时间和路程成正比例;(4)图象是一条经过原点的直线,从图象中可看出汽车2.5小时行(180+45)千米;行驶400千米用(4+0.5)小时.解:(1)90×2=180(千米),90×3=270(千米),90×4=360(千米),90×5=450(千米),90×6=540(千米);(2)根据数据边线后如下图:(3)时间和路程成正比例;因为汽车在公路上行驶的速度一定,是路程和时间的比值一定,所以时间和路程成正比例.(4)看图象可知,2.5小时行的千米数:180+90÷2,=180+45,=225(千米);行400千米的时间:4+1÷2,=4+0.5,=4.5(小时);答:2.5小时行驶225千米.行400千米大约需要4.5小时.点评:此题考查根据统计表中的信息,绘制成正比例关系的两种量的图象,再根据观察图象得出汽车4.5小时行的千米数和行驶440千米用的时间.11.题中的两个量成不成比例?成什么比例?每块地砖的面积一定,地砖的块数和铺地的面积..【答案】正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:用同样大小的地砖铺地,铺地面积÷地砖的块数=每块地砖的面积(一定),即地砖的块数和铺地面积的比值一定,所以地砖的块数和铺地的面积成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.12.题中的两个量成不成比例?成什么比例?工作时间一定,加工每个零件所用时间和加工零件的个数..【答案】反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为加工零件的个数×加工一个零件所用的时间=工作时间(一定),符合反比例的意义,所以加工零件的个数和加工一个零件所用的时间成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.13.汽车行驶的时间和路程如下表.(1)完成表格,路程与时间成比例;(2)在图中描出表示路程和相应时间的点,然后把它们按顺序连起来.并估计一下行驶150km大约要用小时.【答案】(1)180,4,300,6.正比例.(2)2.5小时.【解析】(1)因为=60,=60,60是一定的数,代表速度,速度(一定),所以路程和时间成正比例,设要填的数为x,列出比例,求出x的值即可,同样求出其它要填的数;(2)时间:1小时,路程60千米;时间:2小时,路程120千米;时间:3小时,路程180千米;时间:4小时,路程240千米;时间:5小时,路程300千米;时间:6小时,路程360千米,描出表示路程和相应时间的点,然后把它们按顺序连起来.速度(一定),所以路程和时间成正比例,设行150千米用x小时,列并解比例即可.解:(1)因为=60,=60,因为60是一定的数,代表速度,速度(一定),所以路程和时间成正比例.设要填的数为x,=,x=180;答:3小时行180千米;设要填的数为y,=,60y=240,60y÷60=240÷60,y=4;答:行240千米需要4小时;设要填的数为a,=,a=300;答:5小时行300千米;设要填的数为b,=,60b=360,60b÷60=360÷60,b=6.答:行360千米需要6小时.(2)时间:1小时,路程60千米;时间:2小时,路程120千米;时间:3小时,路程180千米;时间:4小时,路程240千米;时间:5小时,路程300千米;时间:6小时,路程360千米,描出表示路程和相应时间的点,然后把它们按顺序连起来.因为速度一定,路程和时间成正比例,设大约要用x小时,=,60x=150,60x÷60=150÷60,x=2.5.答:大约要用2.5小时.点评:此题考查正比例的意义,即相关联的两个量,如果比值一定,这两个量成正比例关系.14.表中是普通客车硬座票价表.车票价格和所行里程成不成比例?为什么?里程(千米)票价(元)【答案】不成比例.【解析】判断两种相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:根据表格中的数据可以看出:车票价格和所行里程之间,既不是对应的乘积一定,它们的比值也不是定值,所以车票价格和所行里程不成比例.答:车票价格和所行里程不成比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,如果对应的比值和乘积都不一定时,这两个量不成比例.15.(2011•铁山港区模拟)直角三角形的两个锐角大小成反比例..【答案】×.【解析】判断直角三角形的两个锐角大小是否成反比例,就看它们是不是对应的乘积一定,若乘积一定,则成,否则,就不成.解:直角三角形的一个锐角度数+另一个锐角度数=90°(一定),是它们对应的“和”一定,不是乘积一定,所以直角三角形的两个锐角大小不成反比例;点评:本题考查成正、反比例的知识,判断时,就看两种量是对应的比值一定,是对应的乘积一定,还是其他的量一定,再做出解答.16.(2012•邗江区模拟)一辆汽车在高速公路上行驶的路程和时间如下表:(1)根据表中数据,在下图中描出时间和路程所对应的点,再把它们按顺序连起来.(2)是一定的量,时间和路程成比例.(3)根据图象判断5.5小时行千米.(4)甲、乙两地相距1375千米,照此速度需要行小时.【答案】(2)根据正比例的意义,速度一定(即比值一定),时间和路程成正比例;(3)110×5.5=605(千米);(4)1375÷110=12.5(小时);(2)速度、正;(3)605;(4)12.5.【解析】根据题意,速度一定,时间和路程成正比例;然后根据速度、时间、路程之间的关系列式解答.解:点评:此题考查了:折线统计图的绘制方法;成比例的量的判断;及根据时间、速度、路程三者之间的关系,解决实际问题.17.工作时间一定,完成每个零件所用的时间与完成零件的个数成反比例..【答案】正确.【解析】判断完成每个零件所用的时间与完成零件的个数是否成反比例,就看这两种量是否是对应的乘积一定,如果是乘积一定,就成反比例,如果不是乘积一定或乘积不一定,就不成反比例.据此进行判断.解:因为完成每个零件所用的时间×完成零件的个数=总工作时间(一定),是对应的乘积一定,所以完成每个零件所用的时间与完成零件的个数成反比例;点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出判断.18.一幅地图的比例尺是,则在这幅地图上和成正比例.【答案】图上距离,实际距离.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:图上距离:实际距离=比例尺(一定),所以图上距离进而实际距离成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.19.要行的总路程一定,已经走过的路程和剩下的路程比例.【答案】不成.【解析】判断已经走过的路程和剩下的路程是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:已经走过的路程+剩下的路程=总路程(一定),也就是已经走过的路程和剩下的路程的和一定,既不是乘积一定,也不是商一定,不符合正、反比例的意义,所以已经走过的路程和剩下的路程既不成反比例又不成正比例.点评:此题考查用正反比例的意义辨识成正比例的量与成反比例的量,关键是明确变量与定量之间的等量关系式.20.大米的总质量一定,卖出大米的质量和剩下大米的质量..【答案】不成比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:卖出大米的质量+剩下大米的质量=大米的总质量(一定),是和一定,所以大米的总质量一定,卖出大米的质量和剩下大米的质量不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.21.被减数一定,减数和差成比例.(在横线里写上“正”“反”“不成”)【答案】不成.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:减数+差=被减数(一定),是和一定,不是比值或乘积一定,所以不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.22.互成倒数的两个数..【答案】反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为乘积是1的两个数,叫做互为倒数,即互成倒数的两个数的乘积是1,即乘积一定,所以互成倒数的两个数成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.23.判断是否成比例,成什么比例:长方形的宽一定,它的面积和长..【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为长方形的面积=长×宽,所以长方形的面积÷长=宽(一定),即长方形的面积与长的比值一定,符合正比例的意义,所以一个长方形的宽一定,它的面积和长成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.24.三(1)班的出勤率一定,全班人数和出勤人数.÷=因为和的一定,所以和正比例.【答案】正比例,出勤人数,全班人数,出勤率,出勤人数,全班人数,比值,出勤人数,全班人数.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为出勤人数÷全班人数=出勤率(一定),即出勤人数和全班人数的比值一定,所以全班人数和出勤人数成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.25.根据规律判断比例关系,并填空.X与Y.A.成正比例B.成反比例.【答案】B.X与Y成反比例;【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为3×4=5×2.4=12,即y和x的乘积一定,所以x和y成反比例;12÷2=6,12÷12=1,12÷10=1.2;X 2 3 5 1 10 …Y 6 4 2.4 12 1.2 …点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.26.正比例研究的是两种的量,一种量扩大,另一种量也随着;一种量缩小,另一种量也随着.它们扩大、缩小的规律是这两种相关联的量中的两个数的一定.【答案】相关联,扩大,缩小,相对应,比值.【解析】根据课本上给出的正比例的意义直接填出即可.解:正比例的意义是:正比例研究的是两种相关联的量,一种量扩大,另一种量也随着扩大;一种量缩小,另一种量也随着缩小.它们扩大、缩小的规律是这两种相关联的量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.关系式是=k(一定).点评:此题考查正比例的意义.27.根据下表中的数据填空.王师傅加工一批零件的情况如下表:时间(小12345…①表中和是两种相关联的量,随着的变化而变化.②写出任意两组这两种量相对应的两个数的比:(:)和(:).它们的比值是,这两组比的比值.③表中相关联的两种量的关系是=,因为这两种量相对应的两个数的一定,所以它们成比例.【答案】时间,产量,产量,时间;25,1,50,2,相等,25,工作效率;比值,正.【解析】(1)根据表得出:表中时间和产量是两种相关联的量,产量随着时间的变化而变化.(2)写出任意两组这两种量相对应的两个数的比,再求出比值即可;(3)表中相关联的两种量的关系是=工作效率,因为这两种量相对应的两个数的比值一定,所以它们成正比例.解:(1)表中时间和产量是两种相关联的量,产量随着时间的变化而变化.(2)25:1和50:2,比值是25:1=25÷1=25,50:2=50÷2=25;(3)表中相关联的两种量的关系是=工作效率,因为这两种量相对应的两个数的比值一定,所以它们成正比例;点评:本题主要考查了正比例的意义.28.两种相关联的量在变化过程中总是不变的,这两种量就是成反比例的量.【答案】乘积.【解析】据成反比例的意义可得,成反比例的两个量在变化时的规律是它们的积不变,由此即可选择正确答案.解:两种相关联的量在变化过程中乘积总是不变的,这两种量就是成反比例的量;点评:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种就叫做成反比例的量,它们的关系就是反比例关系.29.已知工作效率×工作时间=工作总量①如果工作总量一定,工作效率和工作时间成比例.②如果工作效率一定,工作总量和工作时间成比例.【答案】反,正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:①因为工作效率×工作时间=工作总量,如果工作总量一定,工作效率和工作时间成反比例;②因为工作总量÷工作时间=工作效率,如果工作效率一定,工作总量和工作时间成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.30. Y=8÷X,X和Y 成比例关系;圆的周长与直径成比例关系.【答案】反,正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为Y=8÷X,则XY=8(一定),所以X和Y成反比例关系;因为圆的周长÷直径=π(一定),所以圆的周长与直径成正比例关系;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.31.在一定的时间里,每分钟生产的零件和生产零件的总个数成正比..(判断对错)【答案】√.【解析】判断生产的总个数和每分钟生产的个数是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:总个数÷每分钟生产的个数=时间(一定),也就是生产的总个数和每分钟生产的个数的商一定,符合正比例的意义,所以生产的总个数和每分钟生产的个数成正比例.点评:此题考查用正反比例的意义辨识成正比例的量与成反比例的量,关键是明确变量与定量之间的等量关系式.32.圆柱的高一定,圆柱的侧面积与底面直径成正比例..(判断对错)【答案】√.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆柱的侧面积÷πd=h,则:圆柱的侧面积÷d=πh,因为高一定,所以πh一定,即圆柱的高一定,圆柱的侧面积与底面直径成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.33.,则x和y 成比例.【答案】正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为,则x:y=6(一定),所以x和y成正比例;。
小学数学总复习专题讲解及训练正比例和反比例

正比例和反比例例1、(正比例的意义)一列火车行驶的时间和路程如下表。
这两种量有什么关系?分析与解:(1)从上表可以看出,表中有时间和路程两种量。
(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。
所以它们是两种相关联的量。
(3)路程和时间的比值始终不变,1120 = 120,2240 = 120,3360 = 120……这个比值就是火车的行驶速度。
通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:时间路程 = 速度(一定)。
具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。
点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:x y = K (一定)。
例2、(判断是否成正比例)练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么?分析与解:根据正比例的意义,看两个变量的比值是否一定,如果两个变量的比值一定,那么这两个变量就成正比例,反之,则不成正比例。
买练习本的数量和总价是两种相关联的量,它们与练习本的单价有下面的关系:数量买练习本的总价 = 练习本的单价(一定) 所以练习本的数量和总价成正比例。
例3、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?分析与解:圆的周长和直径成正比例,而圆的面积和半径却不成正比例。
圆的周长和直径的相对应的数的比值都是3.14,所以圆的周长和直径成正比例。
而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。
圆的周长和直径成正比例,圆的面积和半径却不成正比例。
六年级正比例和反比例比例练习题资料讲解

六年级正比例和反比例比例练习题一、 填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。
甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。
2. 某班男生人数与女生人数的比是43,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。
女生人数是总人数的比是( )。
3. 一本书,小明计划每天看72,这本书计划( )看完。
4. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)()(。
5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意义是( )。
6. 一个正方形的周长是58米,它的面积是( )平方米。
7. 89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
8. 甲数的32等于乙数的52,甲数与乙数的比是( )。
9. 把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。
10. 甲数比乙数多41,甲数与乙数比是( )。
乙数比甲数少)()(。
11. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的( )。
在4 :7 =48 :84中,4和84是比例的( ),7和48是比例的( )。
12. 4 :5 = 24÷( )= ( ) :1513. 一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的(—),水的重量占盐水的(—)。
图上距离3厘米表示实际距离180千米,这幅图的比例尺是( )。
一幅地图的比例尺是图上6厘米表示实际距离( )千米。
实际距离150千米在图上要画( )厘米。
14. 12的约数有( ),选择其中的四个约数,把它们组成一个比例是( )。
写出两个比值是8的比( )、( )。
15. 加工零件的总个数一定,每小时加工的零件个数的加工的时间( )比例;订数学书的本数与所需要的钱数( )比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数( )比例。
六年级下册正比例和反比例的意义练习题讲解学习

一、判断.1.一个因数不变,积与另一个因数成正比例.()2.长方形的长一定,宽和面积成正比例.()3.大米的总量一定,吃掉的和剩下的成反比例.()4.圆的半径和周长成正比例.()5.分数的分子一定,分数值和分母成反比例.()6.铺地面积一定,方砖的边长和所需块数成反比例.()7.铺地面积一定,方砖面积和所需块数成反比例.()8.除数一定,被除数和商成正比例.()二、填空.1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.()2.和一定,加数和另一个加数.()3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是().A.汽车每次运货吨数一定,运货次数和运货总吨数.B.汽车运货次数一定,每次运货的吨数和运货总吨数.C.汽车运货总吨数一定,每次运货的吨数和运货的次数.4、10Ⅹ=3Y ,那么X:Y=()如果3a=5b,那么a:b=()5、(1)长方形的_________________,它的长和面积成正比例。
(2)圆柱体体积一定,________________和高成反比例6、a÷b=c,当c一定时a和b();当a一定时b和c();当b一定时a和c()。
一、判断题:1、圆的面积和圆的半径成正比例。
()小学六年级下册正比例和反比例的意义练习题二一.填空,判断数量间的比例关系。
(1)比例尺一定,图上距离与实际距离____________。
(2)圆的面积一定,直径与圆周率_______________。
(3)比的前项一定,比的后项与比值_________________。
(4)时间一定,速度与路程____________。
(5)被减数一定,减数与差______________。
(6)圆锥体体积一定,底面积与高_____________。
(7) ab=c,当c一定时a和b();当a一定时b和c();当b一定时a和c()。
三.判断对错(1)正方体的表面积与体积成正比例。
正比例和反比例-常考题型练习

实际应用题型的常见陷阱与误区
单位不统一
在涉及不同单位的问题中,需要 注意单位是否统一,避免因为单
位不统一而导致的错误。
忽视实际情况
在解题过程中,需要注意实际情况 的限制条件,如物理定律、逻辑关 系等,避免得出不符合实际情况的 答案。
计算错误
在解题过程中,需要注意计算正确, 避免因为计算错误而导致答案错误。
答案解析
由于y与x成反比例,我们可以设y=k/x。将已知 条件代入得方程组:1/2=k/3和3=k/(1/2)。解 得k=3/2。因此,y关于x的函数解析式为 y=(3/2)/x。
高阶练习题及答案解析
题目
已知f(x)为一次函数,且 f[f(x)]=9x+5,求f(x)的解析式。
答案解析
设f(x)=kx+b(k≠0),则 f[f(x)]=k(kx+b)+b=k^2x+kb+b。 根据题意,有方程组:$k^2=9$ 和$kb+b=5$。解得k=3和b=2或 k=-3和b=-5。因此,f(x)的解析式 为f(x)=3x+2或f(x)=-3x-5。
80%
代数运算
在解题过程中,需要进行代数运 算,如乘法、除法、方程求解等 。
正反比例综合题型的常见陷阱与误区
混淆正反比例
在解题过程中,需要注意区分 正反比例,避免混淆。
忽视实际意义
在解题过程中,需要注意问题 的实际意义,避免得出不符合 实际情况的答案。
忽视单位换算
在解题过程中,需要注意单位 换算,避免出现单位不一致的 情况。
反比例的应用场景
总结词
反比例关系在日常生活和科学领域中有着广泛的应用,如物 理、化学、工程等。
正比例和反比例的习题答案

正比例和反比例的习题答案正比例和反比例是数学中常见的两种关系,它们在实际生活中也有广泛的应用。
本文将通过一些习题的解答,来探讨正比例和反比例的性质和应用。
1. 正比例关系的习题解答题目:某电子商务平台上,商品的价格与销量成正比。
若一种商品的价格为100元,销量为10件,求价格为200元时的销量。
解答:设价格为x元时的销量为y件。
根据正比例关系,可以得到等式:100/10 = x/y。
通过交叉相乘,可以得到等式:100y = 10x。
将x取200代入等式,得到200y = 2000。
解这个一元一次方程,可得y = 10。
因此,价格为200元时的销量为10件。
2. 反比例关系的习题解答题目:某工厂生产一种产品,每天需要10台机器运作8小时才能完成生产任务。
现在工厂决定每天增加2台机器,为了保持生产任务的完成时间不变,每天应该减少多少小时的工作时间?解答:设每天应该减少的工作时间为x小时。
根据反比例关系,可以得到等式:10 × 8 = (10 + 2) × (8 - x)。
解这个一元一次方程,可得x = 1。
因此,每天应该减少1小时的工作时间。
3. 正比例和反比例的应用正比例和反比例关系在实际生活中有许多应用。
例如,人均消费和人口数量之间的关系就是正比例关系。
当一个地区的人口增加时,人均消费也会相应增加。
另外,汽车行驶的速度和行驶时间之间的关系就是反比例关系。
当汽车的速度增加时,行驶时间会相应减少。
正比例和反比例关系还可以应用于图表的绘制和解读。
例如,绘制一条直线图来表示正比例关系,可以通过选择合适的比例尺和坐标轴来展示数据。
而对于反比例关系,可以绘制一个双曲线图来表示。
通过观察图表,我们可以更直观地理解和解读正比例和反比例的关系。
总结:正比例和反比例是数学中常见的两种关系,它们在实际生活中有广泛的应用。
通过解答一些习题,我们可以更好地理解和应用这两种关系。
同时,正比例和反比例关系也可以通过图表来表示和解读,使得我们对它们的性质和应用有更深入的认识。
小学生数学习题练习正比例和反比例关系

小学生数学习题练习正比例和反比例关系正比例和反比例关系是数学中的重要概念,对于小学生来说,掌握这些概念能够帮助他们更好地理解数学题目,提高解题能力。
本文将通过一些习题的练习,帮助小学生加深对正比和反比关系的理解和运用。
一、正比例关系练习1. 小明每天骑自行车上学的时间与他家离学校的距离成正比。
如果他每天骑自行车上学的时间是2小时,距离是8公里,那么骑行10公里需要多少时间?解答:设骑行10公里需要的时间为x小时。
根据正比例关系可得:2小时/8公里= x小时/10公里。
将等式两边的比例值相乘并解方程得:2/8 = x/10。
计算得到:x = 2.5小时。
所以骑行10公里需要2.5小时。
2. 某种水果按重量售卖,每50克售价为3元。
如果小明花了9元,他能买到多少克的水果?解答:设小明能买到的水果重量为x克。
根据正比例关系可得:50克/3元 = x克/9元。
将等式两边的比例值相乘并解方程得:50/3 = x/9。
计算得到:x = 150克。
所以小明能买到150克的水果。
二、反比例关系练习1. 小明开车从A城到B城的速度与他行驶的时间成反比。
如果小明以60公里/小时的速度开车,需要3小时到达B城,那么以75公里/小时的速度他需要多少小时到达B城?解答:设小明以75公里/小时的速度到达B城的时间为x小时。
根据反比例关系可得:60公里/小时 × 3小时 = 75公里/小时 × x小时。
将等式两边的乘积相等并解方程得:60 × 3 = 75 × x。
计算得到:x ≈ 2.4小时。
所以小明以75公里/小时的速度需要2.4小时到达B城。
2. 某个物体的质量和它所受的重力成反比。
如果质量为10千克时,受到的重力是100牛顿,那么质量为20千克时,受到的重力是多少牛顿?解答:设质量为20千克时受到的重力为x牛顿。
根据反比例关系可得:10千克/100牛顿 = 20千克/x牛顿。
将等式两边的比例值相乘并解方程得:10/100 = 20/x。
最新正比例反比例练习题讲解学习

正反比例练习题一、选择、填空。
1、如果3a=4b ,那么a∶b=( )。
A 、3∶4 B 、4∶3 C 、3a∶4b2、下面不成比例的是( )。
A 、正方形的周长和边长。
B 、某同学从家到学校的步行速度和所用时间。
C 、圆的体积和表面积。
3、下列各式中(a 、b 均不为0),a 和b 成反比例的是( )。
A 、a×8=b5B 、9a =6bC 、a×13 -1÷b= 0D 、 a +710 =b4、如果y=15x, x 和y 成( )比例;如果y=15/x, x 和y 成( )比例。
5、如果 Y = 8X ,X 和 Y 成( )比例;如果 Y = 8/X ,X 和 Y 成( )比例。
6、在A ÷1/3=B ÷4中,A 和B 成( )比例。
7、x=y 43,那么x:y=( ):( ) 8、在一个比例式中,两个外项的积是最小的质数,其中一个内项是3,另一个外项是( )。
9、相遇问题,时间一定,速度和路程成( )比例。
如果甲、乙两车的速度比是7:9,相遇时,甲、乙两车行过的路程比是( )。
10、货车的速度是客车的40%。
货、客两车同时从甲、乙两地相向而行,经过2小时相遇。
相遇时,货车与客车行过的路程的比是( ):( )。
11、如果x ÷y = 712 ×2,那么x 和y 成( )比例;如果x:4=5:y ,那么x 和y 成( )比例。
12、圆的半径与圆周长( )。
A 、成正比例B 、成反比例C 、不成比例D 、没有关系13、互为倒数的两个数,它们一定成( )。
A 、正比例B 、反比例C 、不成比例D 、无法判断14、小王的身高与体重成( )。
A 、正比例B 、反比例C 、不成比例D 、无法判断二、判断。
1、方砖的边长一定,要铺地面积和用砖块数成正比例( )2、用瓷砖铺地,要用的砖数一定,要铺地的平方米数和每平方米用砖的数量成正比例( )3、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例( )4、一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正反比例练习题一、选择、填空。
1、如果3a=4b ,那么a∶b=( )。
A 、3∶4 B 、4∶3 C 、3a∶4b2、下面不成比例的是( )。
A 、正方形的周长和边长。
B 、某同学从家到学校的步行速度和所用时间。
C 、圆的体积和表面积。
3、下列各式中(a 、b 均不为0),a 和b 成反比例的是( )。
A 、a×8=b5B 、9a =6bC 、a×13 -1÷b= 0D 、 a +710 =b4、如果y=15x, x 和y 成( )比例;如果y=15/x, x 和y 成( )比例。
5、如果 Y = 8X ,X 和 Y 成( )比例;如果 Y = 8/X ,X 和 Y 成( )比例。
6、在A ÷1/3=B ÷4中,A 和B 成( )比例。
7、x=y 43,那么x:y=( ):( ) 8、在一个比例式中,两个外项的积是最小的质数,其中一个内项是3,另一个外项是( )。
9、相遇问题,时间一定,速度和路程成( )比例。
如果甲、乙两车的速度比是7:9,相遇时,甲、乙两车行过的路程比是( )。
10、货车的速度是客车的40%。
货、客两车同时从甲、乙两地相向而行,经过2小时相遇。
相遇时,货车与客车行过的路程的比是( ):( )。
11、如果x ÷y = 712 ×2,那么x 和y 成( )比例;如果x:4=5:y ,那么x 和y 成( )比例。
12、圆的半径与圆周长( )。
A 、成正比例B 、成反比例C 、不成比例D 、没有关系13、互为倒数的两个数,它们一定成( )。
A 、正比例B 、反比例C 、不成比例D 、无法判断14、小王的身高与体重成( )。
A 、正比例B 、反比例C 、不成比例D 、无法判断二、判断。
1、方砖的边长一定,要铺地面积和用砖块数成正比例( )2、用瓷砖铺地,要用的砖数一定,要铺地的平方米数和每平方米用砖的数量成正比例( )3、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例( )4、一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。
( )5、梯形的面积一定,高和上下底的和成反比例( )6、圆的半径一定,圆的面积和兀不成比例( )7、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例( )8、南京到北京,所行驶的路程和速度不成比例( )9、出盐率一定,盐的重量和海水重量成正比例。
( )10、正方形的边长和面积成正比例。
( )一、 填空。
(38分)1、3:( )=( ):20=0.6=( )%2、23:415化为最简比是( ),比值是( ) 3、甲乙两数的比是4:5,甲数比乙数少()(),乙数比甲数多( )。
4、在一个比例式中,两个外项的积是最小的质数,其中一个内项是3,另一个外项是( )。
5、根据( )的基本性质可以得到2:3=10:15;根据( )的基本性质可以得到151032=;根据( )的基本性质可以把2:3=10:15写成2×15=3×10。
6、在同一个圆内,直径与半径的长度的比是( ),周长与直径的比( )。
7、把3:6=4.5:9改写成( )×( )=( )×( )。
8、把2197=X 改写成( )×( )=( )×( )。
9、6X=2×9改写成( ):( )=( ):( )。
10、x=y 43,那么x:y=( ):( )二、判断。
(12分)1、两个比可以组成比例。
( )2、含有未知数的比例是方程。
( )3、在比例里两内项的积除以两外项的积,商是0。
( )4、求比例中的项,叫做解比例。
( )5、一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。
( )三、判断下面哪组中的两个比可以组成比例。
(1)7:5和8:6 (2)10:9和0.2:0.18(3)52:32和0.5:0.3 (4)181:93和0.6:0.1四、解比例:X :43=56 825:X=40 5.12.3=4X 0.4:12=X:41按照下面的条件列出比例,并且解比例。
(1)5和8的比等于40和X 的比; (2)X 和43 的比等于51和52的比。
五、1、用10以内的四个不同自然数组成比例,想想能写几个?2、一个比例里,第一个比的比值是0.6,两个外项的积是12,比例式是什么?3、写出12的所有约数,取出四个数组成比值最大的比例。
写出所有的比例。
4、在4,6,25这三个数中,再配上一个数组成比例,有几个数。
5、把下面的等式改写成比例。
(1)、4×10=8×5 (2)2.5×0.4=0.5×2⑴ 0.75×(4.8÷0.12) ⑵ (25-13)÷56⑶ 4.32 +310+ 0.68 +710⑷7511()()91824-⨯+一、填空题。
1.总价一定,购买算草本的本数和单价成( )比例。
2.工作效率一定,工作总量和工作时间成( )比例。
3.除数不变,被除数和商成( )比例。
4.汽车每千米耗油量一定,所行的路程和耗油总量成( )比例。
5.有120吨货物,每次运的吨数和运的次数成( )比例。
6.正方形的周长和边长成( )比例,正方形的面积和边长( )比例。
7.圆的周长与直径成( )比例。
8.时间一定,路程和速度成( )比例。
9.如果 ,则a 和b 成( )比例;如果 (a 、b 都不0),则a 和b 成( )比例.10.甲数的 等于乙数的 ,那么甲和乙数的比是( )∶( ).11.根据a ×b =m ×n 写出两个比例:( )、( )12.在比例里,两个外项的积一定,两个内项( )比例。
13、8A=B ,那么A 和B ( )比例。
14.一个三角形的底是5厘米,它的面积和高( )比例。
二、判断题。
(对的在括号内打“√”,错的打“×”)1.4x =7y ,x 和y 成反比例。
( )2.减数一定,被减数和差成正比例。
( )3.长方形的周长是48米,它的长和宽成反比例。
( )4.圆的周长一定,直径和圆周率成反比例。
( )5. 路程和时间成正比例。
() 6. 两个比可以组成一个比例。
( )三、选择题。
(把正确答案的序号填在括号内)1.表示x 和y 成正比例关系的是( )。
A .x -y =4B .y +x =10C .x +y =24D .y = x2. ( )一定,所以铁丝的长度和铁丝的重量成正比例。
A .每米铁丝的重量B .每千克铁丝的长度C .总重量3.铺地面积一定,( )和用砖块数成反比例。
A .每块砖的边长B .每块砖的面积C .每块砖的周长4.6∶x =y ∶8,x 和y ( )。
A .成正比例B .成反比例C .不成比例5.5x =8y ,x 和y ( )。
A .成正比例B .成反比例C .不成比例6.甲与乙的工作效率比是6:5,两人合做一批零件共计880个,乙比甲少做( )。
A 、 480个B 、400个C 、80个D 、40个一、选择题。
1、圆的半径与面积( )。
A 、成正比例B 、成反比例C 、不成比例2、做一个零件的时间一定,做的零件个数与总时间。
( )A 、成正比例关系 B 、成反比例关系 C 、不成比例3、数一定,被减数与差。
( )A 、成正比例关系 B 、成反比例关系 C 、不成比例4、小明拿一些钱买铅笔,单价和购买的数量.( )A 、成正比例 B 、成反比例 C 、不成比例5、路程一定,车轮的直径与车轮转的圈数。
( )A 、成正比例关系 B 、成反比例关系 C 、不成比例6、小林做10道数学题,已做的题和没有做的题.( )A 、成正比例 B 、成反比例 C 、不成比例7、在比例里,两个外项的积一定,两个内项成( )。
A 、正比例B 、反比例C 、不成比例D 、无法判断8、互为倒数的两个数,它们一定成( )。
A 、正比例 B 、反比例 C 、不成比例 D 、无法判断9、小王的身高与体重成( )。
A 、正比例 B 、反比例 C 、不成比例 D 、无法判断10.全班人数一定,出勤人数和出勤率( )。
A .成正比例 B .成反比例 C .不成比例二、填空题。
1、已知A 、B 、C 三种量的关系是A ÷B=C ,如果A 一定,那么B 和C 成( )比例关系,如果C 一定,A 和B 成( )比例关系。
2、若8x=10y ,那么x 是y 的( ),x 、y 成( )比例关系。
3、长度一定的铁丝,平均分成若干段,每段的长度和截的段数成( )比例4、如果y=5x ,那么x 和y 成( )比例。
5、如果7x=8y ,那么x ∶y=( )∶( )6、如果a b =21,那么a 和b 成( )比例关系。
7、直圆柱的高一定,它的底面半径和体积成( )比例.8、、如果Y= X 4 ,X 和Y 成( )比例,Y= 4X ,X 和Y 成( )比例。
9、如果a b =21,那么a 和b 成( )比例关系。
10.如果6a=5b,那么a:b=_____: ____, a:5=____:____。
三、判断题。
1、正方形的边长和周长成正比例。
( )2、正方形的边长和面积成正比例。
( )3、a 是b 的5/7,数a 和数b 成正比例。
( )4、在比例里,如果两个内项的乘积是1,那么,组成比例外项的两个数一定互为倒数。
( )5、如果4a=3b,那么a ∶b=3∶4 。
( )6、圆的周长一定,直径和圆周率成反比例。
( )7、8A =B ,那么A 和B 成反比例。
( )8、8A =B ,那么A 和B 成反比例。
( ) 9、如果x 与y 成反比例,那么3 x 与y 也成反比例。
( )一、填空。
1、总时间一定,要制造的零件总数和制造每个零件所用的时间成( )比例.2、两个齿轮啮合转动时转速和齿数成( )比例..3、房间面积一定,每块地板砖的面积与用砖的块数成( )比例..4、汽车行驶时每公里的耗油量一定,所行驶的距离和耗油总量成( )比例..5、糖水的重量一定,糖的重量和水的重量成( )比例.6、大豆的出油率一定,大豆的数量和出油的数量成( )比例7、总是相等的两个量成( )比例.8、A 的32与B 的43相等,那么A ∶B =( )∶( ),它们的比值是( )。
9、如果,那么 .二、判断题: 1、工作总量一定,工作效率和工作时间成反比例。
( )2、两根同样长的钢筋,其中一根锯成3段用了12分钟,另一根要锯成6段,需要24分钟。
( ) 3、比例的两个内项互为倒数,那么它的两个外项也互为倒数。
( )4、圆的直径一定,它的周长和圆周率。
( )5、把一个比的前项和后项都扩大2倍 得到一个新的比,这两个比能组成比例。