第四章 数值积分和数值微分 数值分析所有课件及实验课件
数值分析-第4章 数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即
b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1
数值分析Cht4数值积分和数值微分

x
j
)dx.
(1.7)
定理1
求积公式
ab f
( x)dx
n
wk
fk至少具有n次代数精度
k 0
它是插值型求积公式.
四、求积公式的余项
若求积公式
b
f (x)dx
a
n
wk fk的代数精度为m, 则其余项
k 0
R[ f ]
b
f (x)dx
a
n
wk fk Kf (m1) (),
k 0
a,b.
定义2 在求积公式(1.3)中, 若
lim
n
n
wk
k 0
f
( xk
)
ab
f
(x)dx,
h0
其中h max(xi xi1),则称求积公式(1.3)是收敛的.
1in
设f (xk )有误差k , 即f (xk ) ~fk k (k 0,1,, n), 则有
| In ( f ) In ( ~f ) |
12
(a,b).
2. 中矩形公式的余项
b f (x)dx f (a b)(b a), 代数精度为1.
a
2
K
1 2
1
3
(b3
a3)
(b
a)
a
2
b
2
(b
a)3 24
中矩形公式的余项 : R[ f ] (b a)3 f ''(),
24
(a,b).
五、求积公式的收敛性和稳定性
wk fk
k 0
1 1 (m 1)! m
2
(bm2
am2 )
n k 0
wk
数值分析课件第4章数值积分与数值微分

森(simpson)公式(又称为抛物形求积公式),即
S b a [ f (a) 4 f (a b) f (b)].
6
2
上页 下页
n = 4 时的牛顿-柯特斯公式就特别称为柯特斯公 式. 其形式是
上页 下页
4.1.1 数值求积的基本思想
由积分中值定理, 对连续函数f(x), 在区间[a, b]
内至少存在一点,使
I
b
a
f
(x)d
x
(b
a)
f
(
)
只要对平均高度 f() 提供一种近似算法, 便可相应
地获得一种数值求积方法. 即所谓矩形公式.
几何图形见书p119.
上页 下页
例如, 用区间[a, b]两端点的函数值 f(a)与f(b)的
nn
(t j)dt
0 jk
(k=0,1,,n)
则 Ak (b a)Ck(n) , 于是得求积公式
n
In (b a) Ck(n) f ( xk )
k0
称为n 阶牛顿-柯特斯 (Newton-Cotes)公式, Ck(n) 称 为柯特斯系数。
显然, 柯特斯系数与被积函数 f (x) 和积分区间
如为了构造出上面的求积公式,原则上是一个 确定参数xk和Ak的代数问题.
上页 下页
4.1.3 插值型求积公式
设给定一组节点 a x0 x1 xn1 xn b
且已知f(x)在这些节点上的函数值 f(xk), 则可求得f(x)
的拉格朗日插值多项式(因为Ln(x)的原函数易求)
n
Ln ( x) f ( xk )lk ( x) 则 f (x)Ln(x)
k0
如果对任I给n( 小f )正 I数n(ε~f>)0, 只n 要Ak误[ f差( x|δkk)|充 ~f分k ]小就 ,有
数值分析课件 第4章 数值积分与数值微分

第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。
在微积分中,我们熟知,牛顿—莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。
对定积分()ba I f x dx =⎰,若()f x 在区间[,]ab 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()ba f x dx Fb F a =-⎰ 似乎问题已经解决,其实不然。
如1)()f x 是由测量或数值计算以数据表形式给出时,Newton-Leibnitz 公式无法应用。
2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-=等等,它们的原函数不能用初等函数的有限形式表示。
3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。
例如下列积分24111ln11arc 1)arc 1)xdxxtg tg C++=+⎡⎤+++-+⎣⎦⎰对于上述这些情况,都要求建立定积分的近似计算方法—数值积分法。
1.1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定。
由积分中值定理:对()[,]f x C a b∈,存在[,]a bξ∈,有()()()baf x dx b a fξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a-而高为()fξ的矩形面积(图4-1)。
问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()fξ。
我们将()fξ称为区间[,]a b上的平均高度。
这样,只要对平均高度()fξ提供一种算法,相应地便获得一种数值求积分方法。
如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b a T f a f b -=+ (1.1)便是我们所熟悉的梯形公式(图4-2)。
数值分析(清华大学第五版) 第四章数值积分和微分

b
a
l j ( x)dx ( x x j -1 )( x x j 1 ) ( x x j 1 )( x x j 1 ) ( x xn ) ( x j xn )
dx
作变量代换, x a th ,则
n t (t 1) h (t j 1)(t j 1) (t n) 上式 dt b a 0 j ( j 1) 1(1) ( j n) 1 n t (t 1) (t j 1)(t j 1) (t n) dt n 0 j ( j 1) 1 (1) ( j n)
该积分仅与 n 有关,与 a, b, f ( x) 无关.
③ 设 n 1 个线性无关的次数 n 的多项式为 e0 ( x), 等距结点 x0 ,
过同样 , en ( x) ,
, xn , 对每一个 ei ( x) 利用 Newton Cotes 公式求积,且积分
余项均为零.即有
n b 1 b a a e0 ( x) dx c j e0 ( x j ) j 0 n 1 b e1 ( x)dx c j e( x j ) a (1) b a j 0 n b 1 b a a en ( x)dx c j en ( x j ) j 0
, n) ,
又设过该结点的次数 n 的 Lagrange插值多项式
P( x) f ( x j )l j ( x) ,
j 0
n
余项
f ( ) R( x) ( x) . (n 1)!
( n 1)
代数精确度
b n
定义 设求积公式 f ( x)dx A j f ( x j ) R(a, b, f ) .
研究生课程《数值分析》第四章数值积分与数值微分

b
a
f
(x)dx
1 (b 6
a)
f
(a)
4
f
(a
2
b)
f
(b)
y=f(x)
梯形公式把 f(a), f(b) 的加权平均值
1 f (a) f (b)
2
aa ((aa++bb))//22 bb
作为平均高度 f( ) 的近似值而获得的一种数值积分方法。
中矩形公式把 [a,b] 的中点处函数值
f
ab 2
定义 (代数精度) 设求积公式(1)对于一切次 数小于等于 m 的多项式( f (x) 1, x, x2 , , xm 或 f (x) a0 a1x a2 x 2 am x m )是准确的,而对于 次数为 m+1 的多项式是不准确的,则称该求积公 式具有 m 次代数精度(简称代数精度)
作为平均高度 f( ) 的近似值而获得的一种数值积分方法。
Simpson公式是以函数 f(x)在 a, b, (a+b)/2 这三点的函数
值 f(a),
f(b),
f
a
2
b
的加权平均值
。
1 ( f (a) 4 f ( a b ) f (b))作为平均高度 f() 的近
6
2
似值而获得的一种数值积分方法。
将积分区间细分, 在每个小区间内用简单函数代替复 杂函数进行积分,这是数值积分的思想。本章主要讨论 用代数插值多项式代替 f(x) 进行积分。
5.1.1 数值积分的基本思想
积分 I b f (x)dx 在几何上可以理解为由 x=a, x=b, a
y=0 以及 y = f(x) 这四条边所围成的曲边梯形面积。如图 1 所 示,而这个面积之所以难于计算是因为它有一条曲边 y=f(x)。
数值分析数值计算方法课程课件PPT之第四章数值积分与数值微分

( x a )( x b ) d x a
b
[ a , b ].
(2) f ( x) C [a, b], 则 辛 普 森 公 式 的 截 断 差 误 为:
f ()b a b 2 R ( x a )( x ) ( x b ) d x S a 4 ! 2
b ab a 4 ( 4 ) ( ) f ( ), 180 2
n 1
I k 求出积分值Ik,然后将它们累加求和,用 作为所求积分 I的近 k 0 似值。
h I f ( x ) dx f ( x ) dx f ( x ) f ( x ) k k 1 a x k 2 k 0 k 0 h f ( x ) 2 ( f ( x ) f ( x ) ... f ( x )) f ( x ) 0 1 2 n 1 n 2
记
1 S f ( a ) 4 f ( x ) 2 f ( x ) f ( b ) 1 n k k 2 6 k 0 k 1
n 1 n 1
称为复化辛普森公式。
18
类似于复化梯形公式余项的讨论,复化辛普森公式的求 积余项为
R s h f 2880 ba
1
4.3 复化求积公式
问题1:由梯形、辛普森和柯特斯求积公式余项,分析随着求 积节点数的增加,对应公式的精度是怎样变化? 问题2:当n≥8时N—C求积公式还具有数值稳定性吗?可用增 加求积节点数的方法来提高计算精度吗? 在实际应用中,通常将积分区间分成若干个小区间, 在每个小区间上采用低阶求积公式,然后把所有小区间上 的计算结果加起来得到整个区间上的求积公式,这就是复 化求积公式的基本思想。常用的复化求积公式有复化梯形 公式和复化辛普森公式。
数值分析第四版第四章数值积分与数值微分精品PPT课件

b
n
b
R( f ) f (x)dx a
在a,b内存在一点 ,使得
b
I ( f ) f (x)dx (b a) f ( )
a
f ?
称 f 为 f x 在区间 a,b上的平均高度.
3、求积公式的构造
➢ 若简单选取区间端点或中点的函数值作为平均高度,则 可得一点求积公式如下:
左矩形公式: I f f ab a
中矩形公式:Biblioteka nAk b ak 0
n
k 0
Ak xk
1 2
b2 a2
n
k 0
Ak
xk m
1 m 1
bm1 am1
§2 插值型求积公式
一、定义
在积分区间 a,b上,取 n 1个节点 xi , i 0,1, 2,..., n
作f x 的 n 次代数插值多项式(拉格朗日插值公式):
2 式(两点求积公式)
I f f a f b b a
2
y
f b
f a Oa
f x
bx
➢
若取三点,a,b, c
ab 2
并令 f
f
a4 f
c
f
b
6
则可得Simpson公式(三点求积公式)
I f b a f a 4 f c f b
6
➢ 一般地 ,取区间 a,b 内 n 1 个点xi,i 0,1, 2,..., n
2. 有些被积函数其原函数虽然可以用初等函数表示,但表达 式相当复杂,计算极不方便.
例如函数:
x2 2x2 3
并不复杂,但它的原函数却十分复杂:
1 x 2 2x 2 3 3 x 2x 2 3 9 ln( 2 x 2x 2 3 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=f(x)
f(ζ)
0 aζ
工科研究生公共课程数学系列
bx
机动 上页 下页 首页 结束
y y=f(x)
y y=f(x)
0a
bx
T b f (x)dx [f (a) f (b)](ba)
a
2
0 a f((a+b)/2) b x
R b f (x)dx(ba)f (ab)
a
2
梯形公式
平均高度 中矩形公式 平均高度
C
b a [7 90
f
(x0 )
32
f
( x1 )
12
f
(x2 )
32
f
(x3 )
7
f
( x 4 )],
其中
xkΒιβλιοθήκη a kh , hba 4
柯特斯系数表
.
n
8
时
C
(n k
)出现负值
n k0
b a
lk
(x)dx
fk
这样构造的求积公式称为插值型的求积公式。
它的余项为
R[ f ] I In
b a
f
(x)
Ln
(x)dx
b a
f (n1) () (x)dx
(n 1)!
这时的求积公式至少具有 n 次代数精度
梯形公式余项:R[ f ]= b f () (x a)(x b)dx= (b a)3 f () , (a,b)
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
更一般地,我们构造具有下列形式的求积公式
b
n
a
f (x)dx
Ak f (xk )
k 0
求积系数 求积节点
这类数值方法通常称为机械求积,其特点是将积分求值 问题归结为函数值的计算,这就避开了牛顿-莱布尼兹公式需 要寻求原函数的困难。
二、代数精度的概念
例4-1 确定下面公式中的待定参数,使其代数精度尽量高,并指明所 构造的求积公式所具有的代数精度
h
h f (x)dx Af (h) Bf (x1)
解: 令f (x) 1, x, x2,代入公式并令其相等,得
A B 2h hA Bx1 0
h2 A
Bx12
2 3
h3
工科研究生公共课程数学系列
b f ( x )d x T b a [ f (a ) f (b )]
a
2
当 n 2时 , 得到抛物线公式 , 也称为 辛普森(Simpso
n)公式
b f ( x )d x S b a [ f (a ) 4 f ( a b ) f (b )]
a
6
2
当 n 4时 , 得到 柯特斯(cotes) 公式
且已知 f ( x ) 在这些节点上的值 f k ( k 0,1,2, , n ) , 作拉格朗日插 值多项式
n
L n ( x ) l k ( x ) f k k 0
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
于是,得到积分 I b f (x)dx 的近似值 a
In
b
a Ln(x)dx
xk a kh 构造出的插值型求积公 式
n
I n (b a)
C (n) k
f
(xk
),
k 0
称为 牛顿 - 柯特斯公式( Newton - Cotes公式 ),
C(n) k
称为
柯特斯 系数 .
由插值型求积公式:In
b a
Ln
(x)dx
n k 0
b a
lk
(
x) dx
fk
知
求积系数
但有时原函数不能用初等函数表示,有时原函数又十分 复杂,难于求出或计算;另外如被积函数是由测量或数值计 算给出的一张数据表示时,上述方法也不能直接运用。因此 有必要研究积分的数值计算问题。
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
积分中值定理告诉我们:
I b f (x)dx f ( )(b a). a
定义1 若某个求积公式 对于所有次数不超过 m 的多项式 都准确成立,而对于某 一个 m 1 次的多项式等式不准确 成 立, 则称该求积公式具有 m 次代数精度 。
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
梯形公式 (T b f (x) dx [ f (a) f (b)] (b a)) 代数精度
a2
12
同理,辛普森公式余项:R[ f ]= b a (b a)4 f(4)() , (a,b)
180 2
4.2 牛顿-柯特斯公式
一、牛顿-柯特斯公式的导出
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
柯特斯系数
设将求积区间 [a, b] 做 n 等分,步长 h b a , 在等距节点 n
机动 上页 下页 首页 结束
解得,x1
1 3
h,
A
1 2
h, B
2 3
h.于是
h f (x)dx h [ f (h) 3 f (1 h)]
h
2
3
再令f (x) x3,得
0
h h
x3dx
h 2
(h)3
3(
1 3
h)3
4 9
h4
故求积公式具有2次代数精度。
三、插值型的求积公式
设给定一组节点 a x0 x1 xn b
Ak
b a
lk
(x)dx,
k
0,1,,
n
引入变换 x a th
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
则有
C (n) k
b
h
a
n n t j d t ( 1) n k
nn
(t j )dt.
0 j0 k j
nk !(n k ) ! 0 j0
jk
jk
当 n 1时 , 得到梯形公式
a
2
令f (x) 1, x,....
当f (x) 1, 左边
b
1 dx b a
a
右边 [1 1] (b a) b a 2
左边 右边
当f (x) x, 左边
b a
xdx
[
x2 2
]ba
b2 2
a2 2
右边 [b a] (b a) b2 a 2
2
22
左边 右边
第四章 数值积分和数值微分
内容提要 4.1 引言 4.2 牛顿-柯特斯公式 4.3 复化求积公式 4.4 龙贝格求积公式 4.5 高斯求积公式 4.6 数值微分
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
4.1 引言
一、数值求积的基本思想
对定义在区间[a,b]上的定积分
b
I f (x)dx F (b) F (a) a
当f (x) x 2 , 左边
b a
x 2dx
[
x3 3
]ba
b3 a3 33
(b 2 ab a 2 ) (b a) 3
右边 [b 2 a 2 ] (b a) 2
左边 右边
因此梯形公式具有一次 代数精确度。
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
利用代数精度的概念构造求积公式