人教版九年级上册数学单元测试卷(全册)
人教版九年级上册数学各单元测试卷及答案(全套)

第二十一章综合测试一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是( ) A .2550x x -+= B .2550x x +-= C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是( ) A.12x x ==B .10x =,2x =-C.1x =2x =-D.1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为( ) A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为( ) A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为( )A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为( ) A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=( ) A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为( )A .1(1)282x x += B .1(1)282x x -= C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根 二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -=的两根为1x ,2x ,则1211x x +=__________. 15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________. 16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________. 17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分) 19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=. (1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。
人教版数学九年级上册第二十三单元测试试卷(含答案)

人教版数学9年级上册第23单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列所给图形中,既是中心对称图形又是轴对称图形的是( )A.B.C.D.2.(3分)如图五幅图案中,②、③、④、⑤哪一个图案可以通过平移图案①得到?( )A.②B.③C.④D.⑤3.(3分)如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是( )A.点A与点A′是对称点B.BO=B′OC.∠ACB=∠C′A′B′D.△ABC≌△A′B′C′4.(3分)观察下列图案,其中旋转角最大的是( )A.B.C.D.5.(3分)下列图形都是由两个全等三角形组合而成,其中是轴对称图形的是( )A.B.C.D.6.(3分)下列图形中,不能通过其中一个四边形平移得到的是( )A.B.C.D.7.(3分)已知点P(m﹣3,m﹣1)关于原点的对称点P′在第四象限,则m的取值范围在数轴上表示正确的是( )A.B.C.D.8.(3分)如图,△ABC是等腰直角三角形,DE是过点C的直线,BD⊥DE,AE⊥DE,则△BDC通过下列变换能与△ACE重合的是( )A.绕点C逆时针旋转90度B.沿AB的垂直平分线翻折C.绕AB的中点M顺时针旋转90度D.沿DE方向平移9.(3分)有下列说法:①平行四边形既是中心对称图形,又是轴对称图形②正方形有四条对称轴③平行四边形相邻两个内角的和等于180°④菱形的面积计算公式,除了“S菱形=底×高”之外,还有“S菱形=两对角线之积”⑤矩形和菱形均是特殊的平行四边形,因此具有平行四边形的所有性质其中正确的结论的个数有( )A.1B.2C.3D.410.(3分)如图,将等边三角形OAB放在平面直角坐标系中,A点坐标(1,0),将△OAB绕点O逆时针旋转60°,则旋转后点B的对应点B′的坐标为( )A.(―12,2)B.(﹣1,12)C.(―32,2)D.(,12)二、填空题(共5小题,满分15分,每小题3分)11.(3分)已知,点A(a,1)和点B(3,b)关于点(5,0)成中心对称,则a+b的值为 .12.(3分)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为 .13.(3分)一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是 (把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.14.(3分)如图,在△ABC中,AB=AC BAC=30°,将△ABC绕点A 逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为 .15.(3分)在平面直角坐标系中,O为原点,点A在第一象限,B(0),OA=AB,∠AOB=30°,把△OAB绕点B顺时针旋转60°得到△MPB,点O,A的对应点分别为M(a,b),P(p,q),则b﹣q的值为 .三、解答题(共10小题,满分75分)16.(7分)如图,在平面直角坐标系内,△ABC三个顶点的坐标分别为A(1,﹣2),B(4,﹣1),C(3,﹣3)(正方形网格中,每个小正方形的边长都是1个单位长度).(1)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标为 ;(2)以坐标原点O为旋转中心,将△ABC逆时针旋转90°,得到△A2B2C2,则点A2的坐标为 ;(3)求出(2)中线段AC扫过的面积.17.(7分)△ABC在平面直角坐标系中如图:(1)画出将△ABC绕点O逆时针旋转90°所得到的△A1B1C1,并写出A1点的坐标;(2)画出△A1B1C1关于原点成中心对称的△A2B2C2,并直接写出△AA1A2的面积.18.(7分)P为等边△ABC内的一点,PA=10,PB=6,PC=8,将△ABP绕点B顺时针旋转60°到△CBP′位置.(1)判断△BPP′的形状,并说明理由;(2)求∠BPC的度数.19.(7分)如图,△ABC中,∠BAC=120°,以BC为边向外作等边△BCD,把△ABD 绕着D点按顺时针方向旋转60°后到△ECD的位置,且点A、C、E在同一直线上.若AB=6,AC=4,求∠BAD的度数和AD的长.20.(7分)如图所示,△ABC的∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2,求∠BAD的度数和线段AD的长.21.(7分)在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.22.(7分)如图,已知△ABC和点,求作△ABC关于点C成中心对称的△A1B1C1,保留作图痕迹,不要求写过程.23.(8分)如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1,写出B1的坐标;(2)直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标 .24.(9分)如图网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).(1)点A关于点O中心对称点的坐标为 ;(2)△AOB绕点O顺时针旋转90°后得到△A1OB1,在方格纸中画出△A1OB1,并写出点B1的坐标( , );(3)在y轴上找一点P,使得PA+PB最小,请在图中标出点P的位置,并求出这个最小值.25.(9分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,2),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′.记旋转角为α.(1)如图①,当点O′落在边AB上时,求点O′的坐标;(2)如图②,当α=60°时,求AA′的长及点A′的坐标.参考答案一、选择题(共10小题,满分30分,每小题3分)1.D;2.D;3.C;4.A;5.B;6.D;7.D;8.C;9.C;10.A;二、填空题(共5小题,满分15分,每小题3分)11.612.24°13.②③④14.315.1三、解答题(共10小题,满分75分)16.解:(1)∵△A1B1C1与△ABC关于原点O成中心对称,A(1,﹣2),∴点A1的坐标为(﹣1,2).故答案为:(﹣1,2);(2)如图,△A2B2C2即为所求,点A2的坐标为(2,1).故答案为:(2,1);(3)∵OA=OC=∴线段AC扫过的面积=扇形OCC2的面积﹣扇形OAA2的面积90π2360=9π2―5π4=13π4.17.解:(1)如图,△A1B1C1为所作,A1点的坐标为(﹣3,2);(2)如图,△A 2B 2C 2为所作;△AA 1A 2的面积=12×2=13.18.解:(1)△BPP ′是等边三角形;理由如下:∵△ABP 绕点B 顺时针旋转60°到△CBP ′位置,∴BP =BP ′,∠PBP ′=60°,AP =CP ′=10,∴△BPP ′是等边三角形;(2)∵△BPP ’是等边三角形,∴∠BPP ’=60°,PP ′=PB =6,∵62+82=102,∴PP ′2+PC 2=P ′C 2,∴△PCP ′是直角三角形,∠P ′PC =90°,∴∠BPC =∠BPP ′+∠P ′PC =60°+90°=150°.19.解:∵把△ABD 绕点D 按顺时针方向旋转60°后到△ECD 的位置,∴AD =DE ,∠ADE =60°,AB =CE ,∵∠BDC +∠BAC =60°+120°=180°,∴∠ABD +∠ACD =180°,∵∠ABD =∠DCE ,∴∠ACD +∠DCE =180°,∴A ,C ,E 在一条直线上,∴△ADE 是等边三角形,∴∠DAE =60°,∴∠BAD =120°﹣60°=60°;∴AE =AD =AC +EC =AC +AB =10.20.解:法1:∵△ABC的∠BAC=120°,以BC为边向形外作等边△BCD,∴∠BAC+∠BDC=120°+60°=180°,∴A,B,D,C四点共圆,∴∠BAD=∠BCD=60°,∠ACD+∠ABD=180°,又∵∠ABD=∠ECD,∴∠ACD+∠ECD=180°,∴∠ACE=180°,即A、C、E共线,∵把△ABD绕着D点按顺时针方向旋转60°到△ECD的位置,AB=3,∴AB=CE=3,∴AD=AE=AC+AB=3+2=5;21.解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=12AD=2,∴AE=2.22.解:如图,△A1B1C1即为所求作.23.解:(1)如图,△A1B1C1即为所求;B1(4,﹣1)(2)顶点D 的坐标为:(1,1)或(﹣3,﹣1)或(﹣5,3).故答案为:(1,1)或(﹣3,﹣1)或(﹣5,3).24.解:(1)点A 关于点O 中心对称点的坐标为(﹣3,﹣2),故答案为:(﹣3,﹣2).(2)如图,△A 1OB 1即为所求作,并写出点B 1的坐标(3,﹣1),故答案为:3,﹣1.(3)如图,点P 即为所求作,最小值为==25.解:(1)如图①,∵点A (2,0),点B (0,2),∴OA =OB =2,△ABO 是等腰直角三角形,∴AB =当点O ′落在边AB 上时,α=45°,∴点O ′的横坐标为12AB 2―∴点O 2―;(2)如图②,当α=60°时,∴∠ABA ′=60°,AB =A ′B ,∴△ABA ′为等边三角形,∴AA′=A′B=AB=连接OA′,在△OBA′和△OAA′中,OB=OAOA′=OA′,A′B=A′A∴△OBA′≌△OAA′(SSS),∴∠BOA′=∠AOA′,∠BA′O=∠AA′O,∴直线OA′的函数解析式为y=x,∴OA′⊥AB,∴=2×2,即OM=A′M==∴OA′=OM+A′M=∴点A′的坐标为(1+1.。
人教版九年级上册数学《圆》单元测试卷(含答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。
人教版九年级数学上册单元测试题全套(含答案)

人教版九年级数学上册单元测试题全套(含答案)第21章 一元二次方程 测试题 (时间: 90分钟,满分:120分) (班级:_____ 姓名:_____ 得分:_____)一、选择题(每小题3分,共30分)1. 一元二次方程2x 2-3x -4=0的二次项系数是 ( ) A. 2 B. -3 C. 4 D. -42.把方程(x 55+(2x -1)2=0化为一元二次方程的一般形式是 ( )A .5x 2-4x -4=0B .x 2-5=0C .5x 2-2x +1=0D .5x 2-4x +6=03.方程x 2-2x-3=0经过配方法化为(x +a)2=b 的形式,正确的是 ( )A .()412=-xB .()412=+xC .()1612=-x D .()1612=+x4.方程()()121+=-+x x x 的解是 ( ) A .2B .3C .-1,2D .-1,35.下列方程中,没有实数根的方程是 ( ) A .212270x x -+=B .22320x x -+=C .223410x x +-=D .2230x x k --=(k 为任意实数)6.一个矩形的长比宽多2 cm ,其面积为2cm 8,则矩形的周长为 ( ) A .12 cm B .16 cm C .20 cm D .24 cm7.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得 ( ) A.168(1+x )2=128 B.168(1﹣x )2=128 C.168(1﹣2x )=128 D.168(1﹣x 2)=1288.一个两位数等于它的个位数的平方,且个位数比十位数大3,则这个两位数为 ( ) A .25B .36C .25或36D .-25或-369.从一块正方形的木板上锯掉2 m 宽的长方形木条,剩下的面积是48㎡,则原来这块木板的面积是 ( ) A .100㎡B .64㎡C .121㎡D .144㎡10.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是 ( ) A .24 B .24或85 C .48 D .85 二、填空题(每小题4分,共32分)11.当k 时,方程2223kx x x -=-是关于x 的一元二次方程.12.若0a b c ++=且0a ≠,则关于x 的一元二次方程20ax bx c ++=必有一定根,它是 . 13.一元二次方程x(x-6)=0的两个实数根中较大的为 .14.某市某企业为节约用水,自建污水净化站.7月份净化污水3000吨,9月份增加到3630吨,则这两个月净化的污水量平均每月增长的百分率为 .15.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是-2,则另一个根是______. 16.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x ,则可列方程____________________.17.方程x 2+px +q =0,甲同学因为看错了常数项,解得的根是6,-1;乙同学看错了一次项,解得的根是-2,-3,则原方程为 .18.如图,矩形ABCD 的周长是20 cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为68 cm 2,那么矩形ABCD 的面积是_______cm 2.三、解答题(共58分)19.(每小题5分,共20分)选择适当的方法解下列方程: (1)28)32(72=-x ;(2);0982=-+x x (3)x x 52122=+;(4)()x x x -=-12)1(2.20.(8分)当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?21.(8分)已知a ,b 是方程0122=-+x x 的两个根,求代数式))(11(22b a ab ba --的值.22.(10分)如图,△ABC 中,∠B=90°,点P 从点A 开始沿AB 边向B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.如果点P ,Q 分别从点A ,B 同时出发,经几秒钟,使△PBQ 的面积等于8cm 2?23.(12分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元? 参考答案一、1.A 2.A 3.A 4.D 5.B 6.A 7.B 8.C 9.B 10.B 二、11.3k ≠- 12.1 13.6 14.10% 15.116.2200200(1)200(1)1400x x ++++= 17.x 2-5x +6=0 18.16三、19.(1)1x =25,2x =21;(2)1x =1,2x =-9; (3)1x =235+,2x =235-;(4)1x =1,2x =31.20. 解:由题意,得∆=(-4)2-4(m -21)=0,即16-4m +2=0,解得m =29.当m =29时,方程有两个相等的实数根x 1=x 2=2.21. 解:由题意,得.1,2-=-=+ab b a 所以原式=()()()ab b a a b a b ab aba b 422-+=-=-∙-=().8422=+- 22.解:解:设x 秒时,点P 在AB 上,点Q 在BC 上,且使△PBD 的面积为8 cm 2,由题意,得82)6(21=⋅-x x . 解得x 1=2, x 2=4.经检验均是原方程的解,且符合题意. 所以经过2秒或4秒时△PBQ 的面积为8 cm 2.解:(1)2x 50-x(2)由题意,得(50-x )(30+2x )=2100. 化简,得x2-35x+300=0. 解得x1=15,x2=20.因为该商场为了尽快减少库存,所以降的越多,越吸引顾客,故选x=20. 答:每件商品降价20元,商场日盈利可达2100元.第22章 二次函数 测试题 时间:100分钟 满分:120分钟一、选择题(每小题3分,共24分)1.抛物线y=2(x ﹣3)2+1的顶点坐标是( ) A .(3,1) B .(3,﹣1)C .(﹣3,1)D .(﹣3,﹣1)2.关于抛物线y=x 2﹣2x+1,下列说法错误的是( ) A .开口向上 B .与x 轴有两个重合的交点 C .对称轴是直线x=1 D .当x >1时,y 随x 的增大而减小 3.二次函数y=ax 2+bx+c ,自变量x 与函数y 的对应值如表:A .抛物线的开口向下B .当x >﹣3时,y 随x 的增大而增大C .二次函数的最小值是﹣2D .抛物线的对称轴是x=﹣ 4.抛物线y=2x 2,y=﹣2x 2,共有的性质是( )A .开口向下B .对称轴是y 轴C .都有最高点D .y 随x 的增大而增大5.已知点(x 1,y 1),(x 2,y 2)均在抛物线y=x 2﹣1上,下列说法中正确的是( ) A .若y 1=y 2,则x 1=x 2 B .若x 1=﹣x 2,则y 1=﹣y 2 C .若0<x 1<x 2,则y 1>y 2 D .若x 1<x 2<0,则y 1>y 26.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .7.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a﹣3b+c <0;④b﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0, x 2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤8.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( ) A .B .C .D .二、填空题(每小题3分,共21分)9.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 . 10.如果将抛物线y=x 2+2x ﹣1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是 . 11.已知点A (4,y 1),B (,y 2),C (﹣2,y 3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y 1、y 2、y 3的大小关系是 .12.二次函数y=x 2﹣2x ﹣3的图象如图所示,若线段AB 在x 轴上,且AB 为2个单位长度,以AB 为边作等边△ABC ,使点C 落在该函数y 轴右侧的图象上,则点C 的坐标为 .13.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3),D 是抛物线y=﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为 .第7题 第8题14.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为 .15.如图,一段抛物线:y=﹣x (x ﹣2)(0≤x ≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 6,若点P (11,m )在第6段抛物线C 6上,则m= .三、解答题(本大题8个小题,共75分)16.(8分)如图,已知抛物线y=x 2+bx+c 经过A (﹣1,0)、B (3,0)两点. (1)求抛物线的解析式和顶点坐标; (2)当0<x <3时,求y 的取值范围;(3)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.17.(9分)如图,已知抛物线y=ax 2+bx+c 与x 轴的一个交点为A (3,0),与y 轴的交点为B (0,3),其顶点为C ,对称轴为x=1. (1)求抛物线的解析式;(2)已知点M 为y 轴上的一个动点,当△ABM 为等腰三角形时,求点M 的坐标.第14题 第15题18.(9分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.19.(9分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.20.(9分)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.21.(10分)如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?22.(10分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y 与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?23.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.24.(10分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.25.(10分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.答案一、选择题(每小题3分,共18分)1-8: A D D B D C B C二、填空题(每小题3分,共27分)9.(1,4) 10. y=x2+2x+3 11. y3>y1>y2 12.(1+,3)或(2,﹣3)13.15 14.(1+,2)或(1﹣,2) 15.﹣1三.解答题16.解:(1)把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4).(2)由图可得当0<x<3时,﹣4≤y<0.(3)∵A(﹣1,0)、B(3,0),∴AB=4.设P(x,y),则S△PAB=AB•|y|=2|y|=10,∴|y|=5,∴y=±5.①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5);②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;综上所述,P点坐标为(﹣2,5)或(4,5).17.解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).18.解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,∴,解之得:a=﹣1,b=3,∴y=﹣x2+3x+4;(2)∵点D(m,m+1)在第一象限的抛物线上,∴把D的坐标代入(1)中的解析式得 m+1=﹣m2+3m+4,∴m=3或m=﹣1,∴m=3,∴D(3,4),∵y=﹣x2+3x+4=0,x=﹣1或x=4,∴B(4,0)∴OB=OC,∴△OBC是等腰直角三角形,∴∠CBA=45°设点D关于直线BC的对称点为点E∵C(0,4)∴CD∥AB,且CD=3∴∠ECB=∠DCB=45°∴E点在y轴上,且CE=CD=3∴OE=1 ∴E(0,1)即点D关于直线BC对称的点的坐标为(0,1);19.解:(1)∵二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.20.解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=8+4=12.21.解:(1)抛物线的顶点坐标是(4,3),设抛物线的解析式是:y=a(x﹣4)2+3,把(10,0)代入得36a+3=0,解得a=﹣,则抛物线是y=﹣(x﹣4)2+3,当x=0时,y=﹣×16+3=3﹣=<2.44米,故能射中球门;(2)当x=2时,y=﹣(2﹣4)2+3=>2.52,∴守门员乙不能阻止球员甲的此次射门,当y=2.52时,y=﹣(x﹣4)2+3=2.52,解得:x1=1.6,x2=6.4(舍去),∴2﹣1.6=0.4(m),答:他至少后退0.4m,才能阻止球员甲的射门.22.解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=741(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a≥0.1.答:第13天每只粽子至少应提价0.1元.23.解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).24.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).25.解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积=×6×=.(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT △CM 1N 中,CN==,∴点M 1坐标(﹣1,2+),点M 2坐标(﹣1,2﹣).②当M 3为等腰三角形的顶角的顶点时,∵直线AC 解析式为y=﹣x+2, 线段AC 的垂直平分线为y=x , ∴点M 3坐标为(﹣1,﹣1). ③当点A 为等腰三角形的顶角的顶点的三角形不存在. 综上所述点M 坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).第23章 旋转一、选择题(每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )2.将左图所示的图案按顺时针方向旋转o90后可以得到的图案是( )3.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在的平面内可作旋转中心的点共有 ( )A.1 个 B.2 个 C.3 个 D.4个4.如图,将△ABC 绕着点C 按顺时针方向旋转o20,B 点落在B '位置,A 点落在A '位置,若AC ⊥B A '',则∠BAC 的度数是( )A.o50 B.o60 C.o70 D.o805.如图,△OAB 绕点O 逆时针旋转o80到△OCD 的位置,已知∠AOB =o45,则∠AOD 等于( )A.o55 B.o45 C.o40 D.o356.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形,又是关于坐标原点O 成中心对称的图形.若点A 的坐标是 (1, 3),则点M 和点N 的坐标分别为( ) A.)3,1(),3,1(---N M B.)3,1(),3,1(---N M C.)3,1(),3,1(--N MD.)3,1(),3,1(---N M7.直线3+=x y 上有一点P (3,2m ),则P 点关于原点的对称点P '为 ( ) A.P '(3,6) B.P '(-3,6) C.P '(-3,-6) D.P '(3,-6)8. 如图是一个中心对称图形,A 为对称中心,若∠C =o90, ∠B =o30,AC =1,则B B '的长为( )A.4 B.33 C.332 D.3349.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上一点,且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是( )A.4 B.3.5 C.3 D.2.510.如图,图案由三个叶片组成,绕点O 旋转o120后可以和自身重合,若每个叶片的面积为24cm ,∠AOB 为o120,则图中阴影部分的面积之和为. ( ) A.23cm B.24cm C.25cm D.26cm二、填空题(每小题4分,共32分)11.点P (2,3)绕着原点逆时针方向旋转o90与点P '重合,则P '的坐标为 . 12.已知a <0,则点P (2a -, a -+1)关于原点的对称点1P 在 象限.13.如图,将矩形ABCD 绕点A 顺时针旋转o90后,得到矩形D C B A ''',如果CD =2DA =2,那么C C '=_________.14.如图,△COD 是△AOB 绕点O 顺时针方向旋转o40后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠D 的度数是 度.15.如图,四边形ABCD 中,∠BAD =∠C =o90,AB =AD ,AE ⊥BC 于E ,若线段AE =5,则ABCD S 四边形= .16.将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD =o110,则∠BOC = 度.17.如图,小亮从A 点出发,沿直线前进10米后向左转o30,再沿直线前进10米,又向左转o30,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.18.将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转o15后得到△C B A '',则图中阴影部分的面积是 2cm .三、解答题(共58分)19.(10分)如图,把△ABC 向右平移5个方格,再绕点B 顺时针方向旋转90°.(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.20. (12分)画出△ABC 关于原点O 对称的△111C B A ,并求出点1A ,1B ,1C 的坐标.C BA21.(12分)如图所示,△ABP 是由△ACE 绕A 点旋转得到的,若∠BAP =o40,∠B =o30,∠PAC =o20,求旋转角及∠CAE 、∠E 、∠BAE 的度数.22.(12分)如图,P 是正三角形ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后,得到△AB P '. ⑴求点P 与点P '之间的距离; ⑵∠APB 的度数.23.(12分)如图1,在△ABC 和△EDC 中,AC =CE =CB =CD ,∠A C B =∠ECD =90,AB 与CE 交于F ,ED 与AB 、BC 分别交于M 、H .(1)求证: CF =CH ;(2)如图2,△ABC 不动,将△EDC 绕点C 旋转到∠BCE =45时,试判断四边形ACDM 是什么四边形?并证明你的结论.参考答案一、15.25 16.70 17.120 18.6325 三、19.解:(1)如图(2)能,将△ABC 绕CB 、B C ''''延长线的交点顺时针旋转90度.20.解:△ABC 关于原点O 对称的△111C B A 如图, 点的坐标分别是)2,3(1-A ,)1,2(1B ,)3,2(1--C .21.解: 旋转角∠BAC =∠PAC +∠BAP =o20+o40=o60, ∵∠BAP =o40. ∴∠CAE =40°,∵∠B =o30. ∴∠C =o30 . ∴∠E=110°. ∴∠BAE=100°.22.解 :(1)连接P P ',由题意可知P B '=PC =10,P A '=AP =6, ∠PAC =∠AB P ',而∠PAC +∠BAP =60°, ∴∠P PA '=60°. ∴△P AP '为等边三角形, ∴P P '=P A '=AP =6;(2)利用勾股定理的逆定理可知:C"B"A''C'B'A'CBA∵222P B BP P P '=+',∴△P BP '为直角三角形.∵∠P BP '=90°∴∠APB =90°+60°=150°.23.(1)证明:在△ACB 和△ECD 中∵∠ACB=∠ECD= 90,∴∠1+∠ECB=∠2+∠ECB, ∴∠1=∠2.又∵AC=CE=CB=CD, ∴∠A=∠D= 45,∴△ACB ≌△ECD,∴CF=CH(2) 答: 四边形ACDM 是菱形证明: ∵∠ACB=∠ECD= 90, ∠BCE= 45∴∠1= 45, ∠2= 45又∵∠E=∠B= 45,∴∠1=∠E, ∠2=∠B∴AC ∥MD, CD ∥AM ,∴ACDM 是平行四边形又∵AC=CD, ∴ACDM 是菱形第24章 圆一、选择题(每小题4分,共24分)在每小题给出的四个选项中, 只有一项是符合题目要求的.1. 已知⊙O 的半径是6cm,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法判断2.如图,点A 、B 、C 在⊙O 上,∠ABC =50°,则∠AOC 的度数为( )A .120°B .100°C .50°D .25°3.如图在△ABC 中,∠B =90°, ∠A =30°,AC =4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A B C ''的位置,且A 、C 、B ′三点在同一条直线上,则点A 所经过的最短路线的长为( ) A.3cm B. 8cm C. 163cm π D. 83cm π4.如图,ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( )A.126°B. 54°C. 30°D. 36°5.如图,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 交于点C ,CD ⊥OA ,垂足为D ,则sin ∠AOB 的值等于( )A .CDB .OAC .OD D .AB6.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则该圆锥的底面半径为( )A. 2πcmB. 1cmC. πcmD. 1.5cm7. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与⊙O 相切于点D ,则下列结论中不一定正确的是( )A. AG=BGB.AB//EFC.AD//BCD.∠ABC=∠ADC8. 若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A .6,32B .32 3C .6,3D .62,32二、填空题(每小题4分,共24分)请把答案填写在题中横线上.9.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为_________.(第7题图) (第5题图)B′A′C B A (第3题图) A OB C (第2题图)(第4题图)A B C D O (第13题图) (第14题图)10.已知圆锥母线长为5cm ,底面直径为4cm ,则侧面展开图的圆心角度数是_________.11.Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,以C 为圆心,r 为半径作圆,若圆C 与直线AB 相切,则r 的值为_________.12.钟表的轴心到分针针尖的长为5cm ,那么经过40分钟,分针针尖转过的弧长是_________________cm.13.如图,AB 是⊙O 的直径,C 、D 是圆上的两点(不与A 、B 重合),已知BC =2,tan ∠ADC =1,则AB =__________.14. 如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E . B ,E 是半圆弧的三等分点,弧BE 的长为32 ,则图中阴影部分的面积为 . 三、 解答题(本题共5小题,共44分)15.(7分)如图所示,某窗户由矩形和弓形组成.已知弓形的跨度AB =3m ,弓形的高EF =1m.现计划安装玻璃,请帮工程师求出⌒A B 所在圆O 的半径.16. (7分)如图△ABC 中,∠B = 60°,⊙O 是 △ABC 的外接圆,过点A 作⊙O 的切线,交CO 的延长线于点P ,OP 交⊙O 于点D .(1)求证:AP =AC (2) 若AC =3,求PC 的长.(第16题图)17.(10分)如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求BC的长.18.(10分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.19.(10分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=6,求CD的长.(第19题图)参考答案一、选择题:1.A.2.B.3.D4.D5.A6.B7.C8.B二、填空题:9.72°或108° 10. 144° 11.2.4 12.13.2214. 32233π-. 三、解答题:15. 解:设⊙O 的半径为r ,则OF =r -1. 由垂径定理,得BF =12AB =1.5,OF ⊥AB ,由OF 2 +BF 2= OB 2,得(r -1)2+1.52 = r 2,解得r =138.答:⌒A B 所在圆O 的半径为138.16.(1)连接OA, ∵60B ∠=︒,AP 为切线,∴ OA ⊥ AP, ∠AOC=120°,又∵OA=OC, ∴∠ ACP=30°∠ P= 30°, ∴ AP=AC(2)先求OC=3,再证明△ OAC∽△ APC , PC AC =APOC ,得PC=33. 17. (1)证明:∵四边形ABCD 内接于圆O ,∴∠DCB +∠BAD =180°,∵∠BAD =105°,∴∠DCB =180°-105°=75°.∵∠DBC =75°,∴∠DCB =∠DBC =75°.∴BD =CD .(2)解:∵∠DCB =∠DBC =75°,∴∠BDC =30°.由圆周角定理,得,的度数为:60°,故BC =180n R π=603180π⨯=π. 答:BC 的长为π.18.证明:(1)∵⊙O 与DE 相切于点B ,AB 为⊙O 直径,∴∠ABE =90°.∴∠BAE +∠E =90°.又∵∠DAE =90°, ∴∠BAD +∠BAE =90°.∴∠BAD =∠E .(2)解;连接BC .'∵AB 为⊙O 直径, ∴∠ACB =90°.∵AC =8,AB =2×5=10,∴BC 22AB AC -=6.又∵∠BCA =∠ABE =90°,∠BAD =∠E ,∴△ABC ∽△EAB .∴AC EB =BC AB . ∴8EB =610 ∴BE =403.203π19.(1)证明:连接AO ,AC .∵BC 是⊙O 的直径,∴∠BAC =90°∴∠CAD =90°∵点E 是CD 的中点,∴CE= CE= AE在等腰△EAC 中,∠ECA = ∠EAC∵OA =OC ∴∠OAC = ∠OCA∵CD 是⊙O 的切线,∴CD ⊥OC∴∠ECA + ∠OAC = 90°∴∠EAC + ∠OAC = 90°∴OA ⊥AP ,∴AP 是⊙O 的切线(2)解:由(1)知OA ⊥AP在Rt △OAP 中,∵∠OAP = 90°, OC = CP = OA 即OP = 2OA ,∴,∴,∴ ∴ 又∵在Rt △DAC 中,∠CAD = 90°, ∠ACD = 90°-∠ACO = 30°∴第25章 概率初步一、选择题(共10小题,每小题3分,满分30分)1.下列说法中正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是( )A .B .C .D . 3.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为1sin 2OA P OP ∠==30P ∠=60AOP ∠=23tan 60AB AC ==234cos AC CD ACD ===∠C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.13.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?。
人教版数学九年级上册《圆》单元测试卷带答案

A. ①B. ③C. ②D. ④
9.已知正六边形的边长为 ,则这个正六边形的边心距是( )
A. B. C. D.
10.如图,直线 , 与 和 分别相切于点 和点 .点 和点 分别是 和 上的动点, 沿 和 平移. 的半径为 , .下列结论错误的是( )
【详解】解:连结OA、OB,如图1,
∵⊙O与l1和l2分别相切于点A和点B,
∴OA⊥l1,OB⊥l2,
∵l1∥l2,
∴点A、O、B共线,
∴AB为⊙O的直径,
∴l1和l2的距离为2;故C正确,
作NH⊥AM于H,如图1,
则NH=AB=2,
∵∠AMN=60°,
∴sin60°= ,
∴MN= ;故A正确,
当MN与⊙O相切,如图2,连结OM,ON,
求证: 是 的切线;
当点 在劣弧 上运动时,其他条件不变,若 .求证:点 是 的中点;
在满足 条件下, , ,求 的长.
参考答案
一、选择题(共 16 小题,每小题 3 分,共 48 分 )
1.下列语句中,不正确的有( )
①直径 弦;
②弧是半圆;
③经过圆内一定点可以作无数条弦;
④长度相等的弧是等弧.
A.①③④B.②③C.②D.②④
∴AC= AB= ×60=30,
CO=AO-10,
在Rt△AOC中,AO2=AC2+OC2,
AO2=302+(AO-10)2,解得AO=50cm.
∴内径为2×50=100cm.
故选C.
【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
初中数学人教版九年级上册-第二十四章-圆单元测试卷(含答案)

人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8−4πB.16−4πC.32−4πD.32−8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A .B .C .D .6.如图.将扇形AOB 翻折,使点A 与圆心O 重合,展开后折痕所在直线l 与AB 交于点C ,连接AC .若OA =2,则图中阴影部分的面积是( )A .2π3−32B .2π3−3C .π3−32D .π37.如图,⊙O 是正△ABC 的外接圆,△DOE 是顶角为120°的等腰三角形,点O 与圆心重合,点D ,E 分别在圆弧上,若⊙O 的半径是6,则图中阴影部分的面积是( )A .4πB .12π−9 3C .12π−923D .24π− 9 38.如图,在正方形ABCD 中,点E ,F 分别是边BC 和CD 上的动点(不与端点重合),∠EAF =45°,AF 、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43−1B.3+5C.1+25D.35−110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC=x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2−AC2=0.52−0.42=0.3m,∴CD=OD−OC=0.5−0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°−∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG−S梯形OEDF−S扇形BOF=6×23−12×(2+4)×23−60π⋅42360=63−83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(−2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,∠HAM=∠CMOMC=MA∴△AMH≌△MCO(ASA),∠OCM=∠AMH故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,∠CMO=∠MPECM=PM∴△MCO≌△PME(ASA)∠MCO=∠PME∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(−1,−3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24−t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2−C F2=x2−(24−t)2,在Rt△BFO中,B F2=B O2−O F2=242−t2,于是有:x2−(24−t)2=242−t2,整理得,t=−148x2+24,∴y=−124x 2+2x+96=−124(x−24)2+120,当x=24时,y max=120。
第24章 圆 人教版数学九年级上册单元测试卷(含答案)

第二十四章 圆一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·北京通州区期末)如图,若OA⊥OB,则∠C=( )A.22.5°B.67.5°C.90°D.45°(第1题) (第2题)2.(2022·江苏镇江润州区段考改编)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是( )A.3B.4C.5D.63.(2021·江苏常熟期中)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-3,0),B(-1,2),C(3,2),则△ABC的外心的坐标是( )A.(1,-2)B.(0,0)C.(1,-1)D.(0,-1)(第3题) (第4题)4.(2021·山东寿光期中)如图,若正方形ABCD的边长为6,则其外接圆半径OA与内切圆半径OE的比值为( )A.3B.2C.2D.35.(2022·湖北十堰期末)如图,点A,B,C,D都在☉O上,OA⊥BC,∠OBC=40°,则∠ADC 的度数为( ) A.40° B.30° C.25° D.50°6.(2022·浙江金华期中改编)如图,☉O 与正六边形OABCDE 的边OA ,OE 分别交于点F ,G ,点M 为劣弧FG 的中点.连接FM ,GM ,若FM=22,则☉O 的半径为( )A.2B.6C.22D.26(第6题) (第7题)7.(2022·浙江宁波江北区期末)如图,AB 是半圆O 的直径,C ,D 是半圆上两点,连接CA ,CD ,AD.若∠ADC=120°,BC=1,则BC 的长为( )A.π3B.π4C.π6D.2π38.(2022·江苏镇江期中)简易直尺、含60°角的直角三角板和量角器如图摆放(无重叠部分),A 为三角板与直尺的交点,B 为量角器与直尺的接触点,C 为量角器与三角板的接触点.若点A 处刻度为4,点B 处刻度为6,则该量角器的直径长为( )A.2B.23C.4D.439.如图,四边形ABCD 内接于☉O ,AD ∥BC ,直线EF 是☉O 的切线,B 是切点.若∠C=80°,∠ADB=54°,则∠CBF=( )A.45°B.46°C.54°D.60°10.如图(1),AB是半圆O的直径,点C是半圆O上异于A,B的一点,连接AC,BC.点P从点A出发,沿A→C→B以1 cm/s的速度运动到点B.图(2)是点P运动时,△PAB 的面积y(cm2)随时间x(s)变化的图象,则点D的横坐标为( )A.a+2B.2C.a+3D.3二、填空题(共5小题,每小题3分,共15分)11.(2022·山东济南天桥区期末)如图,☉A,☉B,☉C两两相离,且半径都为2,则图中阴影部分的面积之和为 .(结果保留π)(第11题) (第12题)12.(2022·江苏苏州姑苏区期中)如图,A,B,C,D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为 .13.(2022·河北唐山期末改编)如图,△ABC内接于☉O,过点A作直线EF,已知∠B=∠EAC,根据弦AB的位置变化,试探究直线EF与☉O的位置关系.甲:如图(1),当弦AB过点O时,EF与☉O相切;乙:如图(2),当弦AB不过点O时,EF也与☉O相切.你认为 的判断正确.14.新风向关注数学文化在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB为☉O的直径,弦CD⊥AB于点E,AE=1寸,CD=10寸,则直径AB的长为 寸.(第14题) (第15题)15.如图,已知四边形ABCD是边长为4的正方形,以AB为直径向正方形内作半圆,P为半圆上一动点(不与点A,B重合),当PA= 时,△PAD为等腰三角形.三、解答题(共6小题,共55分)16.(7分)(2022·北京四中期中改编)某游乐园的摩天轮采用了国内首创的横梁结构,如图,摩天轮半径为44 m,中心O距离地面56 m,匀速运行一圈的时间为18 min.由于受到周边建筑物的影响,乘客与地面之间超过一定距离时,可视为最佳观赏位置.已知在运行的一圈里最佳观赏时长为12 min,求最佳观赏位置与地面的最小距离(即BD的长).17.(8分)(2021·浙江温州模拟)如图,已知AB是☉O的直径,弦CD⊥AB于点E,点M 是☉O上一动点,∠M=∠D,连接BC.(1)判断BC与MD的位置关系,并说明理由;(2)若MD恰好经过圆心O,求∠D的度数.18.(8分)(2022·山东临沂期末)如图,AB为☉O的直径,AC,DC为弦,∠ACD=60°,P 为AB延长线上的点,连接PD,∠APD=30°.(1)求证:DP是☉O的切线.(2)若☉O的半径为2,求图中阴影部分的面积.19.(10分)[与特殊平行四边形综合](2021·河南驻马店二模)如图,已知☉O的直径AB=2,C是AB上一个动点(不与点A,B重合),切线DC交AB的延长线于点D,连接AC,BC,OC.(1)请添加一个条件使△BAC≌△ODC,并说明理由.(2)若点C关于直线AB的对称点为E.①当AD= 时,四边形OCDE为正方形.②当∠CDB= °时,四边形ACDE为菱形.20.(10分)新风向探究性试题如图,已知AB是☉O的直径,BC与☉O相切于点B,CD 与☉O相切于点D,连接AD,OC.(1)求证:AD∥OC.(2)小聪与小明在做这个题目的时候,对∠CDA+∠AOC的值进行了探究:小聪说,∠CDA+∠AOC的值是一个固定值;小明说,∠CDA+∠AOC的值随∠A的度数的变化而变化.若∠CDA+∠AOC的值为y,∠A的度数为x,你认为他们之中谁的说法正确?若小聪的说法正确,请求出y;若小明的说法正确,请求出y与x之间的关系.21.(12分)新风向探究性试题【问题呈现】阿基米德折弦定理:如图(1),AB和BC是☉O的两条弦(即折线ABC是☉O的一条折弦),BC>AB,M是ABC的中点,则从点M 向BC作垂线,垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的过程. 图(1) 图(2) 图(3) 图(4)证明:如图(2),在CD上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC.①∵∠A=∠C,②∴△MAB≌△MCG,∴MB=MG.又MD⊥BC,∴BD=DG,∴CD=CG+DG=AB+BD,即CD=AB+BD.根据证明过程,分别写出步骤①,②的理由:① .② .【理解运用】在图(1)中,若AB=4,BC=6,则BD= .【变式探究】如图(3),AB,BC是☉O的两条弦,点M是AC的中点,MD⊥BC于点D,请写出CD,DB,BA之间存在的数量关系: .【实践应用】如图(4),△ABC内接于☉O,BC是☉O的直径,点D为圆周上一动点,满足∠DAC=45°.若AB=6,☉O的半径为5,求AD的长.第二十四章 圆·B卷1.D ∵OA⊥OB,∴∠AOB=90°,∴∠C=12∠AOB=【技巧】同圆中,同弧所对的圆周角等于圆心角的一半45°.2.B 连接BD,由勾股定理可得BD=AB2+AD2=42+32=5,由题意可知,3<r<5,因此只有B选项符合.3.A 如图,∵三角形的外心到三角形三个顶点的距离相等,∴线段BC,AB的垂直平分线的交点即为外心P,由图可知,点P的坐标为(1,-2).4.B 由题意结合题图可知,内切圆直径等于正方形边长,则OE=3.由正方形的性质可得OA=32,则OAOE =323=2.5.C ∵OA ⊥BC ,∴AC =AB .∵∠OBC=40°,∴∠AOB=50°,∴∠ADC=12∠AOB=12×50°=25°.6.C 连接OM ,由题意知∠FOG=120°.∵点M 为劣弧FG 的中点,∴∠FOM=60°.∵OM=OF ,∴△OFM 是等边三角形,∴OM=OF=FM=22,则☉O 的半径为22,故选C .7.A 如图,连接OC.∵∠ADC=120°,∴∠ABC=60°.∵OB=OC ,∴△OBC 为等边三角形,∴∠COB=60°,OB=OC=BC=1,∴BC 的长=60π·1180=π3.8.D 如图,添加点D ,连接OA ,OB ,由题意得AB=6-4=2,∵∠CAD=60°,∴∠BAC=120°.∵AB 与半圆O 相切于点B ,AC 与半圆O 相切于C ,∴∠BAO=60°,∠AOB=30°,∴OA=2AB=4,∴OB=OA 2-AB 2=42-22=23,∴量角器的直径长为43.9.B 如图,连接OD ,OB ,则∠BOD=2∠C=160°.∵OB=OD ,∴∠OBD=180°―160°2=10°.∵四边形ABCD 内接于☉O ,∴∠A=180°-∠C=100°.∵AD ∥BC ,∴∠A+∠ABC=180°,∴∠ABC=80°.在△ABD 中,∠ADB=54°,∴∠ABD=180°-54°-100°=26°,∴∠OBC=80°-26°-10°=44°.∵EF 是☉O 的切线,∴∠OBF=90°,∴∠CBF=90°-∠OBC=90°-44°=46°.故选B .∵AD ∥BC ,∴∠ADB+∠BDC+∠C=180°.∵∠C=80°,∠ADB=54°,∴∠BDC=46°.∵∠CBF 是弦切角,∴∠CBF=∠BDC=46°.(弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数)10.A 从题图(2)看,当x=a 时,y 取得最大值a ,此时点P 运动到点C 处,即AC=a.∵∠ACB=90°,∴y=12×AC×BC=12BC×a=a ,解得BC=2.当点P 运动到点B 处时,y=0,即AC+BC=OD ,∵AC+BC=a+2,∴点D 的横坐标为a+2.11.2π 因为∠A+∠B+∠C=180°,所以阴影部分的面积之和等于半径为2的半圆的面积,为2π.12.10 如图,连接OA ,OB ,由题意知点A ,B ,C ,D 在以点O 为圆心,OA 的长为半径的同一个圆上.∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数=360°÷36°=10.13.甲、乙 题图(1)中,∵AB 是☉O 的直径,∴∠C=90°,∴∠B+∠CAB=90°.∵∠EAC=∠B ,∴∠EAC+∠CAB=90°,∴EF ⊥AB.∵OA 是半径,∴EF 是☉O 的切线,故甲的判断正确.如图,作直径AM ,连接CM ,则∠ACM=90°,∠B=∠M.∵∠EAC=∠B ,∴∠EAC=∠M.∵∠CAM+∠M=90°,∴∠CAM+∠EAC=90°,∴EF 是☉O 的切线,故乙的判断正确.14.26 连接OC.∵CD ⊥AB ,AB 为☉O 的直径,CD=10,∴CE=12CD=5. 设OC=OA=x ,则OE=x-1.由勾股定理得OE 2+CE 2=OC 2,即(x-1)2+52=x 2,解得x=13,∴AB=26寸.15.22或85516.【参考答案】由题意得AB⊥OM,BO=44,×360°=120°,∠AOB=18―1218∴∠BOC=60°,∠OBC=30°,∴OC=1OB=22.2∵中心O距离地面56 m,∴OM=56,∴CM=OM-OC=34,∴BD=34 m,故最佳观赏位置与地面的最小距离为34 m.(7分) 17.【参考答案】(1)BC∥MD.(1分)理由:∵∠MBC=∠D,∠M=∠D,∴∠M=∠MBC,∴BC∥MD.(4分) (2)∵AB是☉O的直径,CD⊥AB于点E,∴∠D+∠EOD=90°.(6分)∵MD过圆心O,∴∠BOD=2∠M=2∠D,∴∠D+2∠D=90°,∴∠D=30°.(8分) 18.【参考答案】(1)证明:如图,连接OD.∵∠ACD=60°,∴∠AOD=120°,∴∠BOD=60°.∵∠APD=30°,∴∠ODP=90°,即PD⊥OD.∵OD是半径,∴PD是☉O的切线.(4分)(2)∵在Rt △POD 中,OD=2,∠OPD=30°,∴OP=4.由勾股定理得PD=23.∴S 阴影部分=S △POD -S扇形ODB =12×2×23-60π·22360=23-2π3.(8分)19.【参考答案】(1)添加条件∠A=30°.(1分)理由:∵AB 是☉O 的直径,∴∠ACB=90°.∵DC 是☉O 的切线,∴∠DCO=90°,∴∠ACB=∠DCO.(3分)∵OA=OC ,∴∠A=∠OCA=30°,∴∠BOC=60°.∵OC=OB ,∴△BOC 是等边三角形,∴BC=OC ,∠ABC=∠DOC=60°,∴△BAC ≌△ODC (ASA).(6分)或添加条件BC=1.(1分)∵AB 是☉O 的直径,∴∠ACB=90°.∵DC 是☉O 的切线,∴∠DCO=90°,∴∠ACB=∠DCO.(3分)∵OC=OB=12AB=1=BC ,∴△BOC 是等边三角形,∴∠ABC=∠DOC=60°,∴△BAC ≌△ODC (ASA).(6分)(答案不唯一,正确即可给分)(2)①2+1(8分)解法提示:∵AB=2,∴OA=OC=1.连接OE ,DE ,若四边形OCDE 是正方形,则△OCD 是等腰直角三角形,易得OD=2,∴AD=OD+OA=2+1.②30(10分)解法提示:∵DC 是☉O 的切线,∴∠DCO=90°,∴∠COD=90°-∠CDB.∵OC=OA ,∴∠CAB=12∠COD=90°―∠CDB2.连接AE ,若四边形ACDE 是菱形,则CA=CD ,∴∠CAB=∠CDB ,即90°―∠CDB2=∠CDB ,解得∠CDB=30°,∴当∠CDB=30°时,四边形ACDE 是菱形.20.【思路导图】(1)连接ODRt △ODC ≌Rt △OBC →∠DOC=∠BOC →∠DAO=∠BOC →AD ∥CO【参考答案】(1)如图,连接OD.(1分)∵BC 与☉O 相切于点B ,CD 与☉O 相切于点D ,∴∠ODC=∠OBC=90°.(2分)在Rt △ODC 和Rt △OBC 中,OD =OB ,OC =OC ,∴Rt △ODC ≌Rt △OBC ,∴∠DOC=∠BOC.(4分)∵∠DAO=12∠DOB ,∴∠DAO=∠BOC ,∴AD ∥CO.(5分)(2)小聪的说法正确.(6分)∵∠CDA+∠AOC=y ,∠A=x ,∴∠ODC+∠ODA+∠AOC=y ,∠ODA=∠OAD=x.∵∠ODC=90°,∴90°+x+∠AOC=y.由(1)得AD ∥CO ,∴∠OAD+∠AOC=180°,即x+∠AOC=180°,∴y=90°+x+∠AOC=90°+180°=270°.(10分)21.【参考答案】【问题呈现】①在同圆中,如果两条弧相等,那么它们所对的弦相等②同弧所对的圆周角相等(4分)【理解运用】1(6分)解法提示:∵CD=AB+BD ,∴CD=12(AB+BC )=12×(4+6)=5,∴BD=BC-CD=6-5=1.【变式探究】DB=AB+CD(8分)解法提示:如图,在DB 上截取BG=BA ,连接MA ,MB ,MC ,MG.∵M 是AC 的中点,∴AM=MC ,∠MBA=∠MBG.又MB=MB ,∴△MAB ≌△MGB ,∴MA=MG ,∴MC=MG.又DM ⊥BC ,∴DC=DG ,∴AB+DC=BG+DG ,即DB=AB+CD.【实践应用】∵BC是☉O的直径,∴∠BAC=90°.∵AB=6,☉O的半径为5,∴易得AC=8.(分类讨论思想)如图,连接AD,当∠DAC=45°时,有两种情况.①∠D1AC=45°,则D1是BC的中点.过点D1作D1G1⊥AC于点G1,则CG1+AB=AG1.∴AG1=1(6+8)=7,∴AD1=72.2②∠D2AC=45°,过点D2作D2G2⊥AC于点G2,同理易得CG2=AB+AG2,∴CG2=7,AG2=1,∴AD2=2.综上,AD的长为72或2.(12分)。
人教版九年级数学上册单元测试题全套及答案

九年级数学上册半月测试题姓名:分数:时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.一元二次方程x2-8x-1=0配方后为( )A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=172.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为( )A.0,5 B.0,1 C.-4,5 D.-4,13.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为( ) A.4,-2 B.-4,-2 C.4,2 D.-4,24.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为( )A.1 B.-3或1 C.3 D.-1或35.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是( )A.4 B.6 C.8 D.106.已知关于x的一元二次方程x2+2x-(m-2)=0有实数根,则m的取值范围是( )A.m>1 B.m<1 C.m≥1 D.m≤17.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,∠OBC=45°,则下列各式成立的是( )A.b-c-1=0 B.b+c+1=0C.b-c+1=0 D.b+c-1=08.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则▱ABCD的周长为( )A.4+2 2 B.12+6 2C.2+2 2 D.2+2或12+6 29.当x取何值时,代数式x2-6x-3的值最小?( )A.0 B.-3 C.3 D.-910.如图,将边长为12 cm的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为32 cm2,则它移动的距离AA′等于()A .4 cmB .8 cmC .6 cmD .4 cm 或8 cm二、填空题(每小题3分,共24分)11.把方程3x(x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为__ __.12.方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为__ __.13.若抛物线y =ax 2+bx +c 的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为__ __. 14.下面是某同学在一次测试中解答的填空题:①若x 2=a 2,则x =a ;②方程2x(x -2)=x -2的解为x =0;③已知x 1,x 2是方程2x 2+3x -4=0的两根,则x 1+x 2=32,x 1x 2=-2.其中错误的答案序号是____.15.已知一元二次方程x 2+3x -4=0的两根为x 1,x 2,则x 12+x 1x 2+x 22=___.16.如图,一个矩形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5 cm ,容积是500 cm 3的无盖长方体容器,那么这块铁皮的长为__ __,宽为__ __.17.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是__ _.18.若二次函数y =2x 2-4x -1的图象与x 轴交于A(x 1,0),B(x 2,0)两点,则1x 1+1x 2的值为__ __.三、解答题(共66分)19.(8分)用适当的方法解下列方程:(1)(x +1)(x -2)=x +1; (2)2x 2-4x =4 2.20.(8分) 已知:如图,二次函数y=ax2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M 为 它的顶点.(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB.21.(6分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.22.(8分)关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.23.(8分) 已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).(1)求证:4c=3b2;(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.24.(8分) 某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数解析式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.(10分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出__ __只粽子,利润为__ __元;(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元,并且卖出的粽子更多?26.(10分)要在一块长52 m,宽48 m的矩形绿地上,修建同样宽的两条互相垂直的甬路,下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x与小亮设计方案中的x取值相同)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 单元测试题班级_________ 姓名___________成绩:一、选择题(每小题3分,共18分) 1.化简32的结果是( )(A)25 (B)24 (C)23 (D)26 2.计算3÷6的结果是( )(A)21(B)26 (C)23 (D)23.计算18(-)8÷2的结果是( )(A)21(B)2 (C)22 (D)424.下列各组二次根式化简后,被开方数相同的一组是( )((A)93和 (B)313和 (C)318和 (D)2412和5.下列运算错误的是( ) (A)2×3=6 (B)21=22 (C)22+23=25 (D)221()—=1-26. 下列二次根式中,x 的取值范围是2≥x 的是( ) A .2-x B .x+2 C .x -2 D .1x -2二、填空题(每小题3分,共30分)7.计算64=__________. 12.计算2)32(=_________8.计算210 =___________ 14.如2m =4,则m=__________9.在直角坐标系中,点A (-6,2)到原点的距离是__________10.计算36a ÷2a的结果是____________ 11.在a 、2a b 、1x +、21x +、3中一定是二次根式的个数有______个. 12. 当x = 时,二次根式1+x 取最小值,其最小值为 。
13. 化简82-的结果是_____________14. 计算:23·= 15. 实数a 在数轴上的位置如图所示:化简:21(2)______a a -+-=.16. 已知三角形底边的边长是6cm,面积是12cm 2,则此边的高线长 .三、解答题(4×8=32分) 17.计算(1)3×23 (2)2+8(3)27×32÷6 (4)(4+3)(4-3)(5)(23-32)2 (6)(54-218)÷6(7)(3+1)2-23 (8) 284)23()21(01--+-⨯-18(6分).已知x=3+2,y=3-2,求x 2+2xy+y 2的值19(6分).如果直角三角形的两条直角边的长为32+1,32-1,求斜边c 的长20(8分).如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点 沿纸箱爬到B 点,那么它所行的最短路线的长是多少?AB第二十二章 单元测试题班级_________ 姓名___________成绩:一、填空题:(12*2=24分)1.关于x 的方程(a -1)x 2+(a 2-1)x+2=0是一元二次方程的条件是______.2.方程(x -2)2=3(x -2)的解是__________.3.已知方程mx 2+x -2=0的一个根是1,则另一个根是______,m 值为______. 4.若方程kx 2+x =3x 2+1是一元二次方程,则k 的取值范围是 . 5.一元二次方程(x -2)(x +3)=1化为一般形式是 . 6.方程x 2-5x =0的解是 .7.请写出一个有一根为0,另一个根不为0的一元二次方程: _______. 8.已知方程8322=-x x 的两个根为21x x ,那么=+x x 1 ,=⋅21x x . 9.若方程062=++kx x 的一个根是3,那么k = ,另一个根是 . 10.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的面积为 .11.将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x = . 12.如图在一个长为35米,宽为26米的矩形地面上,修筑同样宽的两条互相垂直道路,其它部分种花草,要使花草为850㎡,问道路应为多宽?设道路宽为x ,得方程如下:(1)(35-x )(26-x )=850; (2)850=35×26-35x -26x +x 2; (3)35x +x(26-x) =850-35×26; (4)35x +26 x =850-35×26 其中正确的有: 二、选择题:(7*2=14分)13.方程5)3)(1(=-+x x 的解是 ( )A .3,121-==x xB .2,421-==x xC .3,121=-=x xD .2,421=-=x x14.方程:①13122=-xx ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是A .①和②B .②和③C .③和④D .①和③ 15.已知0和1-都是某个方程的解,此方程是( )A .012=-xB .0)1(=+x xC .02=-x x D .1+=x x16.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为( )A .27B .33C .27和33D .以上都不对 17.解方程(2x -1)2=3(2x -1)的最适当的方法是( ).A .直接开方法B .因式分解法C .配方法D .公式法 18.方程(x -3)(x -1)=3的根是( ). A .x 1=3,x 2=1 B .x 1=1,x 2=2 C .x 1=0,x 2=4 D .x 1=23,x 2=-23 19.一元二次方程2x 2-3x=1的根的情况是( ).A .有两个不相等的实数根;B .无实数根;C .有两个相等的实数根;D .无法判断 三、解答题:20.用适当的方法解方程(4*3=12分)(1)2(3)2(3)0x x x -+-=; (2)2410x x -+=(用配方法);(3)(2)(3)20x x ++=;25、(10分)某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?26(10分)、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。
某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?27(10分).某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a 元,则可卖出()32010a -件,但物价部门限定每件商品加价不能超过进货价的25%.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价-进货价)28.(10分)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.29(10分)某采购员到察尔汗钾盐厂购钾盐36t 运往内地,如果租用甲种货车若干辆刚好装满,租用乙种货车,可少租1辆并且最后1辆还差4t 才能装满,已知甲种货车的载重量比乙种货车少2t ,求甲、乙两种货车的载重量各是多少吨?16题图D C B A 第二十三章 单元检测题 班级_________ 姓名___________成绩: 一、 选择题(12*3=36分) 1.平面图形的旋转一般情况下改变图形的( ) A. 位置 B.大小 C.形状 D.性质2. 9点钟时,钟表的时针与分针的夹角是( )A.30°B.45°C.60°D.90° 3. 将□ABCD 旋转到□A ′B ′C ′D ′的位置,下面结论错误的是( )A. AB=A ′B ′B. AB ∥A ′B ′C. ∠A=∠A ′D.△ABC ≌△A ′B ′C ′ 4.在下列图形中,既是中心对称又是轴对称的图形是( )5.如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )A. 30°B. 60°C.90°D. 120°7.把一个正方形绕它的中心旋转一周和原来的图形重合()A. 1次B. 2次C. 3次D. 4次8.如图,△ABC 和△DEF 关于点O 中心对称,要得到△DEF ,需要将△ABC 旋转( )A.. 30°B. 90°C. 180°D. 360°9.图(1)中,可以经过旋转和翻折形成图案(2)的梯形符合条件为( ) A .等腰梯形;B .上底与两腰相等的等腰梯形;C .底角为60°且上底与两腰相等的等腰梯形;D .底角为60°的等腰梯形10.顺次连接矩形各边中点所得的四边形( ) A .是轴对称图形而不是中心对称图形; B .是中心对称图形而不是轴对称图形;C .既是轴对称图形又是中心对称图形; D .没有对称性11.如图,直线y=3x+3与y 轴交于点P ,将它绕着点P 旋转90•°所得的直线的解析式为( ). A .y=33x+3 B .y=-33x+3C .y=13x+3D .y=-13x+3 12.如图,△ABC 中,∠B=90°,∠C=30°,AB=1, 将△ABC•绕顶点A 旋转180°,点C 落在C ′处,则CC ′的长为( )A .4B .42C .23D .25二、填空题(11*4=44分)13.如图,△ABC 以点A 为旋转中心,按逆时针方向旋转60°,得到的△A B 1B 是 三角形。
14.如图,△ABC 绕着点C 顺时针旋转35°得到△1A 1B C ,若1A 1B ⊥AC ,则∠A 的度数是 。
15.如图,△ABC 绕点B 逆时针方向旋转到△EBF 的位置 ,若∠A=15°,∠C=10°,E ,B ,C 在同一直线上,则∠ABC= ,旋转角是 。
16.如图,等腰△ABC 绕点A 旋转到△ACD 的位置。
已知∠ABC=80°,则在这个图中,点B 的对A BC D FEDC BAOFEDCBA第5题图第6题图 第8题图 13题图C 1B 1CB A 14题图A 1B 1C B A 15题图F E C B A应点是,BC= ,∠ACD= ,旋转中心是,旋转角是。
17.钟表上的时针随时间的变化而转动,这可以看做的数学上的 .18.钟表的分针经过20分钟,旋转了° .19.等边三角形至少旋转°才能与自身重合.20. 如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为__ ______.21.如图,将Rt△ABC绕点C按顺时针方向旋转90°到△A′B′C的位置,已知斜边AB=10cm,BC=6cm,设A′B′的中点是M,连结AM,则AM= cm.22.如图所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=.23.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA___ __ _PB +PC(填“>”、“<”或“=”).24.(10分)作图(1)已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称. 25.(10分)如图,四边形ABCD的∠BAD=∠C=90°,AB =AD ,AE⊥ BC 于E,△BEA旋转一定角度后能与△DFA重合.(1)旋转中心是哪一点?(2)旋转了多少度?若AE=5cm,求四边形ABCD的面积.FEDCBA第8题图第9题图第10题图第二十四章 单元测试题一、填空题(每题3分,共36分)2.在半径为9cm 的圆中,60º的圆心角所对的弦长为 . 3.6cm 长的一条弦所对的圆周角为90°,则此圆的直径为 . 5.若三角形的外心在它的一条边上,那么这个三角形是 .6.如图,半径为4的⊙O 中有弦AB ,以AB 为折痕对折,劣弧恰好经过圆心O ,则弦AB 的长度为 .7.如图,PO 是直径所在的直线,且PO 平分BPD ∠,AB OE ⊥,CD OF ⊥,则:①CD AB =;②弧AB 等于弧CD ;③PE PO =;④弧BG 等于弧DG ;⑤PD PB =;中结论正确的是________________.(填序号)8.如图,工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,则这个小孔的直径AB 是 毫米.9.如图,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有______个.10.某校九(3)班在圣诞节前,为圣诞晚会制作一个圆锥形圣诞老人的纸帽,已知圆锥的母线长为30cm ,底面直径为20cm ,则这个纸帽的表面积为 .11.(2009年,肇庆)若正六边形的边长为2,则此正六边形的边心距为__________. 12、如图,ABC △内接于O AD ,是O 的直径,30ABC ∠=,则CAD ∠=______.二、选择题(每题3分,共21分)1.如图,⊙O 的直径为10,圆心O 到弦AB 的距离O M 的长为3,则弦AB 的长是( )A .4B .6C .7D .82.如图,C 是⊙O 上一点,O 是圆心,若∠C =35°,则∠AOB 的度数为( )A .35°B .70°C .105°D .150°3.如图,⊙O 中∠AOB 的度数为60°,AC 是⊙O 的直径,那么∠BOC 等于( )A .150°B .130°C .120°D .60° 4.等边三角形的周长为18,则它的内切圆半径是( )A .63B .33C .33D .35.如图,小正六边形的边长是大正六边形边长的一半,O 是小正六边形的中心,A 是小正六边形的一个顶点.若小正六边形沿大正六边形内侧滚动一周,回到原位置,则OA 转动的角度大小为( )A .240°B .360°C .540°D . 720° 6.已知圆上的一段弧长为5πcm ,它所对的圆心角为100°,则该圆的半径为( ) A.6 B.9 C.12 D.187.若圆锥的侧面展开图是半径为4的半圆,则圆锥的高为( )A .23B .433C . 43D .4三 、解答题(共52分)1.(5分)已知如图,在△ABC 中,∠BAC =120°,AB =AC ,BC =43,以A 为圆心,2为半径作⊙A ,试问:直线BC 与⊙A 的关系如何?并证明你的结论.(第6题) (第7题) (第8题)(第11题) (第12题) (第13题)(第15题)A DBOC2.(6分)如图,⊙O 中,直径CD ⊥弦AB 于E 点,若CD =10,DE =2,求AB 的长?3.(6分)如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC的度数?4.(6分)已知两同心圆,大圆的弦AB 切小圆于M ,若环形的面积为9π,求AB 的长.5.(6分)如图,C 是⊙O 的直径AB 的延长线上的一点,D 是⊙O 上的一点且AD =CD ,∠C =30°,求证:DC 是⊙O 的切线.6.(7分)如图,AB 是⊙O 的直径,CD 切⊙O 于E ,AC ⊥CD 于C ,BD ⊥CD 于D ,交⊙O 于F ,连结AE 、EF .(1)求证:AE 是∠BAC 的平分线;(2)若∠ABD = 60°,则AB 与EF 是否平行?请说明理由.7.(7分)如图,BC 是⊙O 的直径,A 是弦BD 延长线上一点,切线DE 平分AC 于E ,求证:(1)AC 是⊙O 的切线.ABC O E DO A BCPBA O·E DF(第5题)第二十五章 单元测试题一、填空题(每题4分,共36分)1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是.2.下列事件中:①太阳从西边出来;②树上的苹果飞到月球上;③普通玻璃从三楼摔到一楼的水泥地面上碎了;④小颖的数学测试得了100分.随机事件为 ;必然事件为;不可能事件为.(只填序号)3.小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为____ __.4.一个小妹妹将10盒蔬菜的标签全部撕掉了.现在每个盒子看上去都一样,但是她知道有三盒玉米、两盒菠菜、四盒豆角、一盒土豆.她随机地拿出一盒并打开它.则盒子里面是玉米的概率是 ,盒子里面不是菠菜的概率是 .5.从4台A 型电脑和5台B 型电脑中任选一台,选中A 型电脑的概率为_____,B 型电脑的概率为___ __.6.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为 ;抽到黑桃的概率为 ;抽到红心3的概率为 . 7.给出以下结论:①如果一件事发生的机会只有十万分之一,那么它就不可能发生;②二战时期美国某公司生产的降落伞合格率达99.9%,使用该公司的降落伞不会发生危险; ③如果一件事不是必然发生的,那么它就不可能发生;④从1、2、3、4、5中任取一个数是奇数的可能性要大于偶数的可能性. 其中正确的结论是_______________.8.(2009年,邵阳市)小芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为______.9.(2009年,湖南长沙)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 398 652 793 1 604 4 005 发芽频率0.8500.7450.8510.7930.8020.801(1)根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1). 二.选择题(每题4分,共28分)1.把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是 ( ) A .21 B .51 C .361 D .36112.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( ) A .32 B .21 C .41 D .31 3.如图,小明周末到公园走到十字路口处,记不清前面哪条路通往公园,那么他能一次选对路的概率是( ) A .21 B .31 C .41D .0 4.如图,两个用来摇奖的转盘,其中说法正确的是( )A .转盘(1)中蓝色区域的面积比转盘(2)中的蓝色区域面积要大,所以摇转盘(1)比摇转盘(2)时,蓝色区域得奖的可能性大B .两个转盘中指针指向蓝色区域的机会一样大C .转盘(1)中,指针指向红色区域的概率是31 D .在转盘(2)中只有红.黄.蓝三种颜色,指针指向每种颜色的概率都是31 5.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A .21B .31C .41D .51小明家公园(第3题)(第4题)6.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A .41 B .61 C .51 D .203 7.如图,高速公路上有A 、B 、C 三个出口,A 、B 之间路程为a 千米,B 、C 之间的路程为b 千米,决定在A 、C 之间的任意一处增设一个服务区,则此服务区设在A 、B 之间的概率是( )A .a b B .b a C .b a a + D .b a b +三.解答题8.(12分)小明、小华用四张扑克牌玩游戏(方块2、黑桃4、红桃5、梅花5),他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回. (1)若小明恰好抽到黑桃4.①请绘制这种情况的树状图;②求小华抽的牌的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之则小明负;若牌面数字一样,则不分胜负,你认为这个游戏是否公平?说明你的理由. 9.(12分)有一个“摆地摊”的赌主,他拿出2个白球和2个黑球,放在一个袋子里,让人摸球中奖,只要交1元钱,就可以从袋里摸2个球,如果摸到的2个球都是白球,可以得到4元的回报,请计算一下中奖的机会,如果全校一共2400人,有一半学生每人摸了一回,赌主将从学生身上骗走多少钱?12.(12分)(2009年,江西)某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果; (2)小刚抽到物理实验B 和化学实验F (记作事件M )的概率是多少?A B C(第18题)。