概率统计练习题7答案
《概率统计》练习题及参考答案

习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
概率论与数理统计习题及答案第七章

习题7-11.选择题(1)设总体X 的均值口与方差 /都存在但未知,而X 1,X 2,L ,X n 为来自X 的样本,则均值 口与方差 (T 2的矩估计量分别是 ().(A) X 和(B)1 nX 和—(Xn i 1i )2.(C)口和 2(T・1 (D) X 和一 nn(X ii 1 x)2.解 选(D).(2) 设X : U[0,],其中 e >0为未知参数,又X ,,X 2,L ,X n 为来自总体X 的样本 ,则e 的矩估计量是().(A) X . (B)2X . (C)max{X i }.(D)mi^X i}.解选(B).2.设总体X 其中0v B v 为未知参数,X1, X 2,…,X.为来自总体X 的样本,试求e 的矩 估计量.解 因为 E (X )=(- 2)x3 e +1x (1 -4 e )+5x e =1-5 e ,令 1 5 X 得到的矩估计量为3.设总体X 的概率密度为f(x ;)(1)x ,0 x 1,0,其它•其中 0> -1是未知参数,X ,冷… ,X n 是来自 X 的容量为n 的简单随机样本求:(1) 的矩估计量;⑵ 0的极大似然估计量•解 总体X 的数学期望为-19 2X 1令E(X) X ,即一1 X,得参数B 的矩估计量为?•21 X设X 1, X 2,…,x n 是相应于样本X 1, X 2,…,X n 的一组观测值,则似然函 数为n(1)n X i , 0x i 1,i 10,其它.In xi 1In X ii 14.设总体X 服从参数为的指数分布,即X 的概率密度为E(X)1xf(x)dx o (1)x dx当 0<X i <1(i =1,2,3,…,n )时,L >0 且 In L nln(1)In X i ,i 1dln LnIn x =0,得0的极大似然估计值为而0的极大似然估计量为f(X,xe , x 0,其中0为未知参数,X, X2,)0, x< 0,…,X n为来自总体X的样本,试求未知参数的矩估计量与极大似然估计量解因为E(X)= 1= X , 所以的矩估计量为设X1, X2,…,x n是相应于样本X i, X2,…,X 的一组观测值,则似然函数取对数Xii 1然估计量为In L 0,得5.设总体X的概率密度为f (x,) 其中(0< <1)是未知参数.X, N为样本值x1, X2,L ,x n中小于极大似然估计量•解⑴ X E(X) xnInnXn e 11X).的极大似然估计值为1,的极大似X0,X2,0x1,, 1< x< 2,其它,…,X n为来自总体的简单随机样本,记1的个数.dx 2x(1求:(1)e的矩估计量;(2)e的3 3 —)dx ,所以矩一X .2 21⑵ 设样本X ,X 2 ,L X n 按照从小到大为序(即顺序统计量的观测值)有如下关系:X (1) w X (2)X ( Ni <1 W X ( N +1) W X (N+2)X (n ).似然函数为N n NL()(1 ),X (1) w X (2) w L w X ( N ) 1W X (N1) W X (N2) w L w X n ,0,其它.考虑似然函数非零部分,得到In L ( 0 ) = N ln 0 + ( n -N ) ln(1 - 0 ),令d |nL ( )」o ,解得0的极大似然估计值为? N .d1n习题7-2的无偏估计量•1.选择题:设总体X 的均值与方差 2都存在但未知,X i ,X 2,L ,X n 为X 的样本,则无论总体 X 服从什么分布,()1X i和丄 (XiX)2.(B)n i 1 n i1 n(C)X i 和n 1 i 1解 选(D).2.若X 1 ,X 2lx1 1X 2kX 334解 要求E( 7X 1-X j 和丄 1 i 1 n 1n(X ii 1X)2.(X i1)2 • (D)X i 和丄(X i)2.X 3为来 自总体X : N(,2)的样本,且的无偏估计量,问k 等于多少1 11 「2 kX 3)3 4k解之,k=g(A)13.设总体X的均值为0,方差2存在但未知,又X「X2为来自总体X1 2 2的样本,试证:—(X i X2)为的无偏估计21 2 1 2 2证因为E[—(X i X2) ] —E[(X i 2X^2 X2 )]2 2-[E(X i2) 2E(X i X2)E(X22)]-2 2所以-(X i X2)2为2的无偏估计•2习题7-31.选择题(1)总体未知参数的置信水平为的置信区间的意义是指()(A)区间平均含总体95%的值.(B)区间平均含样本95%的值.(C) 未知参数有95%的可靠程度落入此区间.(D) 区间有95%的可靠程度含参数的真值•解选(D).(2)对于置信水平1- a (0< a <1),关于置信区间的可靠程度与精确程度F列说法不正确的是().(A)若可靠程度越咼,则置信区间包含未知参数真值的可能性越大(B)如果a越小,则可靠程度越高,精确程度越低•(C)如杲1 - a越小,则可靠程度越高,精确程度越低•(D)若精确程度越高,则可靠程度越低,而1- a越小.解选(C)习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试,取得数据如下(单位:小时): 1050, 1100, 1080 , 1120, 1250, 1040, 1130, 1300, 1200设灯泡寿命服从正态分布 N 口 , 902),取置信度为,试求当天生产的全部灯泡的平均寿命的置信区间所求置信区间为(x - z /2 , X - z /2 ) \l n J n 90 90 (1141.11 = 1.96,1141.11 r 1.96)V 9V 9(1082.31,1199.91).2.为调查某地旅游者的平均消费水平,随机访问了40名旅游者,算得平均消费额为 X 105元,样本标准差s 28元•设消费额服从正态分布 取置信水平为,求该地旅游者的平均消费额的置信区间解计算可得X 105, s 2 =282.对于a =,查表可得t_(n 1) t o.025(39)2.0227.2所求口的置信区间为3. 假设某种香烟的尼古丁含量服从正态分布 .现随机抽取此种香烟 8支解计算得到X1141.11, CT 2 =902.对于a =,查表可得Z /2Z).Q25匸96*(Xt (n 1), x ■■- n 2s —t (n ■■- n 21)) (1052.0227, 1052.0227)2828为一组样本,测得其尼古丁平均含量为毫克,样本标准差s=毫克.试求此种香烟尼古丁含量的总体方差的置信水平为的置信区间.a =,查表可得 2(n 1) 爲5(7) 20.278,并说明该置信区间的实际意义1 2的置信水平为的置信区间是,”的实际意义是:在两总体第一个正态总体的均值1比第二个正态总体均值 2大〜,此结 论的可靠性达到95%.5.某商场为了了解居民对某种商品的需求 ,调查了 100户,得出每户月2解已知n =8, s2 2 (n 1)0.995(7) 1 - 20.989,所以方差d 2的置信区间为((n 1)S 2(2_ (n 1)22 22(8 1) 2.4 (8 1) 2.4 _2 —)(, )=,.2(n 廿丿 20.2780.9891 -(n 1)S 4.某厂利用两条自动化流水线灌装番茄酱 ,分别从两条流水线上抽取样本:X ,X 2,…,X 12 及 Y ,Y 2,…,丫17,算出 x 10.6g, y2 29.5g, s 1 2.4, s 2 4.7 .假设这两条流水线上装的番茄酱的重量都服从正态分布 ,且相互独立,其均值分别为2又设两总体方差1:.求2置信水平为的置信区间解由题设2 2x 10.6,y 9.5,s 12.4, s 2 4.7,n12,n 2 17,m 1)s 2 仏 1)s :(12 1) 2.4(171) 471.94212 17 2t_gn 22q n 2 22) t °.°25(27)2.05181,所求置信区间为((X y)11) ((10.6 9.5) 2.05181 1.94结论“方差相等时, [(a n 22)s w2)平均需求量为10公斤,方差为9 .如果这种商品供应10000户,取置信水平为•(1) 取置信度为,试对居民对此种商品的平均月需求量进行区间估计(2) 问最少要准备多少这种商品才能以99%的概率满足需要解(1) 每户居民的需求量的置信区间为_ s(xt(n* n_ s1), xt (nV n1)) (xs卅,%s川)(10,9J492.575,10 2.575)(9.2275,10.7725). 100J10010000户居民对此种商品月需求量的置信度为的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以99%的概率满足需要。
概率论与数理统计浙大四版习题答案第七章

第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计)求总体均值μ及方差σ2的矩估计,并求样本方差S 2。
解:μ,σ2的矩估计是 6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。
2.[二]设X 1,X 1,…,X n 为准总体的一个样本。
求下列各总体的密度函数或分布律中的未知参数的矩估计量。
(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ其中c >0为已知,θ>1,θ为未知参数。
(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ其中θ>0,θ为未知参数。
(5)()p p m x p px X P x m xmx,10,,,2,1,0,)1()(<<=-==- 为未知参数。
解:(1)X θcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX Xθ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp令mp = X , 解得mXp=ˆ 3.[三]求上题中各未知参数的极大似然估计值和估计量。
解:(1)似然函数1211)()()(+-===∏θn θn nni ix x x c θx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni i θn n ni ix θθnθL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix nθxθθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。
概率论与数理统计课后习题答案 第七章

习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)
是
的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知
华师概率论与数理统计答案7

华师概率论与数理统计答案7作业1.第27题如果P(A)=0.5,P(B)=0.4,且事件B与A独立,则P(AB)=()(A)0.1 (B)0.2 (C)0.3 (D)0.4A.;B.;C.;D.。
标准答案:B您的答案:题目分数:1.0此题得分:0.02.第28题设随机变量X的概率函数为123 ,k=0,1,2,...,则它的方差为D(X)=()(A)(B)A.;B.;C.;D..您的答案:题目分数:1.0此题得分:0.02 (C)(D)(1-)/3.第29题设随机变量X~e(1),Y~e(2),且X与Y相互独立。
令Z的方差为D(Z)=( )A.5/4B.3/4C.5D.3/2标准答案:A您的答案:题目分数:1.0此题得分:0.04.第30题设随机变量X~U(0,1),则它的方差为D(X)=()A.1/2B.1/3C.1/4D.1/12标准答案:D题目分数:1.0此题得分:0.05.第31题如果样本空间只包含有限个不同的基本事件,并且每个基本事件出现的可能性相等,那么这样的概率模型称为()A.古典概型B.几何概型C.伯努利概型D.统计概型标准答案:A您的答案:题目分数:1.0此题得分:0.06.第32题设(A)n(B)n-1 来自总体N(0,1)的简单随机样本,记,则=()(C)(D)A.见题B.见题D.见题标准答案:C您的答案:题目分数:1.0此题得分:0.07.第33题设样本X1,X2,...Xn,来自正态总体X~N(计量的为()),其中未知,样本均值为,则下列随机变量不是统(A)(B)X1 (C)Min(X1,,...Xn) (D)A.;B.;C.;D..标准答案:D您的答案:题目分数:1.0此题得分:0.08.第34题设随机变量X的分布函数为Z=max(X,Y)的分布函数是,随机变量Y的分布函数为=()。
若X 与Y独立,则最小值B.;C.;D..标准答案:C您的答案:题目分数:1.0此题得分:0.09.第35题设样本X1,X2,...Xn,来自正态总体X~N((A)2),其中2未知,样本均值为,则不是的无偏估计的为()(B)X1 (C)Xn (D)MAX(X1,,...Xn)A.;B.;C.;D..标准答案:D您的答案:题目分数:1.0此题得分:0.010.第36题设随机变量X~N(),则线性函数Y=a-bX服从分布()B.;标准答案:B您的答案:题目分数:1.0此题得分:0.011.第37题假设样本X1,X2,...Xn来自总体X~U(0,),则样本均值的数学期望等于()(A) (B)/2 (C)2/3 (D)3/4A.;B.;C.;D..标准答案:B您的答案:题目分数:0.5此题得分:0.012.第38题对于任意两事件A,B()(A)若(B)若(C)若(D)若?,则A,B一定独立,则A,B有可能独立,则A,B一定独立,则A,B一定不独立A.见题B.见题C.见题D.见题标准答案:B您的答案:题目分数:0.5此题得分:0.013.第39题设标准正态分布N(0,1)的分布函数为,则=()A.0B.0.1587C.0.5D.0.8413标准答案:B您的答案:题目分数:0.5此题得分:0.014.第53题假设样本X1,X2,...Xn来自总体X~U(0,),则样本均值的数学期望等于()(A) (B)/2 (C)2/3 (D)3/4A.;B.;C.;D..标准答案:B您的答案:题目分数:1.0此题得分:0.015.第54题设随机变量X的概率函数为P(X=k)=p(1-p),k=0.1,则它的数学期望为E(X)=( ) K1-K(A)p (B)1-p (C)P(1-p) (D)(1-p )/pA.;B.;C.;D..标准答案:A您的答案:题目分数:1.0此题得分:0.016.第55题设标准正态分布N(0,1)的分布函数为(A)(B)- (C)1- (D)1+,则()A.;B.;C.;D..标准答案:C您的答案:题目分数:1.0此题得分:0.017.第56题设A,B是两个随机事件,且,,,则必有()(A)(B)(C)?(D)A.见题B.见题C.见题D.见题标准答案:C您的答案:题目分数:1.0此题得分:0.018.第57题设随机变量X的概率函数为P(X=k)=p(1-p),k=0.1,则它的数学期望为E(X)=( ) K1-K(A)p (B)1-p (C)P(1-p) (D)(1-p )/pA.;B.;C.;D..标准答案:A您的答案:题目分数:0.5此题得分:0.019.第58题设随机变量X的概率密度为,且为偶函数,则()(A)(B)(C)(D)?A.见题B.见题C.见题D.见题标准答案:C您的答案:题目分数:0.5此题得分:0.020.第59题如果P(A)=0.5,P(B)=0.4,P(B│A)=0.6,则P(AB)=( )A.0.1B.0.2C.0.24D.0.3标准答案:D您的答案:题目分数:0.5此题得分:0.021.第91题设随机变量X和Y都服从正态分布,则( ). (A)服从正态分布(B)服从分布(C)服从F分布(D)或服从分布?A.见题B.见题C.见题D.见题标准答案:D您的答案:题目分数:1.0此题得分:0.022.第95题设随机变量X的分布函数为Z=min(X,Y)的分布函数是,随机变量Y的分布函数为=()。
概率统计-习题及答案(7)

TX0n3.252 3.2550.3430。
S*0.013038
对0.05,查t分布表可得t1(n 1) t0.975(4)2.7764。
因为T0.3430 2.7764,接受H0:3.25。
7.3 问题相当于要检验H0:20。
n
25,S*2
404.77,S2n 1S*2388.58,n
2nS225388.58
24.286。
2
0
202
对
0.05,查
2
分布表可得
22(n 1)
2
02.025(24) 12.401,
122(n
2
1)02.975(24)39.364,
因为12.401
224.286 39.364
, 接受
H0:20。
S*11(m/s),求
2和
的水平为 95% 的置信区间。
7.15 设总体~N(
2
1,12),~N(2,
2
22),其中
1,2都未知, 但已知1
2,
(X1,X2, , Xm),(Y1, Y2, ,Yn)分别是, 的样本,两个样本相互独立,请根
据 6.7 节的定理 6.8 ,推导出一个在本题条件下,求1 2的水平为1的置信区间 的公式。
7.16设用原料A和原料B生产的两种电子管的使用寿命(单位:小时)分别为~22
N(1,12)和~N(2,22),其中1,2都未知,但已知1 2。现对这两种 电子管的使用寿命进行测试,测得结果如下:
原料A
1460,1550,1640, 1600,1620,1660,1740,1820
概率论与数理统计教程第七章答案

.第七章假设检验7.1设总体J〜N(4Q2),其中参数4, /为未知,试指出下面统计假设中哪些是简洁假设,哪些是复合假设:(1) W o: // = 0, σ = 1 ;(2) W o√∕ = O, σ>l5(3) ∕70:// <3, σ = 1 ;(4) % :0< 〃 <3 ;(5)W o :// = 0.解:(1)是简洁假设,其余位复合假设7.2设配么,…,25取自正态总体息(19),其中参数〃未知,无是子样均值,如对检验问题“0 :〃 = 〃o, M :4工从)取检验的拒绝域:c = {(x1,x2,∙∙∙,x25)r∣x-χ∕0∖≥c},试打算常数c ,使检验的显著性水平为0. 05_ Q解:由于J〜N(〃,9),故J~N(",二)在打。
成立的条件下,一/3 5cP o(∖ξ-^∖≥c) = P(∖ξ-μJ^∖≥-)=2 1-Φ(y) =0.05Φ(-) = 0.975,-= 1.96,所以c=L176°3 37. 3 设子样。
,乙,…,25取自正态总体,cr:已知,对假设检验%邛=μ0, H2> /J。
,取临界域c = {(X[,w,…,4):片>9)},(1)求此检验犯第一类错误概率为α时,犯其次类错误的概率夕,并争论它们之间的关系;(2)设〃o=0∙05, σ~=0. 004, a =0.05, n=9,求"=0.65 时不犯其次类错误的概率。
解:(1)在儿成立的条件下,F~N(∕o,军),此时a = P^ξ≥c^ = P0< σo σo )所以,包二为册=4_,,由此式解出c°=窄4f+为% ∖∣n在H∣成立的条件下,W ~ N",啊 ,此时nS = %<c°) = AI。
气L =①(^^~品)二①匹%=①(2δξ^历σoA∣-σ+A)-A-------------- y∕n)。
概率论与数理统计习题及答案第七章

习题7-11. 选择题(1) 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X L 为来自X 的样本, 则均值μ与方差σ2的矩估计量分别是( ) .(A) X 和S 2. (B) X 和211()nii X nμ=-∑. (C) μ和σ2. (D) X 和211()nii X X n=-∑.解 选(D).(2) 设[0,]X U θ:, 其中θ>0为未知参数, 又12,,,n X X X L 为来自总体X 的样本, 则θ的矩估计量是( ) .(A) X . (B) 2X . (C) 1max{}i i nX ≤≤. (D) 1min{}i i nX ≤≤.解 选(B).2. 设总体X 的分布律为其中0<θ<12n , 试求θ的矩估计量.解 因为E (X )=(-2)×3θ+1×(1-4θ)+5×θ=1-5θ, 令15X θ-=得到θ的矩估计量为ˆ15X θ-=. 3. 设总体X 的概率密度为(1),01,(;)0, x x f x θθθ+<<=⎧⎨⎩其它.其中θ>-1是未知参数, X 1,X 2,…,X n 是来自X 的容量为n 的简单随机样本, 求: (1) θ的矩估计量;(2) θ的极大似然估计量. 解 总体 X 的数学期望为1101()()d (1)d 2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰. 令()E X X =, 即12X θθ+=+, 得参数θ的矩估计量为21ˆ1X X θ-=-. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… , X n 的一组观测值, 则似然函数为1(1),01,0,n n i i i x x L θθ=⎧⎛⎫+<<⎪ ⎪=⎨⎝⎭⎪⎩∏其它. 当0<x i <1(i =1,2,3,…,n )时, L >0且 ∑=++=ni ixn L 1ln )1ln(ln θθ,令1d ln ln d 1ni i L nx θθ==++∑=0, 得θ的极大似然估计值为 1ˆ1ln nii nxθ==--∑,而θ的极大似然估计量为 1ˆ1ln nii nXθ==--∑.4. 设总体X 服从参数为λ的指数分布, 即X 的概率密度为e ,0,(,)0,0,x x f x x λλλ->=⎧⎨⎩≤ 其中0λ>为未知参数, X 1, X 2, …, X n 为来自总体X 的样本, 试求未知参数λ的矩估计量与极大似然估计量.解 因为E (X )=1λ =X , 所以λ的矩估计量为1ˆXλ=. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… ,X n 的一组观测值, 则似然函数11nii inxx nni L eeλλλλ=--=∑==∏,取对数 1ln ln ()ni i L n x λλ==-∑.令1d ln 0,d ni i L n x λλ==-=∑ 得λ的极大似然估计值为1ˆxλ=,λ的极大似然估计量为1ˆXλ=. 5. 设总体X 的概率密度为,01(,)1,120,x f x x θθθ<<=-⎧⎪⎨⎪⎩,≤≤,其它,其中θ(0<θ<1)是未知参数. X 1, X 2, …, X n 为来自总体的简单随机样本, 记N 为样本值12,,,n x x x L 中小于1的个数. 求: (1) θ的矩估计量; (2) θ的极大似然估计量.解 (1) 1213()d (1)d 2X E X x x x x θθθ==+-=-⎰⎰, 所以32X θ=-矩.(2) 设样本12,,n x x x L 按照从小到大为序(即顺序统计量的观测值)有如下关系:x (1) ≤ x (2) ≤…≤ x (N ) <1≤ x (N +1)≤ x (N +2)≤…≤x (n ) .似然函数为(1)(2)()(1)(2)(1),1()0,,N n N N N N n x x x x x x L θθθ-++-<=⎧⎨⎩L L ≤≤≤≤≤≤≤其它.考虑似然函数非零部分, 得到ln L (θ ) = N ln θ + (n − N ) ln(1−θ ),令d ln ()0d 1L N n N θθθθ-=-=-, 解得θ的极大似然估计值为ˆN nθ=. 习题7-21. 选择题: 设总体X 的均值μ与方差2σ都存在但未知, 而12,,,n X X X L 为X 的样本, 则无论总体X 服从什么分布, ( )是μ和2σ的无偏估计量.(A) 11nii X n=∑和211()nii X X n=-∑. (B)111nii X n =-∑和211()1nii X X n =--∑.(C)111nii X n =-∑和211()1nii X n μ=--∑. (D)11nii X n=∑和211()nii X nμ=-∑.解 选(D).2. 若1X ,2X ,3X 为来自总体2(,)X N μσ:的样本, 且Y 1231134X X kX =++为μ的无偏估计量, 问k 等于多少?解 要求1231111()3434E X X kX k μμμμ++=++=, 解之, k =512.3. 设总体X 的均值为0, 方差2σ存在但未知, 又12,X X 为来自总体X的样本, 试证:2121()2X X -为2σ的无偏估计.证 因为22212112211[()][(2)]22E X X E X X X X -=-+2222112212[()2()()]22E X E X X E X σσ=-+==,所以2121()2X X -为2σ的无偏估计.习题7-31. 选择题(1) 总体未知参数θ的置信水平为0.95的置信区间的意义是指( ). (A) 区间平均含总体95%的值. (B) 区间平均含样本95%的值.(C) 未知参数θ有95%的可靠程度落入此区间. (D) 区间有95%的可靠程度含参数θ的真值. 解 选(D).(2) 对于置信水平1-α(0<α<1), 关于置信区间的可靠程度与精确程度, 下列说法不正确的是( ).(A) 若可靠程度越高, 则置信区间包含未知参数真值的可能性越大. (B) 如果α越小, 则可靠程度越高, 精确程度越低. (C) 如果1-α越小, 则可靠程度越高, 精确程度越低. (D) 若精确程度越高, 则可靠程度越低, 而1-α越小. 解 选(C )习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试, 取得数据如下(单位:小时):1050, 1100, 1080, 1120, 1250, 1040, 1130, 1300, 1200. 设灯泡寿命服从正态分布N (μ, 902), 取置信度为0.95, 试求当天生产的全部灯泡的平均寿命的置信区间.解 计算得到1141.11,x = σ2 =902. 对于α = 0.05, 查表可得/20.025 1.96z z ==α.所求置信区间为/2/2(,)(1141.11 1.96,1141.11 1.96)(1082.31,1199.91).x x z +=-=αα2. 为调查某地旅游者的平均消费水平, 随机访问了40名旅游者, 算得平均消费额为105=x 元, 样本标准差28=s 元. 设消费额服从正态分布. 取置信水平为0.95, 求该地旅游者的平均消费额的置信区间.解 计算可得105,x = s 2 =282.对于α = 0.05, 查表可得0.0252(1)(39) 2.0227t n t α-==.所求μ的置信区间为22((1),(1))(105 2.0227,105 2.0227)x n x n αα--+-=+=(96.045, 113.955).3. 假设某种香烟的尼古丁含量服从正态分布. 现随机抽取此种香烟8支为一组样本, 测得其尼古丁平均含量为18.6毫克, 样本标准差s =2.4毫克. 试求此种香烟尼古丁含量的总体方差的置信水平为0.99的置信区间.解 已知n =8, s 2 =2.42, α = 0.01, 查表可得220.0052(1)(7)20.278n αχχ-==, 220.99512(1)(7)0.989n αχχ--==, 所以方差σ 2的置信区间为2222122(1)(1)(,)(1)(1)n S n S n n ααχχ---=--22(81) 2.4(81) 2.4(,)20.2780.989-⨯-⨯=(1.988, 40.768). 4. 某厂利用两条自动化流水线灌装番茄酱, 分别从两条流水线上抽取样本:X 1,X 2,…,X 12及Y 1,Y 2,…,Y 17, 算出221210.6g,9.5g, 2.4, 4.7x y s s ====.假设这两条流水线上装的番茄酱的重量都服从正态分布, 且相互独立, 其均值分别为12,μμ. 又设两总体方差2212σσ=. 求12μμ-置信水平为0.95的置信区间, 并说明该置信区间的实际意义.解 由题设22121210.6,9.5, 2.4, 4.7,12,17,x y s s n n ======2222112212(1)(1)(121) 2.4(171) 4.71.94212172wn s n s s n n -+--⨯+-⨯===+-+-120.0252(2)(27) 2.05181,t n n t α+-==所求置信区间为122(()(2)((10.69.5) 2.05181 1.94x y t n n s α-±+-=-±⨯ =(-0.40,2.60).结论“21μμ-的置信水平为0.95 的置信区间是(-0.40,2.60)”的实际意义是:在两总体方差相等时, 第一个正态总体的均值1μ比第二个正态总体均值2μ大-0.40~2.60,此结论的可靠性达到95%.5. 某商场为了了解居民对某种商品的需求, 调查了100户, 得出每户月平均需求量为10公斤, 方差为9 . 如果这种商品供应10000户, 取置信水平为0.99.(1) 取置信度为0.99,试对居民对此种商品的平均月需求量进行区间估计; (2) 问最少要准备多少这种商品才能以99%的概率满足需要? 解 (1) 每户居民的需求量的置信区间为2222((1),(1))()(10 2.575,10 2.575)(9.2275,10.7725).,x n x n x z x αααα-+-≈+=-=10000户居民对此种商品月需求量的置信度为0.99的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以99%的概率满足需要.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》练习题7答案7
考试时间:120分钟
题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分)
1、设随机事件A 、B 互斥,(), (),P A P P B q ==则()P A
B =( )。
A 、q
B 、1q -
C 、
p D 、1p -
答案:D
2、某类灯泡使用时数在500小时以上的概率为0.5,从中任取3个灯泡使用,则在使用500小时之后无一损坏的概率为:( )。
A 、
18 B 、2
8
C 、38
D 、
4
8
答案:A
3、设ξ的分布函数为1()F x ,η的分布函数为2()F x ,而12()()()F x aF x bF x =-是某随机
变量ζ的分布函数,则, a b 可取( )。
A 、32, 55a b =
=- B 、2 3a b == C 、13 , 22a b =-= D 、13
, 22
a b ==-
答案:A
4、设随机变量ξ,η相互独立,其分布律为:
则下列各式正确的是( )。
A 、{}1P ξη==
B 、{}14
P ξη==
C 、{}12
P ξη==
D 、{}0P ξη==
答案:C ^^
5、两个随机变量的协方差为cov(,)ξη=( )。
A 、()
()
2
2
E E E ηηξξ-- B 、()()E E E E ξξηη--
C 、()()2
2
E E E ξηξη-⋅ D 、()E E E ξηξη-⋅ 答案:D
6、设随机变量ξ在11,22⎡⎤
-⎢⎥⎣
⎦上服从均匀分布sin ηπξ=的数学期望是( )。
A 、0 B 、1
C 、
1π D 、2
π
答案:A
7、设12100,,,ξξξ⋅⋅⋅服从同一分布,它们的数学期望和方差均是2,那么
104n
i i P n ξ=⎧⎫
<<≥⎨⎬⎩⎭
∑( )。
A 、
12 B 、212n n - C 、12n D 、1
n
答案:B 8、设12, ,
, n X X X 是来自正态总体2(, )N μσ的样本( )。
A 、2
1
1~(,)n i i X X N n μσ==∑
B 、2
11()~(0,
)n i X N n n σμ=-∑ C 、22
21
11()~(1)n i i X n n μχσ=⋅--∑
D 、22
21
11()~()n i i X X n n χσ=⋅-∑
答案:B 9、样本12(,,
, )n X X X ,2n >,取自总体ξ,E μξ=,2D σξ=,则有( )。
A 、i X (1i n ≤≤)不是μ的无偏估计
B 、
22121()()2X X μμ⎡⎤-+-⎣⎦是2σ的无偏估计 C 、22
121()2()3
X X μμ⎡⎤-+-⎣⎦是2σ的无偏估计 D 、21
1()1n
i i X n μ=--∑是2σ的无偏估计 答案:D
10、已知若~(0,1)Y N ,则{ 1.96}0.05P Y ≥=。
现假设总体1225
~(,9),,,
,X N X X X μ为样本,X 为样本均值。
对检验问题:0010:,:H H μμμμ=≠。
取检验的拒绝域为
1225{(,,,)C x x x =0x μ-},取显著性水平0.05α=,则a =( )。
A 、 1.96a =
B 、0.653a =
C 、0.392a =
D 、 1.176a =
答案:D
二、填空(5小题,共10分)
1、6个毕业生,两个留校,另4人分配到4个不同单位,每单位1人。
则分配方法有______种。
答案:(6543)360⨯⨯⨯=
2、已知()0.6, ()0.5, (|)0.8,P A P B P A B ===则()P A B =__________。
答案:0.74
3、若随机变量ξ的概率密度是()x ϕ,则随机变量3
ηξ=的概率密度是____________。
答案:(
)y ψ=
0y ≠
4、已知
1
{) (0, 1, 2, ), 41
!P k k k e
ξηξ==
==-则
()E η=_________()D η=_______
答案:()3E η= ()16D η= 5、设样本12(,,
,)n X X X 抽自总体22~(, ). , X N μσμσ均未知。
要对μ作假设检验,
统计假设为00:, H μμ=(0μ已知),10:, H μμ>则要用检验统计量为__________,给定显著水平α,则检验的拒绝区间为__________。
答案:统计量为~(1),X t t n =-其中2
211()1n
i i S X X n ==--∑ 拒绝区间为1(1) t n t α--≤<+∞
三、计算(5小题,共40分)
1、从一付扑克的13张黑桃中,一张接一张地有放回地抽取3次,求没有同号的概率。
答案:A 表示事件“没有同号” 基本事件总数3
13
A 所包含事件数13⨯12⨯11
3
131211132()0.78113169
P A ⨯⨯=== 2、设ξ的分布律为
求2
1ηξ=+的分布律 答案:
3、一袋中有21张卡片,每张卡片上各标有自然数1,2,3,4,…,21中的一个数字,从袋中任取一张卡片,且每张卡片被取到的可能性是相同的,设随机变量
1,0,ξ⎧=⎨
⎩取出的卡片上标有偶数取出的卡片上标有奇数 1,0,
ξ⎧=⎨
⎩取出的卡片上的数字能被3整除取出的卡片上的数字能不被3整除
试写出(ξ,η)的联合概率分布律及关于ξ和关于η的边缘概率分布律 答案:(ξ,η)的联合分布列
关于ξ的边缘分布列
关于η的边缘分布列
4、设随机变量12,,,n ξξξ⋅⋅⋅相互独立具,都服从2
(,)N a σ分布,求1n k i i E ξξ=⎛⎫
⎪⎝⎭
∑其中k ξ为
12,,,n ξξξ⋅⋅⋅中的某一个随机变量。
答案:()111
n n n
k i k i k i i i i E E E ξξξξξξ===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑∑
()21n
k
k i
i i k
E E ξξξ=≠=+
∑
()()2
1n
k k k
i
i i k
D E E E ξξξξ=≠=++
∑
()222221a n a na σσ=++-=+
5、设总体X 的分布密度为1(,)(,0)2x
x e x θ
ϕθθθ
-=-∞<<+∞>12,,n x x x 为X 的样
本,求参数θ的矩估计量。
答案:
()()0E X x x dx ϕ+∞
-∞
==⎰
,∴不能利用()E X 构造θ的估计。
2
22()()2E X x x dx ϕθ+∞-∞
==⎰
221
()2
E X θ∴=
ˆθ== 四、应用(2小题,共20分)
1、某大学生回答了卷面上的问题后还要回答补充题,仅当该大学生回答不出补充题时,教师才停止提问。
该生能答出任一补充题的概率等于0.9。
求答出补充题个数ξ的分布律。
答案: {}(0.9)(0.1)k
p k ξ==⨯ 0,1,2,3,
k
=
2、一药厂试制成功一种新药,卫生部门为了检验此药的效果,在100名患者中进行了试验,决定若有75名或更多患者显示有效时,即批准该厂投入生产,如果该新药的治愈率确实为80%,求该药能通过这地检验的概率是多少?已知标准正态分布函数0,1F (x)的值。
0,1F (0.313)=0.6217,0,1F (1.25)=0.8944,0,1F (0.13)=0.5517
答案:设100名参试的患者中,该药显示效果的人数为ξ,假定各患者的情况彼此独立,则可认为ξ服从B (100,0.8)
100,0.8,4n p np ====
应用德莫−拉普拉斯中心极限定理知该药能通过检验的概率是:
{}80758075144P P ξξ--⎧⎫
≥=-<⎨⎬⎩⎭
()()0,10,11 1.25 1.25F F ≈--==0.8944。