C++中堆和栈的区别
单片机C语言 必知的数据存储与程序编写知识 附单片机应用编程知识介绍

一、五大内存分区内存分成5个区,它们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。
1、栈区(StaCk):FIFo就是那些由编译器在需要的时候分配,在不需要的时候自动清除的变量的存储区。
里面的变量通常是局部变量、函数参数等。
2、堆区(heap):就是那些由new分配的内存块,它们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。
如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。
3、自由存储区:就是那些由malloc等分配的内存块,它和堆是十分相似的,不过它是用free 来结束自己的生命。
4、全局/静态存储区:全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的,在C++里面没有这个区分了,他们共同占用同一块内存区。
5、常量存储区:这是一块比较特殊的存储区,它们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多)code/data/stack内存主要分为代码段,数据段和堆栈。
代码段放程序代码,属于只读内存。
数据段存放全局变量,静态变量,常量等,堆里存放自己malloc或new出来的变量,其他变量就存放在栈里,堆栈之间空间是有浮动的。
数据段的内存会到程序执行完才释放。
调用函数先找到函数的入口地址,然后计算给函数的形参和临时变量在栈里分配空间,拷贝实参的副本传给形参,然后进行压栈操作,函数执行完再进行弹栈操作。
字符常量一般放在数据段,而且相同的字符常量只会存一份。
二、C语言程序的存储区域1、由C语言代码(文本文件)形成可执行程序(二进制文件),需要经过编译-汇编-连接三个阶段。
编译过程把C语言文本文件生成汇编程序,汇编过程把汇编程序形成二进制机器代码,连接过程则将各个源文件生成的二进制机器代码文件组合成一个文件。
2、C语言编写的程序经过编译-连接后,将形成一个统一文件,它由几个部分组成。
堆和栈的区别是什么?

堆和栈的区别是什么?⾸先,讨论的堆和栈指的是内存中的“堆区”和“栈区”,OC语⾔是C语⾔的超集,所以先了解C语⾔的内存模型的内存管理会有很⼤的帮助。
C 语⾔的内存模型分为5个区:栈区、堆区、静态区、常量区、代码区。
每个区存储的内容如下:1、栈区:存放函数的参数值、局部变量等,由编译器⾃动分配和释放,通常在函数执⾏完后就释放了,其操作⽅式类似于数据结构中的栈。
栈内存分配运算内置于CPU的指令集,效率很⾼,但是分配的内存量有限,⽐如iOS中栈区的⼤⼩是2M。
2、堆区:就是通过new、malloc、realloc分配的内存块,编译器不会负责它们的释放⼯作,需要⽤程序去释放。
分配⽅式类似于数据结构中的链表。
在iOS开发中所说的“内存泄漏”说的就是堆区的内存。
3、静态区:全局变量和静态变量(在iOS中就是⽤static修饰的局部变量或全局变量)的存储是放在⼀块的,初始化的全局变量和静态变量在⼀块区域,未初始化的全局变量和未初始化的静态变量在相邻的另⼀块区域。
程序结束后,由系统释放。
4、常量区:常量存储在这⾥,不允许修改。
5、代码区:存放函数体的⼆进制代码。
堆和栈的区别:1、堆空间的内存是动态分配的,⼀般存放对象,并且需要⼿动释放内存。
当然,iOS引⼊了ARC(⾃动引⽤计数管理技术)之后,程序员就不需要⽤代码管理对象的内存了,之前MRC(⼿动管理内存)的时候,程序员需要⼿动release对象。
另外,ARC只是⼀种中间层的技术,虽然在ARC模式下,程序员不需要像之前那么⿇烦管理内存,但是需要遵循ARC技术的规范操作,⽐如使⽤属性限定符weak、strong、assigen等。
因此,如果程序员没有按ARC的规则并合理的使⽤这些属性限定符的话,同样是会造成内存泄漏的。
2、栈空间的内存是由系统⾃动分配,⼀般存放局部变量,⽐如对象的地址等值,不需要程序员对这块内存进⾏管理,⽐如,函数中的局部变量的作⽤范围(⽣命周期)就是在调完这个函数之后就结束了。
堆、栈的概念与理解

1、从数据结构层次理解,栈是一种先进后出的线性表,只要符合先进后出的原则的线性表都是栈。至于采用的存储方式(实现方式)是顺序存储(顺序栈)还是链式存储(链式栈)是没有关系的。堆则是二叉树的一种,有最大堆最小堆,排序算法中有常用的堆排序。
2、从系统层次理解,栈是系统为运行的程序分配的先进后出的存储区域。在学习bootloader时知道,在上电后初始化阶段要为各个工作模式下分配堆 栈,这里的堆栈实际上就是指stack,堆栈的说法只是因为历史的原因。在执行函数时,函数内部局部变量的存储单元可以在栈上创建(针对CISC架构而 言,RISC架构下,局部变量的存储单元是在寄存器上创建),函数执行结束时这些存储单元自动被释放。堆是系统管理的可以被程序利用的全局存储空间,动态 内存分配就是从堆上分配。
什么是堆什么是栈
一 英文名称
堆和栈是C/C++编程中经常遇到的两个基本概念。先看一下它们的英文表示:
堆――heap
栈――stack
二 从数据结构和系统两个层次理解
在具体的C/C++编程框架中,这两个概念并不是并行的。深入到汇编级进行研究就会发现,栈是机器系统提供的数据结构,而堆是由C/C++函数库提供的。这两个概念可以从数据结构和系统两个层次去理解:
具体地说,现在计算机(串行执行机制),都直接在代码层次支持栈这种数据结构。这体现在,有专门的寄存器指向栈所在的地址,有专门的机器指令完成数据入栈 出栈的操作。比如ARM指令中的stmfd和ldmfd。因为栈内存分配运算内置于处理器的指令集中,所以效率很高,但是支持的数据有限,一般是整数、指 针、浮点数等系统直接支持的数据类型,并不直接支持其他的数据结构。在CISC中,对子程序的调用就是利用栈来完成的。C/C++中的自动变量也是直接利 用栈的例子,这就是为什么当函数返回时,该函数的自动变量失效的原因(因为栈恢复了调用前的状态)。在RISC下,这些都是通过寄存器来完成的。这些留待 第二部分总结中详细阐述。
堆栈及静态数据区详解

堆、栈及静态数据区详解五大内存分区在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。
栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。
里面的变量通常是局部变量、函数参数等。
堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。
如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。
自由存储区,就是那些由malloc等分配的内存块,他和堆是十分相似的,不过它是用free 来结束自己的生命的。
全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的,在C++里面没有这个区分了,他们共同占用同一块内存区。
常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多)明确区分堆与栈在bbs上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。
首先,我们举一个例子:void f() { int* p=new int[5]; }这条短短的一句话就包含了堆与栈,看到new,我们首先就应该想到,我们分配了一块堆内存,那么指针p呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针p。
在程序会先确定在堆中分配内存的大小,然后调用operator new分配内存,然后返回这块内存的首地址,放入栈中,他在VC6下的汇编代码如下:00401028 push 14h0040102A call operator new (00401060)0040102F add esp,400401032 mov dword ptr [ebp-8],eax00401035 mov eax,dword ptr [ebp-8]00401038 mov dword ptr [ebp-4],eax这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是delete p么?澳,错了,应该是delete []p,这是为了告诉编译器:我删除的是一个数组,VC6就会根据相应的Cookie 信息去进行释放内存的工作。
堆与栈,静态变量和全局变量的区别

堆与栈,静态变量和全局变量的区别堆与栈,静态变量和全局变量的区别对和栈的主要的区别由以下几点:1、管理方式不同;2、空间大小不同;3、能否产生碎片不同;4、生长方向不同;5、分配方式不同;6、分配效率不同;管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。
空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。
但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。
当然,我们可以修改:打开工程,依次操作菜单如下:Project->Setting->Link,在Category 中选中Output,然后在Reserve中设定堆栈的最大值和commit。
注意:reserve最小值为4Byte;commit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。
碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。
对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。
生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。
分配方式:堆都是动态分配的,没有静态分配的堆。
栈有2种分配方式:静态分配和动态分配。
静态分配是编译器完成的,比如局部变量的分配。
动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。
分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。
c语言的内存结构

c语言的内存结构C语言是一种高级编程语言,但实际上在计算机中运行时,C语言程序会被编译成可执行文件,然后在计算机内存中运行。
因此,了解C 语言的内存结构对于理解C程序的运行及性能优化至关重要。
C语言的内存结构主要可以分为以下几个部分:栈(Stack)、堆(Heap)、全局内存(Global Memory)和代码区(Code Segment)。
首先是栈(Stack),栈是一种自动分配和释放内存的数据结构。
它用于存储局部变量、函数参数和函数调用信息等。
栈的特点是后进先出(LIFO),也就是最后进入的数据最先被释放。
栈的大小在程序运行时是固定的,一般由编译器设置。
栈的操作速度较快,但内存空间有限。
其次是堆(Heap),堆是一种动态分配和释放内存的数据结构。
它用于存储动态分配的变量、数据结构和对象等。
堆的大小一般由操作系统管理,并且可以在运行时进行动态扩展。
堆的操作相对较慢,因为需要手动分配和释放内存,并且容易产生内存碎片。
全局内存(Global Memory)是用于存储全局变量和静态变量的区域。
全局变量在程序的生命周期内都存在,并且可以在多个函数之间共享。
静态变量作用于其所在的函数内,但是生命周期与全局变量相同。
全局内存由编译器进行分配和管理。
代码区(Code Segment)存储了程序的指令集合,它是只读的。
在程序运行时,代码区的指令会被一条一条地执行。
代码区的大小由编译器决定,并且在程序执行过程中不能修改。
此外,C语言还具有特殊的内存区域,如常量区和字符串常量区。
常量区用于存储常量数据,如字符串常量和全局常量等。
常量区的数据是只读的,且在程序的整个生命周期内存在。
字符串常量区是常量区的一个子区域,用于存储字符串常量。
在C语言中,内存分配和释放是程序员的责任。
通过使用malloc和free等函数,程序员可以在堆中动态地分配和释放内存,从而灵活地管理程序的内存使用。
不过,应当注意避免内存泄漏和野指针等问题,以免出现内存错误和性能问题。
C语言中堆的名词解释

C语言中堆的名词解释堆(Heap)是C语言中的一种动态内存分配方式,它相对于栈(Stack)来说,拥有更大的内存空间并且能够存储具有更长生命周期的数据。
在本文中,我们将解释堆的概念、特性以及在C语言中的应用。
一、堆的概念和特性堆是C语言中一块动态分配的内存区域,用于存储程序运行期间需要长时间保留的数据。
与栈不同,堆的内存分配和释放并不自动管理,而是需要通过程序员手动控制。
堆的主要特性可以概括为以下几点:1. 大小可变:堆的大小取决于操作系统的内存限制,可以动态地增加或缩小。
2. 不连续性:堆内存中的数据块可以被随意分配和释放,它们的位置通常是不连续的。
3. 长生命周期:堆中分配的内存空间在程序运行期间一直存在,直到显式地释放。
4. 存储动态数据:堆用于存储运行时动态创建的数据,例如对象、数组、链表等。
二、堆的内存分配在C语言中,使用malloc函数来动态分配堆内存。
malloc的完整形式是memory allocation(内存分配),其原型如下:```cvoid* malloc(size_t size);malloc函数接受一个size_t类型的参数,表示需要分配的内存空间大小,返回一个void指针,指向分配的内存起始地址。
若分配失败,则返回一个空指针NULL。
以下是一个使用malloc分配堆内存的示例:```cint* ptr = (int*) malloc(sizeof(int));```在上述示例中,我们使用malloc函数分配了一个int类型的内存空间并将其地址赋值给了ptr指针。
这样,我们就可以通过访问ptr来操作这个堆内存空间。
需要注意的是,使用malloc函数分配的堆内存必须在使用完毕后通过调用free 函数来显式地释放,以避免内存泄漏。
free函数的原型如下:```cvoid free(void* ptr);```free函数接受一个void指针作为参数,指向需要释放的堆内存的起始地址。
内存中堆栈的划分

栈和堆的区别 (转) 终于知道区别了(2007-09-12 08:50:49)转载标签:IT/科技一个由 c/C++ 编译的程序占用的内存分为以下几个部分:1 、栈区( stack )—由编译器自动分配释放,存放函数的参数值,局部变量的值等。
其操作方式类似于数据结构中的栈。
2 、堆区( heap )—一般由程序员分配释放,若程序员不释放,程序结束时可能由 OS 回收。
注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3 、全局区(静态区)( static )—全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。
程序结束后由有系统释放。
4 、文字常量区—常量字符串就是放在这里的。
程序结束后由系统释放。
5 、程序代码区—存放函数体的二进制代码。
例子程序:这是一个前辈写的,非常详细//main.cppint a = 0; //全局初始化区char *p1; //全局未初始化区main(){int b; 栈char s[] = "abc"; //栈char *p2; //栈char *p3 = "123456"; //123456在常量区,p3在栈上。
static int c =0; //全局(静态)初始化区p1 = (char *)malloc(10);p2 = (char *)malloc(20); //分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); //123456放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}栈:在 Windows 下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。
这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS 下,栈的大小是 2M (也有的说是 1M ,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示 overflow 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C++中堆和栈的区别,自由存储区、全局/静态存储区和常量存储区文章来自一个论坛里的回帖,哪个论坛记不得了!在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。
栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。
里面的变量通常是局部变量、函数参数等。
堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。
如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。
自由存储区,就是那些由malloc等分配的内存块,他和堆是十分相似的,不过它是用free来结束自己的生命的。
全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的(初始化的全局变量和静态变量在一块区域,未初始化的全局变量与静态变量在相邻的另一块区域,同时未被初始化的对象存储区可以通过void*来访问和操纵,程序结束后由系统自行释放),在C++里面没有这个区分了,他们共同占用同一块内存区。
常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多)明确区分堆与栈在bbs上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。
首先,我们举一个例子:void f() { int* p=new int[5]; }这条短短的一句话就包含了堆与栈,看到new,我们首先就应该想到,我们分配了一块堆内存,那么指针p呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针p。
在程序会先确定在堆中分配内存的大小,然后调用operator new分配内存,然后返回这块内存的首地址,放入栈中,他在VC6下的汇编代码如下:00401028 push 14h0040102A call operator new (00401060)0040102F add esp,400401032 mov dword ptr [ebp-8],eax00401035 mov eax,dword ptr [ebp-8]00401038 mov dword ptr [ebp-4],eax这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是delete p 么?澳,错了,应该是delete []p,这是为了告诉编译器:我删除的是一个数组,VC6就会根据相应的Cookie信息去进行释放内存的工作。
好了,我们回到我们的主题:堆和栈究竟有什么区别?主要的区别由以下几点:1、管理方式不同;2、空间大小不同;3、能否产生碎片不同;4、生长方向不同;5、分配方式不同;6、分配效率不同;管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。
空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。
但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。
当然,我们可以修改:打开工程,依次操作菜单如下:Project->Setting->Link,在Category 中选中Output,然后在Reserve中设定堆栈的最大值和commit。
注意:reserve最小值为4Byte;commit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。
碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。
对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。
生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。
分配方式:堆都是动态分配的,没有静态分配的堆。
栈有2种分配方式:静态分配和动态分配。
静态分配是编译器完成的,比如局部变量的分配。
动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。
分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。
堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。
显然,堆的效率比栈要低得多。
从这里我们可以看到,堆和栈相比,由于大量new/delete的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。
所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址,EBP和局部变量都采用栈的方式存放。
所以,我们推荐大家尽量用栈,而不是用堆。
虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。
无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果,就算是在你的程序运行过程中,没有发生上面的问题,你还是要小心,说不定什么时候就崩掉,那时候debug可是相当困难的:)对了,还有一件事,如果有人把堆栈合起来说,那它的意思是栈,可不是堆,呵呵,清楚了?static用来控制变量的存储方式和可见性函数内部定义的变量,在程序执行到它的定义处时,编译器为它在栈上分配空间,函数在栈上分配的空间在此函数执行结束时会释放掉,这样就产生了一个问题: 如果想将函数中此变量的值保存至下一次调用时,如何实现?最容易想到的方法是定义一个全局的变量,但定义为一个全局变量有许多缺点,最明显的缺点是破坏了此变量的访问范围(使得在此函数中定义的变量,不仅仅受此函数控制)。
需要一个数据对象为整个类而非某个对象服务,同时又力求不破坏类的封装性,即要求此成员隐藏在类的内部,对外不可见。
static的内部机制:静态数据成员要在程序一开始运行时就必须存在。
因为函数在程序运行中被调用,所以静态数据成员不能在任何函数内分配空间和初始化。
这样,它的空间分配有三个可能的地方,一是作为类的外部接口的头文件,那里有类声明;二是类定义的内部实现,那里有类的成员函数定义;三是应用程序的main()函数前的全局数据声明和定义处。
静态数据成员要实际地分配空间,故不能在类的声明中定义(只能声明数据成员)。
类声明只声明一个类的“尺寸和规格”,并不进行实际的内存分配,所以在类声明中写成定义是错误的。
它也不能在头文件中类声明的外部定义,因为那会造成在多个使用该类的源文件中,对其重复定义。
static被引入以告知编译器,将变量存储在程序的静态存储区而非栈上空间,静态数据成员按定义出现的先后顺序依次初始化,注意静态成员嵌套时,要保证所嵌套的成员已经初始化了。
消除时的顺序是初始化的反顺序。
static的优势:可以节省内存,因为它是所有对象所公有的,因此,对多个对象来说,静态数据成员只存储一处,供所有对象共用。
静态数据成员的值对每个对象都是一样,但它的值是可以更新的。
只要对静态数据成员的值更新一次,保证所有对象存取更新后的相同的值,这样可以提高时间效率。
引用静态数据成员时,采用如下格式:<类名>::<静态成员名>如果静态数据成员的访问权限允许的话(即public的成员),可在程序中,按上述格式来引用静态数据成员。
ps:(1)类的静态成员函数是属于整个类而非类的对象,所以它没有this指针,这就导致了它仅能访问类的静态数据和静态成员函数。
(2)不能将静态成员函数定义为虚函数。
(3)由于静态成员声明于类中,操作于其外,所以对其取地址操作,就多少有些特殊,变量地址是指向其数据类型的指针,函数地址类型是一个“nonmember函数指针”。
(4)由于静态成员函数没有this指针,所以就差不多等同于nonmember函数,结果就产生了一个意想不到的好处:成为一个callback函数,使得我们得以将c++和c-based x window系统结合,同时也成功的应用于线程函数身上。
(5)static并没有增加程序的时空开销,相反她还缩短了子类对父类静态成员的访问时间,节省了子类的内存空间。
(6)静态数据成员在<定义或说明>时前面加关键字static。
(7)静态数据成员是静态存储的,所以必须对它进行初始化。
(8)静态成员初始化与一般数据成员初始化不同:初始化在类体外进行,而前面不加static,以免与一般静态变量或对象相混淆;初始化时不加该成员的访问权限控制符private,public等;初始化时使用作用域运算符来标明它所属类;所以我们得出静态数据成员初始化的格式:<数据类型><类名>::<静态数据成员名>=<值>(9)为了防止父类的影响,可以在子类定义一个与父类相同的静态变量,以屏蔽父类的影响。
这里有一点需要注意:我们说静态成员为父类和子类共享,但我们有重复定义了静态成员,这会不会引起错误呢?不会,我们的编译器采用了一种绝妙的手法:name-mangling 用以生成唯一的标志。
-----------------------------------------------【转】全局变量静态变量static 声明的变量在C语言中有两方面的特征:1)、变量会被放在程序的全局存储区中,这样可以在下一次调用的时候还可以保持原来的赋值。
这一点是它与堆栈变量和堆变量的区别。
2)、变量用static告知编译器,自己仅仅在变量的作用范围内可见。
这一点是它与全局变量的区别。
Tips:A.若全局变量仅在单个C文件中访问,则可以将这个变量修改为静态全局变量,以降低模块间的耦合度;B.若全局变量仅由单个函数访问,则可以将这个变量改为该函数的静态局部变量,以降低模块间的耦合度;C.设计和使用访问动态全局变量、静态全局变量、静态局部变量的函数时,需要考虑重入问题;D.如果我们需要一个可重入的函数,那么,我们一定要避免函数中使用static 变量(这样的函数被称为:带“内部存储器”功能的的函数)E.函数中必须要使用static变量情况:比如当某函数的返回值为指针类型时,则必须是static的局部变量的地址作为返回值,若为auto类型,则返回为错指针。