2019年北京市海淀区初三二模数学试卷(含答案及解析)
2019学年北京市海淀区中考二模数学试卷【含答案及解析】

2019学年北京市海淀区中考二模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3119万册,其中古籍善本约有2000000册.2000000用科学记数法可以表示为()A. B. C. D.2. 若二次根式有意义,则的取值范围是()A. B. C. D.3. 我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为()4. 古时子时丑时寅时卯时今时23:00~1:001:00~3:003:00~5:005:00~7:00td5. 如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540°,则对应的是下列哪个图形()A.B.C.D.6. 如图,根据计算正方形ABCD的面积,可以说明下列哪个等式成立()A.B.C.D.7. 甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是A.甲的方差比乙的方差小B.甲的方差比乙的方差大C.甲的平均数比乙的平均数小D.甲的平均数比乙的平均数大8. 在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:()对于“想一想”中的问题,下列回答正确的是:A.根据“边边边”可知,△≌△,所以∠=∠B.根据“边角边”可知,△≌△,所以∠=∠C.根据“角边角”可知,△≌△,所以∠=∠D.根据“角角边”可知,△≌△,所以∠=∠9. 小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱()A.45元 B.50元 C.55元 D.60元二、填空题10. 如图,点A,B是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A,B两点间的距离为()A. B. C. D.三、选择题11. 如图所示,点Q表示蜜蜂,它从点P出发,按照着箭头所示的方向沿P→A→B→P→C→D→P的路径匀速飞行,此飞行路径是一个以直线l为对称轴的轴对称图形,在直线l上的点O处(点O与点P不重合)利用仪器测量了∠POQ的大小.设蜜蜂飞行时间为x,∠POQ的大小为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.四、填空题12. 将函数y=x2−2x+3写成的形式为.13. 点A,B是一个反比例函数图象上的两个不同点.已知点A(2,5),写出一个满足条件的B点的坐标是.14. 如图,四边形ABCD内接于⊙O,∠BCD=100°,AC平分∠BAD,则∠BAC的度数为.15. 如图,在一次测绘活动中,某同学站在点A观测放置于B,C两处的标志物,数据显示点B在点A南偏东75°方向20米处,点C在点A南偏西15°方向20米处,则点B与点C的距离为米.16. 如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线与点D,则的长为.17. 五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A的坐标为(7,5),则白子B的坐标为______________;为了不让白方获胜,此时黑方应该下在坐标为______________的位置处.五、计算题18. 计算:.六、解答题19. 解不等式,并把它的解集在数轴上表示出来.20. 如图,已知∠BAC=∠BCA,∠BAE=∠BCD=90°,BE=BD.求证:∠E=∠D.21. 已知,求代数式的值.22. 列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.七、计算题23. 已知关于的方程有两个实数根.(1)求实数的取值范围;(2)若a为正整数,求方程的根.八、解答题24. 已知,中,D是BC上的一点,且∠DAC=30°,过点D作ED⊥AD交AC于点E,,.(1)求证:AD=CD;(2)若tanB=3,求线段的长.25. 小明和小腾大学毕业后准备自主创业,开一个小店卖腊汁肉夹馍.为了使产品更好地适合大众口味,他们决定进行一次抽样调查.在某商场门口将自己制作的肉夹馍免费送给36人品尝,并请每个人填写了一份调查问卷,以调查这种肉夹馍的咸淡程度是否适中.调查问卷如下所示:经过调查,他们得到了如下36个数据:BCBADACDBCBCDCDCECCABEADECBCBCEDEDDC(1)小明用表格整理了上面的调查数据,写出表格中m和n的值;(2)小腾根据调查数据画出了条形统计图,请你补全这个统计图;(3)根据所调查的数据,你认为他们做的腊汁肉夹馍味道适中吗?(填“适中”或者“不适中”)26. 如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.27. 阅读下面材料:小明研究了这样一个问题:求使得等式成立的x的个数.小明发现,先将该等式转化为,再通过研究函数的图象与函数的图象(如图)的交点,使问题得到解决.(1)当k=1时,使得原等式成立的x的个数为_______;(2)当0<k<1时,使得原等式成立的x的个数为_______;(3)当k>1时,使得原等式成立的x的个数为_______.参考小明思考问题的方法,解决问题:关于x的不等式只有一个整数解,求的取值范围.28. 在平面直角坐标系xOy中,抛物线与轴交于点A(0,3),与轴交于点B,C(点B在点C左侧).(1)求该抛物线的表达式及点B,C的坐标;(2)抛物线的对称轴与轴交于点D,若直线经过点D和点E,求直线DE的表达式;(3)在(2)的条件下,已知点P(,0),过点P作垂直于轴的直线交抛物线于点M,交直线DE于点N,若点M和点N中至少有一个点在轴下方,直接写出的取值范围.29. 如图1,在中,AB=AC,∠ABC =,D是BC边上一点,以AD为边作,使AE=AD,+=180°.(1)直接写出∠ADE的度数(用含的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.30. 如图1,在平面直角坐标系内,已知点,,,,记线段为,线段为,点是坐标系内一点.给出如下定义:若存在过点的直线l 与,都有公共点,则称点是联络点.例如,点是联络点.(1)以下各点中,__________________是联络点(填出所有正确的序号);①;②;③.(2)直接在图1中画出所有联络点所组成的区域,用阴影部分表示;(3)已知点M在y轴上,以M为圆心,r为半径画圆,⊙M上只有一个点为联络点,①若,求点M的纵坐标;②求r的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。
北京市海淀区2019年中考数学模拟试卷(二)含答案解析

北京市海淀区普通中学2019年中考数学模拟试卷(二)(1月份)(解析版)一.选择题1.如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣C.D.22.长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米3.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米4.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF5.图中∠BOD的度数是()A.75°B.80°C.135°D.150°6.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B. C.D.8.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱二.填空题9.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.10.汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h 的汽车前方80m处,发现停放一辆故障车,此时刹车有危险.11.如下图,直线a∥b,则∠A=度.12.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为.三.解答题13.计算:.14.化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.15.解方程:.16.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.XX电脑公司电脑单价单位(元)A型:6000B型:4000C型:2500D型:5000E型:2000(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?2019年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)参考答案与试题解析一.选择题1.如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣C.D.2【考点】倒数.【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵a与﹣2互为倒数,∴a是﹣.故选:B.【点评】本题考查了倒数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.是基础题,熟记概念是解题的关键.2.长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定a×10n (1≤|a|<10,n为整数)中n的值是易错点;有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:6700 010=6.70001×106≈6.7×106,故选B.【点评】本题考查了对科学记数法的掌握和有效数字的运用.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.3.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似【解答】解:据相同时刻的物高与影长成比例,设旗杆的高度为xm,则可列比例式,,解得x=30.故选C.【点评】本题考查同学们利用所学知识解决实际问题的能力,属于基础题.4.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【考点】勾股定理;勾股定理的逆定理.【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.5.图中∠BOD的度数是()A.75°B.80°C.135°D.150°【考点】圆周角定理.【分析】连接OC,根据圆周角定理求解即可.【解答】解:连接OC,由圆周角定理知,∠BOD=2(∠A+∠E)=2×(35°+40°)=150°,故选D.【点评】本题利用了圆周角定理求解.6.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个【考点】函数的图象.【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选C.【点评】主要考查了函数图象的读图能力.7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B. C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱【考点】圆心角、弧、弦的关系.【分析】设需要x箱马赛克片,由题意:×34=125x,解方程即可.【解答】解:设需要x箱马赛克片.由题意:×34=125x,∴x≈6.5.∴需要马赛克片6﹣7箱.故选B.【点评】本题考查圆心角、弧弦之间的关系,一元一次方程等知识,解题的关键是学会设未知数列方程解决问题,属于中考常考题型.二.填空题9.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【考点】平方差公式的几何背景.【分析】左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b),根据面积相等即可解答.【解答】解:a2﹣b2=(a+b)(a﹣b).【点评】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.10.汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h 的汽车前方80m处,发现停放一辆故障车,此时刹车会有危险.【考点】二次函数的应用.【分析】把v值代入解析式求出S,即刹车距离,和80进行比较即可.【解答】解:把v=100代入S=v2得:汽车刹车距离s=100>80,因此会有危险.故答案为:会.【点评】本题利用求二次函数的值,判断实际问题.11.如下图,直线a∥b,则∠A=25度.【考点】三角形的外角性质;平行线的性质;三角形内角和定理.【分析】本题主要利用平行线的性质以及三角形内角与外角之间的关系解题.【解答】解:∵直线a∥b,∴∠1=∠ECD=55°,∵∠1是△ABD的外角,∴∠1=∠ABD+∠A,即55°=30°+∠A,∠A=55°﹣30°=25°.故∠A=25°.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的外角等于与它不相邻的两个内角的和.12.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为7.【考点】翻折变换(折叠问题).【分析】由平行四边形可得对边相等,由折叠,可得AE=EF,AB=BF,结合两个三角形的周长,通过列方程可求得FC的长,本题可解.【解答】解:设DF=x,FC=y,∵▱ABCD,∴AD=BC,CD=AB,∵BE为折痕,∴AE=EF,AB=BF,∵△FDE的周长为8,△FCB的周长为22,∴BC=AD=8﹣x,AB=CD=x+y,∴y+x+y+8﹣x=22,解得y=7.故答案为7.【点评】本题考查了平行四边形的性质及图形的翻折问题;解决翻折问题的关键是找着相等的边,利用等量关系列出方程求得答案.三.解答题13.(2019•海淀区校级模拟)计算:.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、开方,然后计算乘法、除法,最后计算加法,求出算式的值是多少即可.【解答】解:=﹣8×+2÷(﹣)=﹣4+2÷=﹣4﹣2(2)=﹣4﹣12﹣6=﹣16﹣6【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.14.(2005•福州)化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.【考点】整式的混合运算—化简求值.【分析】本题应将代数式去括号,合并同类项,从而将整式化为最简形式,然后把a、b的值代入即可.【解答】解:(a+b)2﹣2a(b+1)﹣a2b÷b,=a2+2ab+b2﹣2ab﹣2a﹣a2b÷b,=b2﹣2a,当a=,b=2时,原式=22﹣2×=3.【点评】本题主要利用完全平方公式,单项式乘多项式的法则,单项式除单项式的法则,熟练掌握运算法则是化简的关键.15.(2007•溧水县一模)解方程:.【考点】解分式方程.【分析】观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母得:3(x﹣1)=5(x+1),(2分)3x﹣3=5x+5,3x﹣5x=5+3,(4分)﹣2x=8,(5分)x=﹣4.(6分)经检验:x=﹣4是原方程的解.故原方程的解是:x=﹣4.【点评】本题主要考查了分式方程的解法,解方程时要主要:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.16.(2005•浙江)一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.【考点】一元一次不等式组的应用.【分析】已知矩形的周长为2(x+10)cm,面积为10xcm2,列出不等式方程组即可解.【解答】解:矩形的周长是2(x+10)cm,面积是10xcm2,(2分)根据题意,得,(4分)解这个不等式组得.(2分)所以x的取值范围是10<x<30.(2分)【点评】解决问题的关键是读懂题意,找到关键描述语,根据矩形的周长<80cm,面积>100cm2列不等式组解答.17.(2019•海淀区校级模拟)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.【考点】作图-旋转变换.【分析】(1)画出梯形关于MN的轴对称图形即可;(2)再将梯形各点与点M的连线,并逆时针方向旋转180°,找到对应点,顺次连接画出这个梯形.【解答】解:如图:【点评】本题综合考查了轴对称图形,及旋转变换图形,注意在做这类题时,找对应点是关键.18.(2019•海淀区校级模拟)如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB 的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.【考点】切线的判定.【分析】连接OC,根据等腰三角形性质推出OC⊥AB,根据切线判定推出即可.【解答】证明:连接OC,∵OA=OB,C为AB中点,∴OC⊥AB,∵OC为半径,∴AB是⊙O的切线.【点评】本题考查了等腰三角形性质和切线的判定的应用,关键是推出OC⊥AB.19.(2019•海淀区校级模拟)已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.【考点】待定系数法求二次函数解析式;一次函数的性质.【分析】(1)设抛物线y=ax2+bx+c,把三点坐标代入二次函数解析式求出a,b,c的值,即可确定出二次函数解析式;(2)因为二次函数与直线有两个交点,根据函数图象的交点个数与它们组成的方程组的解的个数的关系,可以利用根的判别式解答.【解答】解:(1)设抛物线y=ax2+bx+c∵二次函数y=ax2+bx+c的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,∴,解得:.则这个二次函数的表达式为y=2x2﹣3x;(2)①当t=1时,直线y=x+t(t≤1)可化为y=x+1,代入二次函数解析式y=2x2﹣3x得,2x2﹣4x﹣1=0,△=(﹣4)2﹣4×2×(﹣1)=24>0,故直线与抛物线有两个不同的交点.②当直线与抛物线相切时t取得最小值,把y=x+t代入抛物线y=2x2﹣3x得,2x2﹣4x﹣t=0.△=(﹣4)2﹣4×2×(﹣t)=0,即t=﹣2,故t的取值范围是﹣2<t≤1.【点评】此题将用待定系数法求函数解析式、函数图象的交点个数与它们组成的方程组的解的个数的关系以及根的判别式结合起来,综合性较强,有一定的难度.20.(2019•海淀区校级模拟)某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.XX电脑公司电脑单价单位(元)A型:6000B型:4000C型:2500D型:5000E型:2000(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?【考点】列表法与树状图法;概率公式.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得A型号电脑被选中的情况,然后利用概率公式求解即可求得答案;(3)分别从选用方案AD时,与选用方案AE时,去分析求解即可求得答案.【解答】解:(1)列表如图:A B C甲乙D (D,A)(D,B)(D,C)E (E,A)(E,B)(E,C)有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得解得.所以希望中学购买了7台A型号电脑.【点评】本题考查的是用列表法或画树状图法求概率,同时考查了二元一次方程组的应用,综合性比较强.用到的知识点为:概率=所求情况数与总情况数之比.。
北京海淀区2019中考二模试题及解析—数学

北京海淀区2019中考二模试题及解析—数学数学2018.6下面各题均有四个选项,其中只有一个..是符合题意的、 1.-5的倒数是A 、15B 、15-C 、5-D 、52.2018年4月22日是第43个世界地球日,中国国土资源报社联合腾讯网发起“世界地球日”微话题,共有18891511人次参与了这次活动,将18891511用科学记数法表示〔保 留三个有效数字〕约为A.18.9⨯106B.0.189⨯108C.1.89⨯107D.18.8⨯1063.把2x 2−4x +2分解因式,结果正确的选项是A 、2(x −1)2B 、2x (x −2)C 、2(x 2−2x +1)D 、(2x −2)24.右图是由七个相同的小正方体堆砌而成的几何体, 那么这个几何体的俯视图是ABCD5、从1,-2,3这三个数中,随机抽取两个数相乘,积为正数的概率是A 、0B 、13C 、23D 、16.如图,在△ABC 中,∠C =90°,BC =3,D ,E 分别在AB 、AC 上,将△ADE 沿DE 翻折后,点A 落在点A ′处,假设A ′为CE 的中点,那么折痕DE 的长为8、如图,在梯形ABCD 中,AD //BC ,∠ABC =60°,AB =DC =2,AD =1, R 、P 分别是BC 、CD 边上的动点〔点R 、B 不重合,点P 、C 不重合〕,E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,那么以下 F E PBCD A图象中,能表示y与x的函数关系的图象大致是ABCD【二】填空题〔此题共16分,每题4分〕9.假设二次根式23-x有意义,那么x的取值范围是.10、假设一个多边形的内角和等于540︒11.如图,在平面直角坐标系xOy中,点A、B、C在双曲线xy6=上,BD⊥x轴于D,CE⊥y轴于E,点F在x轴上,且AO=AF,那么图中阴影部分的面积之和为.12的颗数与所得分数的对应关系如下表所示:按表中规律,当所得分数为71分时,那么挪动的珠子数为颗;当挪动颗珠子时〔n为大于1的整数〕,所得分数为〔用含n的代数式表示〕∵点A(2,0-)在一次函数图象上,∴022k=-+.∴k=1.……………………………………………………2分∴一次函数的解析式为2y x=+.…………………………………3分〔2〕ABC∠的度数为15︒或105︒、〔每解各1分〕……………………5分18、解:∵∠ADB=∠CBD=90︒,∴DE∥CB.∵BE∥CD,∴四边形BEDC是平行四边形.………1分∴BC=DE.在Rt△ABD中,由勾股定理得8AD===.………2分设DE x=,那么8EA x=-、∴8EB EA x==-、在Rt△BDE中,由勾股定理得222DE BD EB+=.∴22248x x+=-()、……………………………………………………3分∴3x=、∴3BC DE==、……………………………………………………4分xDECBA∴1116622.22ABD BDCABCD S S S BD AD BD BC ∆∆=+=⋅+⋅=+=四边形…………5分 【四】解答题〔此题共20分,第19题、第20题各5分,第21题6分,第22题4分〕 19、解:〔1〕甲图文社收费s 〔元〕与印制数t 〔张〕的函数关系式为0.11s t =.……1分〔2〕设在甲、乙两家图文社各印制了x 张、y 张宣传单,依题意得{1500,0.110.13179.x y x y +=+=…………………………………………2分 解得800,700.x y =⎧⎨=⎩………………………………………………3分答:在甲、乙两家图文社各印制了800张、700张宣传单.………………4分〔3〕乙.………………………………………………………5分20.〔1〕证明:连结OC .∴∠DOC =2∠A .…………1分 ∵∠D =90°2A -∠, ∴∠D +∠DOC =90° ∴∠OCD =90°.∵OC 是⊙O 的半径,∴直线CD 是⊙O 的切线.……………………………………………2分 〔2〕解:过点O 作OE ⊥BC 于E ,那么∠OEC =90︒.∵BC =4, ∴CE =12BC =2.∵BC //AO ,∴∠OCE =∠DOC .∵∠COE +∠OCE =90︒,∠D +∠DOC =90︒,∴∠COE =∠D .……………………………………………………3分 ∵tan D =12,∴tan COE ∠=12.∵∠OEC =90︒,CE =2, ∴4tan CEOE COE==∠. 在Rt △OEC 中,由勾股定理可得OC ==在Rt △ODC 中,由1tan 2OC D CD ==,得CD =,……………………4分由勾股定理可得10.OD =∴10.AD OA OD OC OD =+=+=…………………………………5分21、解:〔1〕(64)50%20+÷=.所以李老师一共调查了20名学生.…………………1分 〔2〕C 类女生有3名,D 类男生有1名;补充条形统计图略.说明:其中每空1分,条形统计图1分.……………………………………4分 〔3〕解法一:由题意画树形图如下:………………………5分从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=.………………6分 解法二:由题意列表如下:………………………5分由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=.………………6分 22.解:〔1〕画图如下:(答案不唯一)…………………………………2分〔2〕图3中△FGH 7a 4分【五】解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕 23.解:〔1〕∵抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点,∴210,(2)4(1)0.m m m ì-?ïïíïD =-+->ïî 由①得1m ¹,① ②…………………………………………1分由②得0m ¹,∴m 的取值范围是0m ¹且1m ¹、……………………………………………2分 〔2〕∵点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点,∴令0y =,即2(1)(2)10m x m x -+--=、 解得11x =-,211x m =-、 ∵1m >, ∴10 1.1m >>-- ∵点A 在点B 左侧,∴点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -.…………………………3分 ∴OA=1,OB =11m -、∵OA :OB =1:3, ∴131m =-.∴43m =、 ∴抛物线的解析式为212133y x x =--、………………………………………4分 〔3〕∵点C 是抛物线212133y x x =--与y 轴的交点, ∴点C 的坐标为(0,1)-. 依题意翻折后的图象如下图、 令7y =,即2121733x x --=、 解得16x =,24x =-、∴新图象经过点D (6,7) 当直线13y x b =+经过D 点时,可得5b =. 当直线13y x b =+经过C 点时,可得1b =-、当直线1(1)3y x b b =+<-与函数2121(33y x x x =-->的图象仅有一个公共点P (x 0,y 0)时,得20001121333x b x x +=--. 整理得2003330.x x b ---= 由2(3)4(33)12210b b D =----=+=,得74b =-、 结合图象可知,符合题意的b 的取值范围为15b -<≤或74b <-、……………7分 说明:15b -<≤〔2分〕,每边不等式正确各1分;74b <-〔1分〕24.解:〔1〕∵22222221212112()()4422y x x x mx m m x m mm m m m =-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -.……………………………1分〔2〕令2220x x m -=,解得10x =,2x m =.∵抛物线xx my 222-=与x 轴负半轴交于点A , ∴A (m ,0),且m <0.…………………………………………………2分∴DF =1.2BC由抛物线的对称性得AC=OC . ∴AF :AO =3:4. ∵DF //EO ,∴△AFD ∽△AOE . ∴.FDAF OE AO= 由E (0,2),B 11(,)22m m -,得OE =2,DF =14m -.∴134.24m -= ∴m =-6.∴抛物线的解析式为2123y x x=--.………………………………………3分 〔3〕依题意,得A 〔-6,0〕、B (-3,3)、C (-3,0).可得直线OB 的解析式为x y -=,直线BC 为3x =-.作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO 于M ,那么M 即为所求.由A 〔-6,0〕,C '(0,3),可得直线AC '的解析式为321+=x y . 由13,2y x y x⎧=+⎪⎨⎪=-⎩解得2,2.x y =-⎧⎨=⎩ ∴点M 的坐标为(-2,2).……………4分 由点P 在抛物线2123y x x =--上,设P (t ,213t -(ⅰ)当AM 为所求平行四边形的一边时.如右图,过M 作MG ⊥x 轴于G , 过P 1作P 1H ⊥BC 于H , 那么x G =x M =-2,x H =x B =-3.由四边形AMP 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H =AG =4.∴t -(-3)=4. ∴t =1. ∴17(1,)3P -.……………………5分如右图,同 方法可得P 2H=AG =4. ∴-3-t =4. ∴t =-7. ∴27(7,)3P --.……………………6分(ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥x 轴于G , 那么x H =x B =-3,x G =3P x =t .由四边形AP 3MQ 3为平行四边形, 可证△AP 3G ≌△MQ 3H . 可得AG =MH =1. ∴t -(-6)=1. ∴t =-5. ∴35(5,)3P -.……………………………………………………7分 综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P -. 25.解:〔1〕BN 与NE 的位置关系是BN ⊥NE ;CE BM=2.证明:如图,过点E 作EG ⊥AF 于G ,那么∠EGN =90°、∵矩形ABCD 中,AB =BC , ∴矩形ABCD 为正方形.∴AB=AD =CD ,∠A =∠ADC =∠DCB =90°、∴EG//CD ,∠EGN =∠A ,∠CDF =90°、………………………………1分 ∵E 为CF 的中点,EG//CD ,∴GF =DG =11.22DF CD = ∴1.2GE CD = ∵N 为MD (AD )的中点,321GFEA (M )CD NB∴AN =ND =11.22AD CD ∴GE =AN ,NG=ND+DG=ND+AN=AD=AB .……………………………2分∴△NGE ≌△BAN 、 ∴∠1=∠2.∵∠2+∠3=90°, ∴∠1+∠3=90°、 ∴∠BNE =90°.∴BN ⊥NE 、……………………………………………………………3分 ∵∠CDF =90°,CD =DF , 可得∠F =∠FCD =45°,CFCD=.于是12CFCE CE CE BM BA CD CD ====……………………………………4分 〔2〕在〔1〕中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H 、∵四边形ABCD 是矩形,∴AB ∥CG 、∴∠MBN =∠DGN ,∠BMN =∠GDN . ∵N 为MD 的中点,∴MN =DN 、∴△BMN ≌△GDN 、∴MB =DG ,BN =GN . ∵BN =NE , ∴BN =NE =GN .∴∠BEG =90°、………………5分 ∵EH ⊥CE , ∴∠CEH =90°、 ∴∠BEG =∠CEH 、 ∴∠BEC =∠GEH 、由〔1〕得∠DCF =45°、 ∴∠CHE =∠HCE =45°、 ∴EC=EH ,∠EHG =135°、∵∠ECB =∠DCB +∠HCE =135°, ∴∠ECB =∠EHG 、 ∴△ECB ≌△EHG 、 ∴EB =EG ,CB =HG 、 ∵BN =NG ,∴BN ⊥NE.…6分∵BM=DG=HG -HD=BC -HD=CD -CE ,HGA BC DEM N F∴.…7分BM.……8分〔3〕BN⊥NE;BM。
北京海淀区2019年初三中考二模数学试卷(含答案)

(1)补全的图形如图所示:
A
D
E
P
Q
B
C
(作等弧交于两点 P,Q 点 1 分,直线 PQ 1 分) (2)QC
到线段两端点距离相等的点在线段的垂直平分线上 等角的余角相等
九年级(数学)答案及评分参考 第 1 页(共 7 页)
20.(本小题满分 5 分)
解:(1)依题意可知, (2k 1)2 4(k 2 1) 5 4k ,
∵ 直线 l: y kx b 过 A,B 两点,
∴
b 3, 3k b 0.
解得
k 1, b 3.
∴ 直线 l 的解析式为 y x 3 .
(3)如图,
y
4
3A
2
1
当 a 0 时,
–2 –1 O 1 2 3 x –1 x = 1
当 a 3 时,抛物线 C 过点 B(1,0),此时 k 3 .
28 题,每小题 7 分)
17.(本小题满分 5 分)
解:原式= 4 2 1 2 2 (2- 2) 2
=3 2.
18.(本小题满分 5 分)
4x 8 2(x 1), ①
解:原不等式组为 x 10 3x.
②
2
解不等式①,得 x 3 .
解不等式②,得 x 2 .
∴原不等式组的解集为 x 2 .
19.(本小题满分 5 分)
∵ ACM 60 ,
M
∴△ADC 为等边三角形. ∴ DAC 60 . ∵C 为 AB 的中点,Q 为 BC 的中点, ∴AC=BC=2BQ.
D P
A
C
Q
B
∵BQ=CP,
∴AC=BC=CD =2CP.
∴AP 平分∠DAC.
2019年北京市海淀区中考数学第二次模拟试题及答案解析

最新北京市海淀区中考二模数学试卷一、单选题(共10小题)1.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为()A.1.96×105B.19.6×104C.1.96×106D.0.196×106考点:科学记数法和近似数、有效数字答案:A试题解析:科学记数法是把一个数表示成 a×的形式,其中1≤|a|<10,n为整数.所以196 000=1.96 .故本题选A.2.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.考点:轴对称与轴对称图形答案:C试题解析:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形。
所以是轴对称图形的是C图形。
故本题选C.3.下列计算正确的是()A.B.C.D.考点:幂的运算答案:C试题解析:故A错误;故B错误;故D错误。
故本题选C.4.如图,边长相等的正方形、正六边形的一边重合,则的度数为()A.20°B.25°C.30°D.35°考点:多边形及其性质答案:C试题解析:正六边形的内角为,正方形内角为,所以。
故本题选C.5.如图,数轴上有M,N,P,Q四个点,其中点P所表示的数为a,则数所对应的点可能是()A.M B.N C.P D.Q考点:实数的相关概念答案:A试题解析:因为点P所表示的数为a,在原点的右侧,则,数所对应的点应在原点左侧,且与原点距离是点P与原点距离的3倍,所以数所对应的点可能是点M。
故本题选A.6.在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:这10名学生所得分数的平均数是()A.86B.88C.90D.92考点:平均数、众数、中位数答案:B试题解析:这10名学生所得分数的平均数= .故本题选B7.如图,,,,为⊙上的点,于点,若,,则的长为()A.B.C.2D.4考点:垂径定理及推论答案:B试题解析:因为,所以,则,在中,OA=2,,则AE= ,AB=2.故本题选B.8.某通信公司自2016年2月1日起实行新的4G飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量200MB,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是()A.套餐1B.套餐2C.套餐3D.套餐4考点:统计图的分析答案:C试题解析:若选套餐1则每月付费=18+0.29 =85(元).若选套餐2则每月付费=28+0.29 =85.5(元).若选套餐3则每月付费=38+ =66.5(元).若选套餐4则每月付费=48+ =76.5(元).故选套餐3,本题选C.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.该打车方式采用阶梯收费标准.打车费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为20千米,则他的打车费用为()A.32元B.34元C.36元D.40元考点:一次函数的图像及其性质答案:B试题解析:当时,设,过点(12,18),(15,24),所以,解得,所以,当求得y=34。
北京市海淀区2019-2020学年中考数学二模考试卷含解析

北京市海淀区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知方程组2728x y x y +=⎧⎨+=⎩,那么x+y 的值( )A .-1B .1C .0D .52.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x 英寸(如图),下面所列方程正确的是( )A .(7+x )(5+x )×3=7×5B .(7+x )(5+x )=3×7×5C .(7+2x )(5+2x )×3=7×5 D .(7+2x )(5+2x )=3×7×5 3.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2a <0 4.下列运算正确的是( ) A .a 4+a 2=a 4B .(x 2y )3=x 6y 3C .(m ﹣n )2=m 2﹣n 2D .b 6÷b 2=b 35.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( ) A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯6.二次函数2y x =的对称轴是( ) A .直线y 1= B .直线x 1=C .y 轴D .x 轴7.要使分式337xx -有意义,则x 的取值范围是( ) A .x=73 B .x>73 C .x<73D .x≠738.解分式方程12x -﹣3=42x -时,去分母可得( )A .1﹣3(x ﹣2)=4B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=49.如果关于x的分式方程1311a xxx--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.910.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则ABECDESSVV的值为()A.23-B.233-C.233-D.23-11.下列四个命题中,真命题是()A.相等的圆心角所对的两条弦相等B.圆既是中心对称图形也是轴对称图形C.平分弦的直径一定垂直于这条弦D.相切两圆的圆心距等于这两圆的半径之和12.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )A.10 B.12 C.20 D.24二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.141x-有意义,则x的取值范围是_____15.若代数式5xx+有意义,则实数x的取值范围是____.16.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是________.17.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.18.如图,Rt△ABC中,∠ACB=90°,D为AB的中点,F为CD上一点,且CF=13CD,过点B作BE∥DC交AF的延长线于点E,BE=12,则AB的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.20.(6分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.21.(6分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?22.(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.23.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:OC OP PD AP;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.24.(10分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.25.(10分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?26.(12分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8 8 12小刚12 10 16(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?27.(12分)计算:﹣16+(﹣12)﹣2﹣32|+2tan60°参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【详解】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D2.D【解析】试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.3.B【解析】试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.故选B.考点:实数与数轴.4.B【解析】分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;根据同底数幂的除法,可知b6÷b2=b4,不正确.故选B.点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.5.C【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.考点:用科学计数法计数6.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).7.D【解析】【分析】本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.【详解】∵3x−7≠0,∴x≠73.故选D.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.8.B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 9.D【解析】解:2()43412a x xxx①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即72x=-,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x ﹣4=1﹣x ,即52x =-,符合题意; 把a=0代入整式方程得:﹣3x ﹣3=1﹣x ,即x=﹣2,不合题意; 把a=1代入整式方程得:﹣3x ﹣2=1﹣x ,即32x =-,符合题意; 把a=2代入整式方程得:﹣3x ﹣1=1﹣x ,即x=1,不合题意; 把a=3代入整式方程得:﹣3x=1﹣x ,即12x =-,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x ,即x=0,不合题意,∴符合条件的整数a 取值为﹣3;﹣1;1;3,之积为1.故选D . 10.C 【解析】 【分析】过点A 作AF ⊥DE 于F ,根据角平分线上的点到角的两边距离相等可得AF=AB ,利用全等三角形的判定和性质以及矩形的性质解答即可. 【详解】解:如图,过点A 作AF ⊥DE 于F ,在矩形ABCD 中,AB =CD , ∵AE 平分∠BED , ∴AF =AB , ∵BC =2AB , ∴BC =2AF , ∴∠ADF =30°, 在△AFD 与△DCE 中 ∵∠C=∠AFD=90°, ∠ADF=∠DEC, AF=DC,,∴△AFD ≌△DCE (AAS ), ∴△CDE 的面积=△AFD 的面积=2113AF DF AF 3AF AB 222⨯== ∵矩形ABCD 的面积=AB•BC =2AB 2,∴2△ABE 的面积=矩形ABCD 的面积﹣2△CDE 的面积=(2)AB 2,∴△ABE的面积=(222AB ,∴ABECDES S ==V V故选:C . 【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB . 11.B 【解析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A 项错误; B. 圆既是中心对称图形也是轴对称图形,正确;C. 平分弦(不是直径)的直径一定垂直于这条弦,故C 选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D 错误. 故选B. 12.B 【解析】 【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度. 【详解】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大, 由图象可知:点P 从B 向C 运动时,BP 的最大值为5,即BC=5, 由于M 是曲线部分的最低点, ∴此时BP 最小,即BP ⊥AC ,BP=4, ∴由勾股定理可知:PC=3, 由于图象的曲线部分是轴对称图形, ∴PA=3, ∴AC=6,∴△ABC 的面积为:12×4×6=12.故选:B.【点睛】本题考查动点问题的函数图象,解题关键是注意结合图象求出BC与AC的长度,本题属于中等题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵竹竿的高度竹竿的影长=1.52.5旗杆的高度,旗杆的影长=30旗杆的高度,解得:旗杆的高度=1.52.5×30=1.故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.14.x≤1且x≠﹣1.【解析】根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.15.x≠﹣5.【解析】【分析】根据分母不为零分式有意义,可得答案.【详解】由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.16.8【解析】【分析】如图,连接OC,在在Rt△ACO中,由tan∠OAB=OCAC,求出AC即可解决问题.【详解】解:如图,连接OC.∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=OC AC,∴122AC ,∴AC=4,∴AB=2AC=8,故答案为8【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.17.1【解析】试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考点:一元二次方程的解.18.1.【解析】【分析】根据三角形的性质求解即可。
2019年北京市海淀区初三数学二模试卷答案

海淀区九年级第二学期期末练习数 学参考答案及评分标准 2019.6说明: 合理答案均可酌情给分,但不得超过原题分数 一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8 答案ADCBCDDC二、填空题(本题共16分,每小题4分)题号 9 10 11 12答案52(3)2y x =+-30°1014注:第12题答对一个给2分,答对两个给4分 三、解答题(本题共30分,每小题5分) 13.解:原式323=--+231+ …….……………………..4分 2=-.…….……………………..5分14.解:方程两边同时乘以(2)(2)x x +-方程可化为: 3(2)2(2)3(2)(2)x x x x x -++=+-,…….……………………..2分即 223624312x x x x -++=-. ∴ 4x =.…….……………………..4分经检验:4x =是原方程的解. ∴原方程的解是4x =.…….……………………..5分15. 证明:∵AE ⊥BC 于E , AF ⊥CD 于F ,∴90AEB AFD ∠=∠=︒, …….……………………..1分 ∵菱形ABCD ,∴AB =AD , B D ∠=∠.…….……………………..3分在Rt △EBA 和Rt △FDA 中, ,,.AEB AFD B D AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EBA ≌△FDA . …….……………………..4分 ∴AE =AF .…….……………………..5分16.解:∵2()(2)(2)x y x y y x ----=(2)(2)x y x y x y ---+ …….……………………..1分 (2)y x y =-,…….……………………..2分又∵32y x y +=, ∴32x y y -=.………………..3分将32x y y-=代入上式,得(2) 3.y x y -= ∴当32y x y+=时,代数式2()(2)(2)x y x y y x ----的值为3. …….……………………..5分17.解:(1)∵ 直线y x b =-+经过点(2,1)A ,∴ 12b =-+.…….……………………..1分 ∴ 3b =.…….……………………..2分(2)∵ M 是直线3y x =-+上异于A 的动点,且在第一象限内.∴ 设M (a ,3a -+),且03a <<. 由MN ⊥x 轴,AB x ⊥轴得,MN=3a -+,ON=a ,AB =1,2OB =. ∵ MON △的面积和AOB △的面积相等, ∴()1132122a a -+=⨯⨯.…….……………………..3分 解得:11a =,22a =(不合题意,舍).…….……………………..4分∴ M (1,2).…….……………………..5分18.解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8x -)辆. …….……………………..1分由题意得:290,100.4030(8)1020(8)x x x x +-⎧⎨+-⎩≥≥ …….……………………..3分 解得:56x ≤≤.…….……………………..4分即共有2种租车方案: 第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆. …….……………………..5分19.解:作DE //AC ,交BC 的延长线于点E ,作DF ⊥BE,垂足为F. …….……………………..1分∵AD //BC ,∴四边形ACED 为平行四边形.∴AD=CE=3,BE=BC+CE=8.…….……………………..2分∵AC ⊥BD , ∴DE ⊥BD.∴△BDE 为直角三角形 ,90.BDE ∠=︒ ∵∠DBC =30°,BE =8,∴4,4 3.DE BD == …….……………………..4分在直角三角形BDF 中∠DBC =30°, ∴23DF =.…….……………………..5分BADCEF y x b=-+B O A x yMN数学试卷20.(1)证明:连结OC .∵CD 是O ⊙的切线, ∴OC ⊥CD. ∴90OCM ∠=︒.…….……………………..1分∵//CD AB ,∴180OCM COA ∠+∠=︒. ∵AM ⊥CD, ∴90AMC ∠=︒.∴在四边形OAMC 中90OAM ∠=︒ .∵OA 为O ⊙的半径,∴AM 是O ⊙的切线 .…….……………………..2分(2)连结OC ,BC .∵CD 是O ⊙的切线, ∴OC ⊥CD . ∴90OCM ∠=︒. ∵AM ⊥CD , ∴90AMC ∠=︒. ∴//OC AM .∴12∠=∠.∵OA= OC ,∴32∠=∠. 即BAC CAM ∠=∠.…….……………………..3分易知90ACB ∠=︒, ∴BAC CAM △∽△.…….……………………..4分∴AB ACAC AM=. 即224AC AB AM =⋅=. ∴26AC =.…….……………………..5分 21.解:(1)800,400,40; …….……………………..3分 (2)2019,1800.…….……………………..5分注:本题一空一分22.解:(1)如图,当C 、D 是边AO ,OB 的中点时,点E 、F 都在边AB 上,且CF AB ⊥. ∵OA =OB =8, ∴OC =AC=OD=4. ∵90AOB ∠=︒,∴42CD =.…….……………………..1分ACO DBFEDBMAOC1图2图OABDMC123在Rt ACF △中, ∵45A ∠=︒,∴22CF =.∴422216CDEF S =⨯=矩形.…….……………………..2分(2)设,CD x CF y ==.过F 作FH AO ⊥于H . 在Rt COD △中,∵4tan 3CDO ∠=, ∴43sin ,cos 55CDO CDO ∠=∠=.∴45CO x =.…….……………………..3分∵90FCH OCD ∠+∠=︒, ∴FCH CDO ∠=∠. ∴3cos .5HC y FCH y =⋅∠=∴2245FH CF CH y =-=. ∵AHF △是等腰直角三角形, ∴45AH FH y ==. ∴AO AH HC CO =++. ∴74855y x +=. ∴1(404)7y x =-.…….……………………..4分易知2214(404)[(5)25]77CDEF S xy x x x ==-=---矩形,∴当5x =时,矩形CDEF 面积的最大值为1007. …….……………………..5分 23.解:(1)由题意可知,∵(32)4(3)90m m m ∆=---=>错误!未找到引用源。
北京市海淀区2019-2020学年第二次中考模拟考试数学试卷含解析

北京市海淀区2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图是一个几何体的三视图,则这个几何体是( )A .B .C .D .2.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70°3.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF V V ,那么S EAFS EBCV V 的值是( )A .12B .13C .14D .194.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为( )A .(32,0) B .(2,0) C .(52,0) D .(3,0)5.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为26.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( ) A .1种B .2种C .3种D .4种7.如图,O e 是ABC V 的外接圆,已知ABO 50o ∠=,则ACB ∠的大小为( )A .40oB .30oC .45oD .50o8.如图,已知△ABC ,△DCE ,△FEG ,△HGI 是4个全等的等腰三角形,底边BC ,CE ,EG ,GI 在同一直线上,且AB=2,BC=1.连接AI ,交FG 于点Q ,则QI=( )A .1B .61C 66D .439.如图,将Rt ∆ABC 绕直角项点C 顺时针旋转90°,得到∆A' B'C ,连接AA',若∠1=20°,则∠B 的度数是( )A .70°B .65°C .60°D .55°10.在平面直角坐标系中,点(-1,-2)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限11.下列方程中,两根之和为2的是( ) A .x 2+2x ﹣3=0B .x 2﹣2x ﹣3=0C .x 2﹣2x+3=0D .4x 2﹣2x ﹣3=012.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π- C .32π-D .3π-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB 为圆O 的直径,弦CD ⊥AB ,垂足为点E ,连接OC ,若OC =5,CD =8,则AE =______.14.抛物线y =x 2﹣4x+2m与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是______.15.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.16.使分式的值为0,这时x=_____.1782=_______________.18.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D 两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:x23x1x1x1-⎛⎫÷+-⎪--⎝⎭,其中x=3-1.20.(6分)定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;(2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为32时n的值.21.(6分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30 60 81 50 40 110 130 146 90 10060 81 120 140 70 81 10 20 100 81整理数据:课外阅读平均时间0≤x<40 40≤x<80 80≤x<120 120≤x<160x(min)等级 D C B A人数 3 a 8 b分析数据:平均数中位数众数80 m n请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?22.(8分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=3,AD=1,求DB的长.23.(8分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),2,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.24.(10分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.A B C笔试85 95 90口试80 85(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为,B同学得票数为,C同学得票数为;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断当选.(从A、B、C、选择一个填空)25.(10分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.26.(12分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 °; (2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率. 27.(12分)先化简,再求值:()()()2111x x xx +-+-,其中2x =-.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B . 考点:由三视图判断几何体. 2.A 【解析】 【详解】∵AB ∥CD ,∠A=70°, ∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°, ∴∠E=∠1﹣∠C=70°﹣40°=30°. 故选A . 3.D 【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.4.C【解析】【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.A【解析】【分析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.6.B【解析】【分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解. 【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.7.A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A.8.D【解析】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴ABBI=24=12BCAB,=12,∴ABBI=BCAB.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴ACAI=ABBI.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴QIAI=GICI=13,∴QI=13AI=43.故选D.点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG 是解题的关键.9.B【解析】【分析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将Rt∆ABC绕直角项点C顺时针旋转90°,得到∆A' B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.10.C【解析】:∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C11.B【解析】【分析】由根与系数的关系逐项判断各项方程的两根之和即可.【详解】在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;在方程x2-2x-3=0中,两根之和等于2,故B符合题意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;在方程4x2-2x-3=0中,两根之和等于--21=42,故D不符合题意,故选B.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-ba、两根之积等于ca是解题的关键.12.B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π- 故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】试题解析:∵AB 为圆O 的直径,弦CD ⊥AB ,垂足为点E.1 4.2CE CD ∴== 在直角△OCE 中, 222254 3.OE OC CE =-=-=则AE=OA−OE=5−3=2.【解析】【分析】把交点坐标代入抛物线解析式求m 的值,再令y=0解一元二次方程求另一交点的横坐标.【详解】把点(1,0)代入抛物线y=x 2-4x+2m 中,得m=6, 所以,原方程为y=x 2-4x+3,令y=0,解方程x 2-4x+3=0,得x 1=1,x 2=3∴抛物线与x 轴的另一个交点的坐标是(3,0).故答案为(3,0).【点睛】本题考查了点的坐标与抛物线解析式的关系,抛物线与x 轴交点坐标的求法.本题也可以用根与系数关系直接求解.15.213【解析】【分析】设⊙O 半径为r ,根据勾股定理列方程求出半径r ,由勾股定理依次求BE 和EC 的长.【详解】连接BE ,设⊙O 半径为r ,则OA=OD=r ,OC=r-2,∵OD ⊥AB ,∴∠ACO=90°,AC=BC=12AB=4, 在Rt △ACO 中,由勾股定理得:r 2=42+(r-2)2,r=5,∴AE=2r=10,∵AE 为⊙O 的直径,∴∠ABE=90°,在Rt △ECB 中,EC =222264213BE BC +=+=.故答案是:213.【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.16.1【解析】 试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法 172【解析】【分析】 82.【详解】82=222.2.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.18.(1)-2;(2)32【解析】【分析】【详解】(1)设点P 的坐标为(m ,n),则点Q 的坐标为(m−1,n+2),依题意得:() 21n km b n k m b =+⎧⎨+=-+⎩,(2)∵BO ⊥x 轴,CE ⊥x 轴,∴BO ∥CE ,∴△AOB ∽△AEC. 又∵1279S S =, ∴997916S AOB S AEC ==+V V 令一次函数y=−2x+b 中x=0,则y=b ,∴BO=b ;令一次函数y=−2x+b 中y=0,则0=−2x+b ,解得:x=2b ,即AO=2b . ∵△AOB ∽△AEC,且916S AOB S AEC =V V , ∴34AO BO AE CE ==, ∴AE=43,AO=23b ,CE=43BO=43b,OE=AE−AO=16b . ∵OE ⋅CE=|−4|=4,即229b =4, 解得:b=或b=−(舍去).故答案为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:原式=1x 2+,3. 【解析】【分析】【详解】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x 的值,进行二次根式化简. 解:原式=()()2x 2x 4x 2x 11x 1x 1x 1x 2x 2x 2----÷=⋅=---+-+. 当x1时,原式===. 20.y=x ﹣5【解析】(3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.详解:(1)∵二次函数y=(x﹣1)2﹣4,∴其伴生一次函数的表达式为y=(x﹣1)﹣4=x﹣5,故答案为y=x﹣5;(2)∵二次函数y=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4),∵二次函数y=(x﹣1)2﹣4,∴其伴生一次函数的表达式为y=x﹣5,∴当x=1时,y=1﹣5=﹣4,∴(1,﹣4)在直线y=x﹣5上,即:二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)∵二次函数y=m(x﹣1)2﹣4m,∴其伴生一次函数为y=m(x﹣1)﹣4m=mx﹣5m,∵P点的横坐标为n,(n>2),∴P的纵坐标为m(n﹣1)2﹣4m,即:P(n,m(n﹣1)2﹣4m),∵PQ∥x轴,∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),∴PQ=(n﹣1)2+1﹣n,∵线段PQ的长为32,∴(n﹣1)2+1﹣n=32,∴.点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式. 21.(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本【解析】【分析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.(2)8450030020+⨯=(人). 答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点睛】本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键. 22.BD= 2.【解析】【详解】试题分析:根据∠ACD=∠ABC ,∠A 是公共角,得出△ACD ∽△ABC ,再利用相似三角形的性质得出AB 的长,从而求出DB 的长.试题解析:∵∠ACD=∠ABC ,又∵∠A=∠A ,∴△ABC ∽△ACD , ∴AD AC AC AB=,∵AD=1,AB=, ∴AB=3,∴BD= AB ﹣AD=3﹣1=2 .点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB 的长是解题关键.23.(1)2142y x =-+;(2)2<m <(1)m=6或﹣1. 【解析】【分析】(1)由题意抛物线的顶点C (0,4),A (0),设抛物线的解析式为24y ax =+,把A (0)代入可得a=12-,由此即可解决问题; (2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(1)情形1,四边形PMP′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形,推出PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m ,可得M (m+2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为24y ax =+,把A(0)代入可得a=12-, ∴抛物线C 的函数表达式为2142y x =-+. (2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩, 消去y 得到222280x mx m -+-= ,由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解得2<m<∴满足条件的m 的取值范围为2<m<(1)结论:四边形PMP′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形,∴PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m ,∴M (m+2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m=17﹣1或﹣17﹣1(舍弃),∴m=17﹣1时,四边形PMP′N 是正方形. 情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m=6或0(舍弃), ∴m=6时,四边形PMP′N 是正方形.综上所述:m=6或171时,四边形PMP′N 是正方形.24.(1)90;(2)144度;(3)105,120,75;(4)B【解析】【分析】(1)由条形图可得A 演讲得分,由表格可得C 笔试得分,据此补全图形即可;(2)用360°乘以B 对应的百分比可得答案;(3)用总人数乘以A 、B 、C 三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得.补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为360°×40%=144°,故答案为144;(3)A同学得票数为300×35%=105,B同学得票数为300×40%=120,C同学得票数为300×25%=75,故答案为105、120、75;(4)A的最终得分为854903105310⨯+⨯+⨯=92.5(分),B的最终得分为954803120310⨯+⨯+⨯=98(分),C的最终得分为90485375310⨯+⨯+⨯=84(分),∴B最终当选,故答案为B.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.25.(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【解析】【分析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,∴h=1,把原点坐标代入y=(x﹣1)2+k,得,(2)∵抛物线y =(x ﹣1)2+k 与x 轴有公共点,∴对于方程(x ﹣1)2+k =2,判别式b 2﹣4ac =﹣4k≥2,∴k≤2.当x =﹣1时,y =4+k ;当x =2时,y =1+k ,∵抛物线的对称轴为x =1,且当﹣1<x <2时,抛物线与x 轴有且只有一个公共点,∴4+k >2且1+k <2,解得﹣4<k <﹣1,综上,当﹣4<k <﹣1时,抛物线与x 轴有且只有一个公共点.【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.26.(1)60,1°.(2)补图见解析;(3)35 【解析】 【分析】(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【详解】(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×1560=1°, 故答案为60,1.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为1220=35. 【点睛】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.27.3x -1, -9.【解析】【分析】先去括号,再合并同类项;最后把x=-2代入即可.【详解】原式=323211x x x x --=-+,当x=-2时,原式=-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年北京海淀区初三二模数学试卷一、选择题(本大共8小题,每小题2分,共16分,)1.A.B.C.D.的立方根是( ).2. A. B. C. D.如图,两条直线,交于点,射线平分,若=,则等于( ).3. A.B. C. D.科学家在海底下约公里深处的沙岩中,发现了一种世界上最小的神秘生物,它们的最小身长只有米,甚至比已知的最小细菌还要小.将用科学记数法表示为().4. A. B. C. D.实数,在数轴上的对应点的位置如图所示,若,则实数的值可能是( ).5.图是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒu gǒng).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图是其中一个组成部件的三视图,则这个部件是( ).A.拱B.翘C.斗D.升图图6. A.B.C.D.已知,则下列不等式一定成立的是( ).7. A.B.C.D.下面的统计图反映了年中国城镇居民人均可支配收入与人均消费支出的情况.根据统计图提供的信息,下列推断的是( ).年我国城镇居民人均可支配收入与人均消费支出统计图城镇居民人均可支配收入城镇居民人均消费支出年份金额元数据来源:国家统计局年,我国城镇居民人均可支配收入和人均消费支出均逐年增加年,我国城镇居民人均可支配收入平均每年增长超过元从年起,我国城镇居民人均消费支出超过元年我国城镇居民人均消费支出占人均可支配收入的百分比超过不.合.理.8.A.甲B.乙C.丙D.丁如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道和南北向的交通主干道,若他希望租住的小区到主干道和主干道的直线距离之和最小,则下图中符合他要求的小区是( ).二、填空题(本大共8小题,每小题2分,共16分,)9.当时,代数式的值为.10.如图,在中,,为中点,若,,则的长为 .11.如图,在⊙中,弦与半径相交于点,连接,.若,,则的度数为 .12.如果,那么代数式的值是 .13.如图,在中,,分别为,的中点.若,则.边形14.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表:抛掷次数“正面向上”的次数“正面向上”的频率下面有三个推断:①在用频率估计概率时,用实验次时的频率一定比用实验次时的频率更准确.②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在附近摆动.③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的.其中正确的是 .15.状态亮暗时间秒按《航空障碍灯》的要求,为保障飞机夜间飞行的安全,在高度为米至米的建筑上必须安装中光强航空障碍灯.中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化.那么在一个连续的秒内,该航空障碍灯处于亮的状态的时间总和最长可达 秒.16.右图是在浦东陆家嘴明代陆深古墓中发掘出来的宝玉——明白玉幻方.其背面有方框四行十六格,为四阶幻方(从到,一共十六个数目,它们的纵列、横行与两条对角线上个数相加之和均为).小明探究后发现,这个四阶幻方中的数满足下面规律:在四阶幻方中,当数,,,有如图的位置关系时,均有.如图,已知此幻方中的一些数,则的值为 .图图三、解答题(共68分)17.计算:.18.解不等式组:.19.(1)(2)下面是小宇设计的“作已知直角三角形的中位线”的尺规作图过程.已知:在中,.求作:的中位线,使点在上,点在上.作法:如图,①分别以,为圆心,大于长为半径画弧,两弧交于,两点;②作直线,与交于点,与交于点.所以线段就是所求作的中位线.根据小宇设计的尺规作图过程,使用直尺和圆规,补全图形.(保留作图痕迹)完成下面的证明.证明:连接,,,,,∵, ,∴是的垂直平分线( )(填推理的依据).∴为中点,.∴,又在中,有,.∴( )(填推理的依据).∴.∴.∴为中点.∴是的中位线.20.(1)(2)关于的一元二次方程,其中.求证:方程有两个不相等的实数根.当时,求该方程的根.21.(1)(2)如图,在平行四边形中,的角平分线交于点,交的延长线于点,连接.求证:.若,,求平行四边形的面积.22.(1)(2)如图,是⊙的直径,,与⊙分别相切于点,,连接,,,与相交于点.求证:.连结,若,,求的长.23.(1)(2)如图,在平面直角坐标系中,直线与轴、轴分别交于点,,与双曲线的交点为,.当点的横坐标为时,求的值.若,结合函数图象,直接写出的取值范围.24.(1)(2)12(3)有这样一个问题:探究函数的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:函数的自变量的取值范围是 .如图,在平面直角坐标系中,完成以下作图步骤:①画出函数和的图象.②在轴上取一点,过点作轴的垂线,分别交函数和的图象于点,,记线段的中点为.③在轴正半轴上多次改变点的位置,用②的方法得到相应的点,把这些点用平滑的曲线连接起来,得到函数在轴右侧的图象.继续在轴负半轴上多次改变点的位置,重复上述操作得到该函数在轴左侧的图象.结合函数的图象,发现:该函数图象在第二象限内存在最低点,该点的横坐标约为 (保留小数点后一位).该函数还具有的性质为: (一条即可).25.某学校共有六个年级,每个年级个班,每个班约名同学.该校食堂共有个窗口,中午所有同学都在食堂用餐.经了解,该校同学年龄分布在岁(含岁)到岁(含岁)之间,平均年龄约为岁.小天、小东和小云三位同学,为了解全校同学对食堂各窗口餐食的喜爱情况,各自进行了抽样调查,并记录了相应同学的年龄,每人调查了名同学,将收集到的数据进行了整理.小天从初一年级每个班随机抽取名同学进行调查,绘制统计图表如下:表:窗口人数窗口人数小东从全校每个班随机抽取名同学进行调查,绘制统计图表如下:表:窗口人数窗口人数小云在食堂门口,对用餐后的同学采取每隔人抽取人进行调查,绘制统计图表如下:表:(1)(2)(3)人数窗口人数根据以上材料回答问题:写出图中的值,并补全图.小天、小东和小云三人中,哪个同学抽样调查的数据能较好地反映出该校同学对各窗口餐食的喜爱情况,并简要说明其余同学调查的不足之处.为使每个同学在中午尽量吃到自己喜爱的餐食,学校餐食管理部门应为 窗口尽量多的分配工作人员,理由为 .26.(1)(2)(3)在平面直角坐标系中,抛物线与直线交于,两点,且点在轴上,点在轴的正半轴上.求点的坐标.若,求直线的解析式.若,求的取值范围.27.1(1)已知为线段中点,.为线段上一动点(不与点重合),点在射线上,连接,,记.若,.如图,当为中点时,求的度数.2(2)图直接写出、的数量关系.如图,当时.探究是否存在常数,使得②中的结论仍成立?若存在,写出的值并证明;若不存在,请说明理由.图28.(1)12(2)对于平面直角坐标系中的两个图形和,给出如下定义:若在图形上存在一点,图形上存在两点,,使得是以为斜边且的等腰直角三角形,则称图形与图形具有关系.若图形为一个点,图形为直线,图形与图形具有关系,则点,,中可以是图形的是 .已知点,点,记线段为图形.当图形为直线时,判断图形与图形是否既具有关系又具有关系,如果是,请分别求出图形与图形中所有点的坐标;如果不是,请说明理由.当图形为以为圆心,为半径的⊙时,若图形与图形具有关系,求的取值范围.2019年北京海淀区初三二模数学试卷(详解)一、选择题(本大共8小题,每小题2分,共16分,)1.A.B. C. D.【答案】【解析】的立方根是( ).A ,故选.2. A.B. C. D.【答案】【解析】如图,两条直线,交于点,射线平分,若=,则等于( ).C ,则.(对顶角相等)由题意.(互补)..3. A.B. C. D.【答案】科学家在海底下约公里深处的沙岩中,发现了一种世界上最小的神秘生物,它们的最小身长只有米,甚至比已知的最小细菌还要小.将用科学记数法表示为().B故选.4. A.B. C. D.【答案】【解析】实数,在数轴上的对应点的位置如图所示,若,则实数的值可能是( ).D ∵,,∴,∵.故选.5. A.拱B.翘C.斗D.升【答案】【解析】图是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒu gǒng).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图是其中一个组成部件的三视图,则这个部件是( ).图图C由三视图定义知,正确.故选.6.已知,则下列不等式一定成立的是( ).A.B. C. D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】D ,则,错.,当时,;当时,,当时,,故不一定成立.,则不一定成立,错.,则,一定成立.故选 D .7. A.B.C.D.【答案】【解析】下面的统计图反映了年中国城镇居民人均可支配收入与人均消费支出的情况.根据统计图提供的信息,下列推断的是( ).年我国城镇居民人均可支配收入与人均消费支出统计图城镇居民人均可支配收入城镇居民人均消费支出年份金额元数据来源:国家统计局年,我国城镇居民人均可支配收入和人均消费支出均逐年增加年,我国城镇居民人均可支配收入平均每年增长超过元从年起,我国城镇居民人均消费支出超过元年我国城镇居民人均消费支出占人均可支配收入的百分比超过D 城镇居民人均消费支出占人均可支配收入百分比为,故不合理.故选.不.合.理.8. A.甲 B.乙 C.丙 D.丁【答案】【解析】如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道和南北向的交通主干道,若他希望租住的小区到主干道和主干道的直线距离之和最小,则下图中符合他要求的小区是( ).C分别以主干道、主干道所在直线为轴、轴建立平面直角坐标系,设小区坐标,则小区到主干道、主干道距离和,∴,平移直线,依次经过甲、乙、丙、丁四个小区,最小即与轴交点纵坐标最小.故选.二、填空题(本大共8小题,每小题2分,共16分,)9.【答案】【解析】当时,代数式的值为.由题意知且,得.故答案为:.10.【答案】如图,在中,,为中点,若,,则的长为 .【解析】延长至,使,连,∵为中点,∴,在和中,,∴≌,∴,,∵,,∴,,∵,∴,∵,∴,在中,.故答案为:.11.【答案】【解析】如图,在⊙中,弦与半径相交于点,连接,.若,,则的度数为 .连接.∵,,∴为等边三角形.∴,∵,∴,∴,∵,∴.12.【答案】【解析】如果,那么代数式的值是 .,∵,∴,∴原式,故答案为:.13.【答案】如图,在中,,分别为,的中点.若,则.边形【解析】∵、分别为、中点,∴,,∴,∴,∴,∵,∴.边形边形14.【答案】【解析】某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表:抛掷次数“正面向上”的次数“正面向上”的频率下面有三个推断:①在用频率估计概率时,用实验次时的频率一定比用实验次时的频率更准确.②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在附近摆动.③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的.其中正确的是 .②③由频率估概率知,大量重复试验时,随试验次数增加,纪念币正面向上频率在附近摆动,呈稳定趋势,故②正确;纪念币正面向上概率约为,并非,故纪念币质地不均匀,③正确;每次试验频率随机,故①错误.15.按《航空障碍灯》的要求,为保障飞机夜间飞行的安全,在高度为米至米的建筑上必须安装中光强航空障碍灯.中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮状态亮暗时间秒【答案】【解析】暗呈规律性交替变化.那么在一个连续的秒内,该航空障碍灯处于亮的状态的时间总和最长可达 秒.从秒秒,每秒,航空障碍灯亮秒,暗秒,周期性变化.则连续秒内,最多亮秒.16.【答案】【解析】右图是在浦东陆家嘴明代陆深古墓中发掘出来的宝玉——明白玉幻方.其背面有方框四行十六格,为四阶幻方(从到,一共十六个数目,它们的纵列、横行与两条对角线上个数相加之和均为).小明探究后发现,这个四阶幻方中的数满足下面规律:在四阶幻方中,当数,,,有如图的位置关系时,均有.如图,已知此幻方中的一些数,则的值为 .图图由,知,①,由知,又,则,得②,由①②知.三、解答题(共68分)17.【答案】【解析】计算:...18.【答案】【解析】解不等式组:..原不等式组为,解不等式①,得,解不等式②,得,∴原不等式组的解集为.①②19.下面是小宇设计的“作已知直角三角形的中位线”的尺规作图过程.已知:在中,.求作:的中位线,使点在上,点在上.作法:如图,①分别以,为圆心,大于长为半径画弧,两弧交于,两点;(1)(2)(1)(2)【答案】(1)(2)【解析】②作直线,与交于点,与交于点.所以线段就是所求作的中位线.根据小宇设计的尺规作图过程,使用直尺和圆规,补全图形.(保留作图痕迹)完成下面的证明.证明:连接,,,,,∵, ,∴是的垂直平分线( )(填推理的依据).∴为中点,.∴,又在中,有,.∴( )(填推理的依据).∴.∴.∴为中点.∴是的中位线.画图见解析.;到线段两端点距离相等的点在线段的垂直平分线上;等角的余角相等.补全的图形如图所示:;到线段两端点距离相等的点在线段的垂直平分线上;等角的余角相等.20.(1)(2)(1)(2)【答案】关于的一元二次方程,其中.求证:方程有两个不相等的实数根.当时,求该方程的根.证明见解析.,.(2)∵,∴,∴方程有两个不相等的实数根.当时,方程为,解得,.故方程的根为,.21.(1)(2)(1)(2)【答案】(1)(2)【解析】如图,在平行四边形中,的角平分线交于点,交的延长线于点,连接.求证:.若,,求平行四边形的面积.证明见解析..∵四边形为平行四边形,∴.∴.∵平分,∴.∴.∴.∵,,∴.∵,,∴.∴.平行 边形22.(1)(2)(1)(2)【答案】(1)(2)【解析】如图,是⊙的直径,,与⊙分别相切于点,,连接,,,与相交于点.求证:.连结,若,,求的长.证明见解析..连接,如图,∵,与⊙分别相切于点,,∴,,,∴,∵,∴,∵,∴.连接,如图,∵是⊙的直径,∴,∴,∵,∴,∵,,∴,,∵,,∴,∴.23.(1)(2)(1)(2)【答案】(1)(2)【解析】如图,在平面直角坐标系中,直线与轴、轴分别交于点,,与双曲线的交点为,.当点的横坐标为时,求的值.若,结合函数图象,直接写出的取值范围..或.∵点是双曲线上的点,且点的横坐标为,∴点的坐标为.∵点是直线上的点,∴.当时,满足,结合函数图象可得,的取值范围是或.24.(1)(2)12(3)(1)(2)1(3)【答案】有这样一个问题:探究函数的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:函数的自变量的取值范围是 .如图,在平面直角坐标系中,完成以下作图步骤:①画出函数和的图象.②在轴上取一点,过点作轴的垂线,分别交函数和的图象于点,,记线段的中点为.③在轴正半轴上多次改变点的位置,用②的方法得到相应的点,把这些点用平滑的曲线连接起来,得到函数在轴右侧的图象.继续在轴负半轴上多次改变点的位置,重复上述操作得到该函数在轴左侧的图象.结合函数的图象,发现:该函数图象在第二象限内存在最低点,该点的横坐标约为 (保留小数点后一位).该函数还具有的性质为: (一条即可).画图见解析.(在至之间即可)2(1)(2)12(3)【解析】当时,随的增大而增大函数的自变量的取值范围是.观察图象可得,第二象限内最低点的横坐标为(在至之间即可).答案不唯一,如:当时,随的增大而增大.25.某学校共有六个年级,每个年级个班,每个班约名同学.该校食堂共有个窗口,中午所有同学都在食堂用餐.经了解,该校同学年龄分布在岁(含岁)到岁(含岁)之间,平均年龄约为岁.小天、小东和小云三位同学,为了解全校同学对食堂各窗口餐食的喜爱情况,各自进行了抽样调查,并记录了相应同学的年龄,每人调查了名同学,将收集到的数据进行了整理.小天从初一年级每个班随机抽取名同学进行调查,绘制统计图表如下:表:窗口人数窗口人数小东从全校每个班随机抽取名同学进行调查,绘制统计图表如下:表:(1)(2)(3)(1)(2)(3)【答案】窗口人数窗口人数小云在食堂门口,对用餐后的同学采取每隔人抽取人进行调查,绘制统计图表如下:表:窗口人数窗口人数根据以上材料回答问题:写出图中的值,并补全图.小天、小东和小云三人中,哪个同学抽样调查的数据能较好地反映出该校同学对各窗口餐食的喜爱情况,并简要说明其余同学调查的不足之处.为使每个同学在中午尽量吃到自己喜爱的餐食,学校餐食管理部门应为 窗口尽量多的分配工作人员,理由为 .岁,画图见解析.小东(答案不唯一).号和号(或者只有;或者,,)(答案不唯一) ; 从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员(1)(2)(3)【解析】小天调查的不足之处:仅对初一年级抽样,不能代表该学校学生总体的情况;小云调查的不足之处:抽样学生的平均年龄为岁,远高于全校学生的平均年龄,不能代表该学校学生总体情况.从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.26.(1)(2)(3)(1)(2)(3)【答案】(1)(2)【解析】在平面直角坐标系中,抛物线与直线交于,两点,且点在轴上,点在轴的正半轴上.求点的坐标.若,求直线的解析式.若,求的取值范围...或.∵抛物线与轴交于点,∴点的坐标为.时,抛物线为,∵抛物线与轴交于点,且点在轴的正半轴上,∴点的坐标为,∵直线过,两点,(3)∴,解得,∴直线的解析式为.如图当时,当时,抛物线过点,此时,结合函数图象可得,当时,抛物线过点,此时,结合函数图象可得,综上所述,的取值范围是或.27.12(1)(2)1(1)【答案】已知为线段中点,.为线段上一动点(不与点重合),点在射线上,连接,,记.若,.如图,当为中点时,求的度数.图直接写出、的数量关系.如图,当时.探究是否存在常数,使得②中的结论仍成立?若存在,写出的值并证明;若不存在,请说明理由.图.2(2)12(1)(2)【解析】.存在,使得②中的结论成立,证明见解析.在上取点,使得,连接.∵,∴为等边三角形.∴.∵为的中点,为的中点,∴.∵,∴.∴平分.∴..过点作的垂线交于点.∵,∴.∴,.∵,,∴.∵,∴,∴≌.∴.28.(1)12(2)(1)12(2)【答案】(1)1(2)【解析】对于平面直角坐标系中的两个图形和,给出如下定义:若在图形上存在一点,图形上存在两点,,使得是以为斜边且的等腰直角三角形,则称图形与图形具有关系.若图形为一个点,图形为直线,图形与图形具有关系,则点,,中可以是图形的是 .已知点,点,记线段为图形.当图形为直线时,判断图形与图形是否既具有关系又具有关系,如果是,请分别求出图形与图形中所有点的坐标;如果不是,请说明理由.当图形为以为圆心,为半径的⊙时,若图形与图形具有关系,求的取值范围.是,,,,.或.有题意,得:当坐标为,坐标为时,是以为斜边且的等腰直角三角形,∴可以是图象,经验证,,不满足题意,故答案为.是,如图,在直线上取点,,图且,则满足是以为斜边的等腰直角三角形的点,在到直线距离为的两条平行直线上,2故图形与图形满足,直线与线段交于点,过点作轴于,与交于点,则,,可得,同理可求得:,如图,在线段上取点,,且,图则满足是以为斜边的等腰直角三角形的点在图中的两条线段上,这两条线段与直线交于,两点.故图形与图形满足.同上可求得,.如图所示,,,,和均为等腰直角三角形,∴,,∴,,∴若在⊙上,则点在以为圆心,或为半径的圆上,∵圆形与图具有关系,∴线段上存在点到的距离为或./如图,图当在右侧,时,,当⊙与线段相切时,,,,∴,∴,此时,.如图,图当在⊙上时,,∴,当在⊙上时,,,∴,∴,此时.综上,的取值范围是或.。