(完整word版)初中数学圆的辅助线八种作法
圆的辅助线的做法

方法指导 • • • • 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。
•
•
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
作业:如图,以D为圆心的两个同心圆中,BD经过圆心 D,且与小圆交于B,与大圆交于C,∠A BC=90°, ∠A的平分线交BC于D,E为AB上一点,DE=DC。 求证:(1)AC是⊙D的切线; (2)AB+EB=AC. (3)若BC=8,AC=10,求大圆与小圆围成的圆 环的面积(结果保留∏)
• 练习:如图,P是⊙O的弦CB延长线上一点, 点A在⊙O上,且 BAP C 求证: PA是⊙O的切线。
4、与切线有关的证明: (1)知切线,连切点,得垂直 (性质)
直线和圆相切,必知切点,连接圆 心和切点,利用切线的性质定理得直角 或直角三角形。
(2) 知交点,连交点,证垂直。 (判定) 不知交点,做垂直,证相等。
例如
已知:如图,在△ABC中,AB=AC, 以AB为直径的圆交BC于D,交AC于E, 求证:⌒ ⌒ BD=DEA EBD
C
• 练习:如图,AB是⊙O的直径,AB=2cm, 点C在圆周上,且∠BAC=30°, ∠ABD=120°,CD⊥BD于D.求BD的 长.
3、作直径,作圆周角
• 例.如图, ABC 内接于⊙O, B 30 , AC 2cm ⊙O的半径为________
遇到证明直线是圆的切线时,①若 已知直线和圆有交点,则连接圆心和交 点,证明垂直。②若不知直线和圆有无 交点,则过圆心作这条直线的垂线段, 证OA=r,则l为切线。
1、已知:△ABC中AB=AC,O为BC的中点, 以O为圆心的圆与AC相切于点 E, 求证:AB与⊙O也相切。
圆中辅助线做法和解题策略

《圆》常用辅助线作法1、弧有中点:圆心连。
利用等弧所对的圆心角相等、弦相等、圆周角相等可得到一系列的相等关系的量2、弦有中点:圆心连。
利用垂径定理的推论可得,所连半径垂直于弦。
如果再把圆心和弦的一端连起来,就可以得到由半径、半弦、弦心距构成的直角三角形。
3、弦和直径同时现:过圆心作弦的垂线。
利用垂径定理构建由半径、半弦、弦心距构成的直角三角形4、两条半径同时现:半径外端用线连。
此时就构建了一个等腰三角形,可以进一步用等腰三角形性质解题5、条件中有直径和与直径有公共端点的弦:把弦的另一端点与直径的另一端点连起来。
利用直径所对的圆周角是直角,可得到一个直角三角形6、条件中有90°的圆周角:把圆周角所对的弦做出来。
利用90°的圆周角所对的弦是直径,可得所作的弦是直径,同时得到一个直角三角形7、证明直线是圆的切线:当直线与圆有明确的公共点时,连接圆心和公共点,证明所连半径与直线垂直即可;当直线与圆没有明确的公共点时,过圆心作直线的垂线,证明所做垂线段等于半径即可。
8、条件中有切线,有切点:连结圆心和切点。
利用切线的性质---圆的切线垂直于过切点的半径——可得到所连半径与切线垂直。
《圆》解题规律1、“圆内接四边形”往往是隐含条件,要注意分析观察,自觉应用圆内接四边形的性质解决问题2、连结半径外端构建等腰三角形,往往忽计,要善于用等腰三角形性质解决问题3、有弦有直径,要构建半径、半弦、弦心距构成的直角三角形,利用勾股定理和垂径定理解决问题4、圆中主要学了两种特殊的角,圆心角和圆周角,它们不仅在解题时用的多,而且它们之间的关系很特殊,要主动利用5、圆中得“线段相等、角相等”的方法比直线型问题要多得多,垂径定理,圆周角定理,弧、弦、圆心角关系定理,切线长定理都可以用。
6、垂径定理和三线合一定理既有联系又有区别,在做题时要分清(是弦时,直接用垂径定理,否则要用三线合一定理)7、三角形中位线定理和垂径定理的综合比较常见8、作出恰当的辅助线很关键,而辅助线的作法如前8条9、要注意多解的问题:(1)平形弦间的距离(2)圆周角的计算时,顶点位置不明确(优弧上、劣弧上)(3)点到圆的最大距离和最小距离问题(点在圆内、点在圆外)(4) 两圆相切(内切、外切)(5)弦所在弓形高(弦对的弧为优弧、劣弧)。
圆中常用的作辅助线的八种方法

证明:1 如图;过点D作⊙O的直径DE;连接AE;EC;AC ∵DE是⊙O的直径; ∴∠ECD=∠EAD=90° 又∵CD⊥AB;∴EC∥AB ∴∠BAC=∠ACE ∴B︵C=A︵E ∴BC=AE 在Rt△AED中;AD2+AE2=DE2; ∴AD2+BC2=4R2
2若弦AD;BC的长是方程x26x+5=0的两个根 AD>BC;求⊙O的半径及点O到AD的距离
1求证:PB是⊙O的切线; 证明:1 如图;连接OB;∵OA=OB;
∴∠OAB=∠OBA ∵PA=PB; ∴∠PAB=∠PBA ∴∠OAB+∠PAB=∠OBA+∠PBA
即∠PAO=∠PBO 又∵PA是⊙O的切线;∴∠PAO=90° ∴∠PBO=90° ∴OB⊥PB 又∵OB是⊙O的半径; ∴PB是⊙O的切线
︵ 2求由弦CD;BD与BC所围成的阴影部分的面积
结果保留π
解:2∵OE⊥DB;∴EB=
D1 B=3 2
c3m
在Rt△EOB中;∵∠OBD=30°;
∴OE=
1 2
OB
∵EB=3 3 cm;
∴由勾股定理可求得OB=6 cm
又∵∠CDB=∠DBO;DE=BE;
∠CED=∠OEB;
∴△CDE≌△OBE
方法 8 巧添辅助线计算阴影部分的面积
9 中考·自贡如图所示;点B;C;D都在⊙O上; 过点C作AC∥BD交OB的延长线于点A;连接CD; 且∠CDB=∠OBD=30°;DB=6 3cm
1求证:AC是⊙O的切线;
证明:1如图;连接CO;交DB于点E; ∴∠O=2∠CDB=60° 又∵∠OBE=30°; ∴∠BEO=180°60°30°=90° ∵AC∥BD;∴∠ACO=∠BEO=90° 即OC⊥AC 又∵点C在⊙O上; ∴AC是⊙O的切线
圆辅助线作法汇总(值得一看)

辅助线是指在几何学中用来帮助解答疑难几何图形问题在原图基础之上另外所作的具有极大价值的直线或者线段,是初中学生学习中很重要的一部分,也是各种考试的热点,下面就让我们看下与圆有关的辅助线的做法。
平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
圆虽然是初中数学最熟悉的几何图形之一,但它有很多新的知识点,尤其有许多知识点都与前面的知识紧密联系着,解题时必须用到直线型中的定理、法则。
因此,解题时先要由条件对图形有比较好的认识,再联想相关知识,分析隐会条件,将做题过程化解为若干小问题,逐一解决。
下面就让我们看看圆中常见的辅助线的作法:1.遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
作用:①利用垂径定理;②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
2.遇到有直径时常常添加(画)直径所对的圆周角。
作用:利用圆周角的性质得到直角或直角三角形。
3.遇到90度的圆周角时常常连结两条弦没有公共点的另一端点。
作用:利用圆周角的性质,可得到直径。
4.遇到弦时常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用:①可得等腰三角形;②据圆周角的性质可得相等的圆周角。
5.遇到有切线时(1)常常添加过切点的半径(连结圆心和切点)作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。
(2)常常添加连结圆上一点和切点作用:可构成弦切角,从而利用弦切角定理。
6.遇到证明某一直线是圆的切线时(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段。
作用:若OA=r,则l为切线。
(2)若直线过圆上的某一点,则连结这点和圆心(即作半径)作用:只需证OA⊥l,则l为切线。
(3)有遇到圆上或圆外一点作圆的切线7.遇到两相交切线时(切线长)常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。
(完整版)初中几何辅助线——圆常用辅助线

初中几何辅助线——圆常用辅助线题型 1.圆中解决有关弦的问题时,常常需要作出圆心到弦的垂线段(即弦心距)这一辅助线,一是利用垂径定理得到平分弦的条件,二是构造直角三角形,利用勾股定理解题.例1如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 二点.求证:AC = BD证明:过O 作OE ⊥AB 于E∵O 为圆心,OE ⊥AB∴AE = BE CE = DE ∴AC = BD练习:如图,AB 为⊙O 的弦,P 是AB 上的一点,AB = 10cm ,P A = 4cm .求⊙O 的半径.题型2.有等弧或证弧等时常连等弧所对的弦或作等弧所对的圆心角.例2如图,已知AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB ,求证:证明:(一)连结OC 、OD∵M 、N 分别是AO 、BO 的中点∴OM =12AO 、ON = 12BO ∵OA = OB∴OM = ON∵CM ⊥OA 、DN ⊥OB 、OC = OD ∴Rt △COM ≌Rt △DON ∴∠COA = ∠DOB ∴(二)连结AC 、OC 、OD 、BD∵M 、N 分别是AO 、BO 的中点 ∴AC = OC BD = OD ∵OC = OD ∴AC = BD∴题型3.有弦中点时常连弦心距例3如图,已知M 、N 分别是⊙O 的弦AB 、CD 的中点,AB = CD ,求证:∠AMN = ∠CNM证明:连结OM 、ON∵O 为圆心,M 、N 分别是弦AB 、CD 的中点 ∴OM ⊥AB ON ⊥CD ∵AB = CD ∴OM = ON∴∠OMN = ∠ONM∵∠AMN = 90o -∠OMN ∠CNM = 90o-∠ONM ∴∠AMN =∠CNM题型4.证明弦相等或已知弦相等时常作弦心距.例4如图,已知⊙O 1与⊙O 2为等圆,P 为O 1、O 2的中点,过P 的直线分别交⊙O 1、⊙O 2于A 、C 、D 、B .求证:AC = BD证明:过O 1作O 1M ⊥AB 于M ,过O 2作O 2N ⊥AB 于N ,则O 1M ∥O 2N∴1122O M O PO N O P= ∵O 1P = O 2P ∴O 1M = O 2N ∴AC = BD题型5.有弧中点(或证明是弧中点)时,常有以下几种引辅助线的方法:⑴连结过弧中点的半径 ⑵连结等弧所对的弦 ⑶连结等弧所对的圆心角例5如图,已知D 、E 分别为半径OA 、OB 的中点,C 为弧AB 的 中点,求证:CD = CE证明:连结OC∵C 为弧AB 的中点∴»»AB BC = ∴∠AOC =∠BOC∵D 、E 分别为OA 、OB 的中点,且AO = BO∴OD = OE = 12AO = 12BO又∵OC = OC∴△ODC ≌△OEC ∴CD = CE结论1.圆内角的度数等于它所对的弧与它对顶角所对的弧的度数之和的一半. 结论2.圆外角的度数等于它所截两条弧的度数之差的一半.结论3.有直径时常作直径所对的圆周角,再利用直径所对的圆周角为直角证题.例6如图,AB为⊙O的直径,AC为弦,P为AC延长线上一点,且AC = PC,PB的延长线交⊙O于D,求证:AC = DC 证明:连结AD∵AB为⊙O的直径∴∠ADP = 90o∵AC = PC∴AC = CD =12 AP练习:如图,在Rt△ABC中,∠BCA = 90o ,以BC为直径的⊙O交AB于E,D为AC中点,连结BD交⊙O于F.求证:BC CF BE EF=题型6.有垂直弦时也常作直径所对的圆周角.题型7.有等弧时常作辅助线有以下几种:⑴作等弧所对的弦⑵作等弧所对的圆心角⑶作等弧所对的圆周角练习:1.如图,⊙O的直径AB垂直于弦CD,交点为E,F为DC延长线上一点,连结AF交⊙O于M.求证:∠AMD =∠FMC(提示:连结BM)2.如图,△ABC内接于⊙O,D、E在BC边上,且BD = CE,∠1 =∠2,求证:AB = AC(提示如图)题型8.有弦中点时,常构造三角形中位线例7已知,如图,在⊙O中,AB⊥CD,OE⊥BC于E,求证:OE =12 AD证明:作直径CF,连结DF、BF ∵CF为⊙O的直径∴CD⊥FD又∵CD⊥AB∴AB∥DF∴»»AD BF=∴AD = BF∵OE⊥BC O为圆心CO = FO ∴CE = BE∴OE =12 BF∴OE =12ADP2题图A1题图BA题型9.圆上有四点时,常构造圆内接四边形.例8如图,△ABC 内接于⊙O ,直线AD 平分∠F AC ,交⊙O 于E ,交BC 的延长线于D ,求证:AB ·AC= AD ·AE证明:连结BE ∵∠1 =∠3 ∠2 =∠1 ∴∠3 =∠2∵四边形ACBE 为圆内接四边形 ∴∠ACD =∠E ∴△ABE ∽△ADC∴AE AB AC AD∴AB ·AC = AD ·AE题型10.两圆相交时,常连结两圆的公共弦例9如图,⊙O 1与⊙O 2相交于A 、B ,过A 的直线分别交⊙O 1、⊙O 2于C 、D ,过B 的直线分别交⊙O 1、⊙O 2于E 、F .求证:CE ∥DF证明:连结AB∵四边形为圆内接四边形∴∠ABF =∠C同理可证:∠ABE =∠D∵∠ABF +∠ABE = 180o ∴∠C +∠D = 180o ∴CE ∥DF题型11.在证明直线和圆相切时,常有以下两种引辅助线方法:⑴当已知直线经过圆上的一点,那么连结这点和圆心,得到辅助半径,再证明所作半径与这条直线垂直即可.⑵如果不知直线与圆是否有交点时,那么过圆心作直线的垂线段,再证明垂线段的长度等于半径的长即可.例10如图,P 为⊙O 外一点,以OP 为直径作圆交⊙O 于A 、B 两点,连结P A 、PB .求证:P A 、PB 为⊙O 的切线 证明:连结OA ∵PO 为直径∴∠P AO = 90o ∴OA ⊥P A∵OA 为⊙O 的半径 ∴P A 为⊙O 的切线同理:PB 也为⊙O 的切线例11如图,同心圆O ,大圆的弦AB = CD ,且AB 是小圆的切线,切点为E ,求证:CD 是小圆的切线证明:连结OE ,过O 作OF ⊥CD 于F ∵OE 为半径,AB 为小圆的切线∴OE ⊥AB ∵OF ⊥CD , AB = CD∴OF = OE ∴CD 为小圆的切线P练习:如图,等腰△ABC ,以腰AB 为直径作⊙O 交底边BC 于P ,PE ⊥AC 于E , 求证:PE 是⊙O 的切线题型12.当已知条件中有切线时,常作过切点的半径,利用切线的性质定理证题.例12如图,在Rt △ABC 中,∠C = 90o ,AC = 12,BC = 9,D 是AB 上一点,以BD 为直径的⊙O 切AC 于E ,求AD 长.解:连结OE ,则OE ⊥AC∵BC ⊥AC ∴OE ∥BC∴OE AOBC AB=在Rt △ABC 中,AB= 15==∴15915OE AB OB OEAB --==∴OE = OB = 458∴BD = 2OB = 454∴AD = AB -DB = 15-454= 154答:AD 的长为154.练习:如图,⊙O 的半径OA ⊥OB ,点P 在OB 的延长线上,连结AP 交⊙O 于D ,过D 作⊙O 的切线CE 交OP 于C ,求证:PC = CDCC AE。
例谈圆中常见作辅助线的方法

例谈圆中常见作辅助线的方法圆是初中几何局部的重要内容之一,与圆有关的大局部几何题型都需要添加辅助线来解决。
只要添上适宜的辅助线,不仅会使问题迎刃而解,而且还会有效地培养学生的解题能力与创造性思维能力。
通过对实践教学中的归纳与总结,发现添加辅助线的方法有很多,本文就圆中常见作辅助线的方法归纳如下:一、作弦心距(在与弦有关的计算或证明题时,常作辅助线的方法是作弦心距)例1:如图1,AB为O的直径,PQ切O于T,ACPQ于C,交O于D,AD=2,TC=.求O的半径。
解:过点O作OMAC于M,AM=MD=AD/2=1.PQ切O于T,OTPQ.又ACPQ,OMAC,∠OTC=∠ACT=∠OMC=90°,四边形OTCM为矩形.OM=TC=,在RtAOM中,.即O的半径为2.例2:如图2,已知在以O为圆心的两个同心圆中,大圆的弦AB 交小圆于C、D两点.求证:AC=BD.证明:过点O作OEAB于E,那么AE=BE,CE=DE,AECE=BEDE.AC=AECE,BD=BEDE.AC=BD.二、连半径(与半径和弦有关的简单计算、已知圆中有切线的有关计算和证明时,常作辅助线的方法是连半径)例3:如图3,O的直径CD=20cm,直线lCO,垂足为H,交O于A、B两点,AB=16 cm,直线l平移多少厘米时能于O相切?解:连接OA,lCO,OC平分ABAH=8cm.在RtAHO中,OH=6cm.CH=4cm,DH=16 cm.答:直线l向左平移4cm,或向右平移16cm时能于O相切。
例4:如图4,PA是O的切线,切点是A,过点A作AHOP于点H,交O于点B.求证:PB是O的切线.证明:连接OA、OB.PA是O的切线,∠OAP=90°.OA=OB,ABOP,∠AOP=∠BOP.又OA=OB,OP=OP,AOP≌BOP.∠OPB=∠OAP=90°.PB是O的切线.三、既作弦心距又连半径(与半径和弦都有关的计算时,常作辅助线的方法是既作弦心距又连半径,利用勾股定理来解决)例5:直径为52厘米的圆柱形油槽内装入一些油后,截面如图5,假设油最大深度为16厘米.那么油面宽度AB的长是多少厘米?解:连接OA,作OCAB于C,那么AC=BC=AB.在RtOAC中,OA=×52=26厘米,OC=2616=10厘米,AC=24厘米.AB=2AC=48厘米.四、连弦构造相似三角形或直角三角形(在圆中与弦或其他有关的计算或证明时,常作辅助线的方法是连弦,利用同弧所对的圆周角相等连弦构造相似三角形或利用直径所对的圆周角为直角这个性质连弦构造出直角三角形,从而将问题转化到相似三角形或直角三角形中去计算或证明)例6:已知,如图6,在半径为4的O中,AB,CD是两条直径,M为OB的中点,CM的延长线交O于点E,且EM>MC.连结DE,DE=.(1)求证:AM・MB=EM・MC;(2)求EM的长;(3)求sin∠EOB的值.解:(1)连接AC,EB,那么∠CAM=∠BEM.又∠AMC=∠EMB,AMC∽EMB.,即AM・MB=EM・MC.(2) DC为O的直径,∠DEC=90°,EC=OA=OB=4,M为OB的中点,AM=6,BM=2.设EM=x,那么CM=7x.代入(1),得6×2=x(7x).解得x1=3,x2=4.但EM>MC,EM=4.(3)由(2)知,OE=EM=4,作EFOB于F,那么OF=MF=OB=1.在RtEOF中,sin∠EOB=.例7:如图7所示,ABC是直角三角形,∠ABC=90°,以AB为直径的O交AC于点E,点D是BC边的中点,连结DE.(1)求证:DE与O相切;(2)假设O的半径为,DE=3,求AE.(1)证明:连结OE,BE,AB是直径,BEAC.D是BC的中点, DE=DB,∠DBE=∠DEB.又OE=OB,∠OBE=∠OEB,∠DBE+∠OBE=∠DBE+∠OEB.即∠ABD=∠OED.又∠ABC=90°,∠OED=90°,DE是O的切线.(2)解:,,.五、作直径构造直角三角形(在圆中牵涉到三角函数的运算或与直径的计算与证明时,常作辅助线的方法是作直径,利用直径所对的圆周角是直角构造直角三角形,从而将问题转化到直角三角形中去解决)例8:如图8,点A、B、C在O上(AC不过O点),假设∠ACB=60°,AB=6,求O半径的长。
圆中常见的辅助线
计算弧长
利用半径和直径,可以计算圆中的 弧长,如半圆、四分之一圆等。
证明定理
半径和直径在证明圆的定理中起到 关键作用,如垂径定理、切线长定 理等。
半径和直径的作法
作半径
从圆心出发,用直尺或圆规画出到圆上任意一点的线段。
作直径
通过圆心,用直尺或圆规画出穿过圆上任意两点的线段。
02 弦
定义与性质
弦的作法
01
02
03
04
通过作弦的中垂线来找到弦的 中点;
通过连接圆心和弦的一个端点 来找到弦;
通过作经过圆上两点的切线来 找到弦;
通过作经过圆心的直线来找到 弦。
03 切线
定义与性质
定义
切线是指与圆只有一个公共点的直线。
性质
切线与半径垂直,切线长度与半径相等,切线到圆心的距离为0。
切线在解题中的作用
定义
连接圆上任意两点的线段被称为圆的 弦。
性质
弦与直径垂直时,弦平分直径;同弦 所对的圆周角相等;弦长与半径成正 比。
弦在解题中的作用
利用弦的性质求角度
利用弦的性质证明定理
通过利用弦所对的圆周角相等,可以 求出某些角度。
通过利用弦的性质,可以证明一些与 圆有关的定理。
利用弦的性质求长度
利用弦长与半径的比例关系,可以求 出某些长度。
圆中常见的辅助线
目 录
• 半径和直径 •弦 • 切线 • 割线
01 半径和直径
定义与性质
定义
半径是连接圆心和圆上任意一点 的线段,直径是穿过圆心且两端 点在圆上的线段。
性质
半径长度等于圆的半径,直径长 度等于圆的直径。
半径和直径在解题中的作用
2017年中考数学专题汇编:圆中常用的作辅助线的八种方法
专训2圆中常用的作辅助线的八种方法名师点金:在解决有关圆的计算或证明题时,往往需要添加辅助线,根据题目特点选择恰当的辅助线至关重要.圆中常用的辅助线作法有:作半径,巧用同圆的半径相等;连接圆上两点,巧用同弧所对的圆周角相等;作直径,巧用直径所对的圆周角是直角;证切线时“连半径,证垂直”以及“作垂直,证半径”等.作半径,巧用同圆的半径相等1.如图,两正方形彼此相邻,且大正方形ABCD的顶点A,D在半圆O上,顶点B,C在半圆O的直径上;小正方形BEFG的顶点F在半圆O上,E点在半圆O的直径上,点G在大正方形的边AB上.若小正方形的边长为 4 cm,求该半圆的半径.(第1题)[来源学科网Z,X,X,K]连接圆上两点,巧用同弧所对的圆周角相等2.如图,圆内接三角形ABC的外角∠ACM的平分线与圆交于D点,DP⊥AC,垂足是P,DH⊥BM,垂足为H.求证:AP=BH.(第2题)作直径,巧用直径所对的圆周角是直角3.如图,⊙O的半径为R,弦AB,CD互相垂直,连接AD,BC.(1)求证:AD2+BC2=4R2;(2)若弦AD,BC的长是方程x2-6x+5=0的两个根(AD>BC),求⊙O的半径及点O到AD的距离.(第3题)证切线时辅助线作法的应用4.如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点 D.判断CD 与⊙O的位置关系,并说明理由.(第4题)遇弦加弦心距或半径5.如图,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 2 D.4 2(第5题)(第6题)6.【中考·贵港】如图,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB =23,OH=1,则∠APB=________.遇直径巧加直径所对的圆周角7.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC,AC于点D,E,且点D是BC的中点.(1)求证:△ABC为等边三角形;(2)求DE的长.(第7题)遇切线巧作过切点的半径8.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.(1)求证:PB是⊙O的切线;(2)已知PA=3,∠ACB=60°,求⊙O的半径.(第8题)巧添辅助线计算阴影部分的面积9.【中考·自贡】如图,点B ,C ,D 都在⊙O 上,过点C 作AC ∥BD 交OB 的延长线于点A ,连接CD ,且∠CDB =∠OBD =30°,DB =6 3 cm.(1)求证:AC 是⊙O 的切线;(2)求由弦CD ,BD 与BC ︵所围成的阴影部分的面积(结果保留π).(第9题)[来源:学_科_网Z_X_X_K]答案1.解:如图,连接OA ,OF.设OA =OF =r cm ,AB =a cm.(第1题)在Rt △OAB 中,r 2=a 22+a 2,在Rt △OEF 中,r 2=42+4+a 22,∴a 24+a 2=16+16+4a +a 24. 解得a 1=8,a 2=-4(舍去).∴r 2=822+82=80.∴r 1=45,r 2=-45(舍去).即该半圆的半径为4 5 cm.点拨:在有关圆的计算题中,求角度或边长时,常连接半径构造等腰三角形或直角三角形,利用特殊三角形的性质来解决问题.2.证明:如图,连接AD ,BD.(第2题)∵∠DAC ,∠DBC 都是DC ︵所对的圆周角.∴∠DAC =∠DBC.∵CD 平分∠ACM ,DP ⊥AC ,DH ⊥CM ,∴DP =DH.在△ADP 和△BDH 中,∠DAP =∠DBH ,∠DPA =∠DHB =90°,DP =DH.∴△ADP ≌△BDH.∴AP =BH.点拨:本题通过作辅助线构造圆周角,然后利用“同弧所对的圆周角相等”得到∠DAC =∠DBC ,为证两三角形全等创造了条件.3.(1)证明:如图,过点D 作⊙O 的直径DE ,连接AE ,EC ,AC.(第3题)∵DE 是⊙O 的直径,∴∠ECD =∠EAD =90°. 又∵CD ⊥AB ,∴EC ∥AB. ∴∠BAC =∠ACE. ∴BC ︵=AE ︵.∴BC =AE.在Rt △AED 中,AD 2+AE 2=DE 2,∴AD 2+BC 2=4R 2.(2)解:如图,过点O 作OF ⊥AD 于点 F.∵弦AD ,BC 的长是方程x 2-6x +5=0的两个根(AD>BC),[来源:]∴AD =5,BC =1.由(1)知,AD 2+BC 2=4R 2,∴52+12=4R 2.∴R =262. ∵∠EAD =90°,OF ⊥AD ,∴OF ∥EA.又∵O 为DE 的中点,∴OF =12AE =12BC =12,即点O 到AD 的距离为12.点拨:本题作出直径DE ,利用“直径所对的圆周角是直角”构造了两个直角三角形,给解题带来了方便.4.解:CD 与⊙O 相切,理由如下:如图,作⊙O 的直径CE ,连接AE.(第4题)∵CE是⊙O的直径,∴∠EAC=90°.∴∠E+∠ACE=90°.∵CA=CB,∴∠B=∠CAB.∵AB∥CD,∴∠ACD=∠CAB.∴∠B=∠ACD.又∵∠B=∠E,∴∠ACD=∠E.∴∠ACE+∠ACD=90°,即OC⊥DC.又∵OC为⊙O的半径,∴CD与⊙O相切.5.C 6.60°(第7题) 7.(1)证明:如图,连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵点D是BC的中点,∴AD是线段BC的垂直平分线.∴AB=AC.又∵AB=BC,∴AB=BC=AC.∴△ABC为等边三角形.(2)解:如图,连接BE.∵AB是⊙O的直径,∴∠AEB=90°.∴BE⊥AC.[来源学科网]∵△ABC是等边三角形,∴AE=EC,即E为AC的中点.又∵D是BC的中点,故DE为△ABC的中位线.∴DE=12AB=12×2=1.8.(1)证明:如图,连接OB,∵OA=OB,(第8题)∴∠OAB=∠OBA.∵PA=PB,∴∠PAB=∠PBA.∴∠OAB+∠PAB=∠OBA+∠PBA,即∠PAO=∠PBO.又∵PA是⊙O的切线,∴∠PAO=90°.∴∠PBO=90°.∴OB⊥PB.又∵OB是⊙O的半径,∴PB是⊙O的切线.(2)解:如图,连接OP,∵PA=PB,∴点P在线段AB的垂直平分线上.∵OA=OB,∴点O在线段AB的垂直平分线上.∴OP为线段AB的垂直平分线.又∵BC⊥AB,∴PO∥BC.∴∠AOP=∠ACB=60°.由(1)知∠PAO=90°.∴∠APO=30°.∴PO=2AO.∵在Rt△APO中,AO2+PA2=PO2,∴AO2+3=(2AO)2.又∵AO>0,∴AO=1.∴⊙O的半径为 1.(第9题)9.(1)证明:如图,连接CO,交DB于点E,∴∠O=2∠CDB=60°. 又∵∠OBE=30°,∴∠BEO=180°-60°-30°=90°.∵AC∥BD,∴∠ACO=∠BEO=90°,即OC⊥AC.又∵点C在⊙O上,∴AC是⊙O的切线.(2)解:∵OE⊥DB,∴EB=12DB=3 3 cm.在Rt△EOB中,∵∠OBE=30°,∴OE=12 OB.∵EB=3 3 cm,∴由勾股定理可求得OB=6 cm.∵∠CDB=∠DBO,DE=BE,∠CED=∠OEB,∴△CDE≌△OBE.∴S△CDE=S△OBE.∴S阴影=S扇形COB=60360π·62=6π(cm2).[来源:Z&xx&]。
初中数学圆的辅助线八种作法教学内容
中考数学圆的辅助线在平面几何中,与圆有关的许多题目需要添加辅助线来解决。
百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。
添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。
下面以几道题目为例加以说明。
1.有弦,可作弦心距在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。
例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。
求证:PO 平分∠APD 。
分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。
证法1:作OE ⊥AB 于E ,OF ⊥CD 于FAC=BD => = => ==> AB=CD => OE=OF∠OEP=∠OFP=90° => △OPE ≌△OPF0OP=OP=>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证AB(BD , (CD (D 图 1AC(AC (BD (AB (CD(∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。
证法2:连结OA ,OD 。
∠CAP=∠BDP∠APC=∠DPB =>△ACP ≌△DBP AC=BD=>AP=DPOA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP2.有直径,可作直径上的圆周角对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。
解题技巧专题圆中辅助线的作法
解题技巧专题圆中辅助线的作法在解题过程中,我们经常会遇到一些问题,例如如何构造等腰三角形、正方形、平行四边形等几何图形,以及如何构造垂直线、角平分线、中位线等几何线段。
这些问题在解决数学问题时非常常见,而圆中辅助线的作法就是一种常用的解决这类问题的技巧。
圆中辅助线的作法是指在解决圆相关的问题时,通过添加一些辅助线来辅助解决问题。
这些辅助线可以增强我们对图形的理解,简化问题的分析过程,使问题更易于解决。
下面将介绍一些常见的圆中辅助线的作法:1.构造圆的切线如果需要构造一条圆的切线,可以先连接圆心与切点,然后再从切点向圆外引一条与半径垂直的线段,两条线段的交点就是切线的切点。
利用这条切线可以帮助我们解决一些关于切线的性质问题。
2.构造垂直线如果需要构造一条与圆上特定点垂直的直线,可以连接该点与圆心,并在圆上引一条经过该点的切线,然后从圆心引一条与切线垂直的线段,两条线段的交点就是所求直线与圆的交点。
利用这条直线可以帮助我们解决一些关于圆的性质问题。
3.构造角平分线如果需要构造一条角的平分线,可以先连接角的两个顶点与圆心,然后再从圆心引一条与角平分线相垂直的线段,两条线段的交点就是所求角的平分线与圆的交点。
利用这条角平分线可以帮助我们解决一些关于角平分线的性质问题。
4.构造中位线如果需要构造一条线段的中位线,可以将线段的两个端点连接到圆心,并在圆上引一条经过中点的切线,然后再从圆心引一条与切线垂直的线段,两条线段的交点就是所求线段的中点。
利用这条中位线可以帮助我们解决一些关于线段中点的性质问题。
5.构造等腰三角形如果需要构造一个等腰三角形,可以先在圆上确定一个顶点,然后连接圆心与该点,并延长线段到圆的另一侧,再将圆切割成两个等弧,然后以切割点为顶点连接圆心,就可以得到一个等腰三角形。
利用这个等腰三角形可以帮助我们解决一些关于等腰三角形的性质问题。
这些是一些常见的圆中辅助线的作法,通过添加这些辅助线,我们可以更好地理解和解决与圆相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学圆的辅助线在平面几何中,与圆有关的许多题目需要添加辅助线来解决。
百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。
添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。
下面以几道题目为例加以说明。
1.有弦,可作弦心距在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。
例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。
求证:PO 平分∠APD 。
分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。
证法1:作OE ⊥AB 于E ,OF ⊥CD 于FAC=BD => = => ==> AB=CD => OE=OF∠OEP=∠OFP=90° => △OPE ≌△OPF0OP=OP=>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证AB(BD , (CD (D 图 1AC(AC (BD (AB (CD(∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。
证法2:连结OA ,OD 。
∠CAP=∠BDP∠APC=∠DPB =>△ACP ≌△DBP AC=BD=>AP=DPOA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP2.有直径,可作直径上的圆周角对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。
例2 如图2,在△ABC 中,AB=AC , 以AB 为直径作⊙O 交BC 于点D ,过D 作⊙O 的切线DM 交AC 于M 。
求证 DM ⊥AC 。
分析:由AB 是直径,很自然想到其所图 2D 图1-1对的圆周角是直角。
于是可连结AD ,得∠ADB=Rt ∠,又由等腰三角形性质可得∠1=∠2,再由弦切角的性质可得∠ADM=∠B ,故易证∠AMD=∠ADB=90°,从而DM ⊥AC 。
证明 连结AD 。
AB 为⊙O 的直径 =>∠ADB=Rt ∠AB=ACDM 切⊙O 于D => ∠ADM=∠B=> ∠1+∠B=∠2+∠ADM =>∠AMD=∠ADB= Rt ∠ => DM ⊥AC 说明,由直径及等腰三角形想到作直径上的圆周角。
3. 当圆中有切线常连结过切点的半径或过切点的弦例3 如图3,AB 是⊙O 的直径,点D 在AB 的延长线上,BD=OB ,DC 切⊙O 于C 点。
求∠A 的度数。
分析:由过切点的半径垂直于切线, 于是可作辅助线即半径OC ,得Rt △, 再由解直角三角形可得∠COB 的度数, 从而可求∠A 的度数。
解:连结OC 。
DC 切⊙O 于C =>∠OCD=90°OC=OB=BD=> ∠A=1/2∠COB=30°说明,由过切点的半径垂直于切线想到连结半径。
例4 如图4,已知△ABC 中,∠1=∠2,=>∠1=∠2=> COS ∠COD=OC/OD=1/2 =>∠COB=60°D图 3圆O 过A 、D 两点,且与BC 切于D 点。
求证 EF//BC 。
分析:欲证EF//BC ,可找同位角或内错角是否相等,显然同位角相等不易证,于是可连结DE ,得一对内错角∠BDE 与∠DEF ,由圆的性质可知这两个角分别等于∠1和∠2,故易证EF//BC 。
证明 连结DE 。
BC 切⊙O 于D =>∠BDE= ∠1∠2= ∠DEF=>∠BDE= ∠DEF =>EF//BC ∠1= ∠2说明,由有切线且在同圆中等弧所对的圆周角相等想到连结弦。
4.当两圆相切,可作公切线或连心线 例5 已知:如图5,⊙O 1与⊙O 2外切 于点P ,过P 点作两条直线分别交⊙O 1与 ⊙O 2于点A 、B 、C 、D 。
求证 PB •PC=PA •PD 。
分析:欲证PB •PC=PA •PD ,即证PA ∶PB=PC ∶PD ,由此可作辅助线AC 、BD ,并证AC//DB ,要证平行,需证一对内错角相等,如∠C=∠D ,然后考虑到这两个角分别与弦切角有关,进而再作辅助线即两圆公切线MN ,从而问题迎刃而解。
ADM P O 1 O 2..证明 连结AC 、BD ,过P 点作两圆的内公切线MN =>∠APM=∠C ,∠BPN=∠D∠APM=∠BPN=> AC//DB => PA ∶PB=PC ∶PD => PB •PC=PA •PD说明,由需证弦平行且弦切角等于其所夹弧对的圆周角想到作公切线和作弦。
例6 已知:如图6,⊙O 1与⊙O 2内切于点T ,经过 切点T 的直线与⊙O 1与⊙O 2分别相交于点A 和B 。
求证 TA ∶TB=O 1A ∶O 2B 。
分析:欲证TA ∶TB=O 1A ∶O 2B ,可考虑证这四条线段所在的三角形相似,即证△TO 1A ∽△TO 2B ,于是只需连结O 2O 1,并延长,必过切点,则产生△TO 1A 和△TO 2B ,由∠1= ∠2=∠T ,则O 1A// O 2B ,易证线段比相等。
证明 连结并延长O 2O 1 ⊙O 1 和⊙O 2内切于点T O 1A=O 1T =>∠1= ∠T O 2T= O 2B =>∠2= ∠T=>△TO 1A ∽△TO 2B => TA ∶TB=O 1A ∶O 2B说明,由连心线必过切点可构造三角形证全等想到作连心线。
T BA O 1 O212图 6=> ∠C=∠D=> O 2O 1必过切点T=> ∠1= ∠2 => O 1A// O 2B5.当两圆相交,可作公共弦或连心线。
例7 如图7,⊙O 1与⊙O 2相交于A 、B 两点,过A 点作⊙O 2的切线交⊙O 1于点C , 直线CB 交⊙O 2于点D ,DA 延长线交⊙O 1 于点E ,连结CE 。
求证 CA=CE 。
分析:欲证CA=CE ,考虑在三角形中证它们所对的角相等,即∠E=∠CAE ,又由∠DAF=∠CAE ,想到弦切角∠DAF 与所夹弧对的圆周角相等,故需作辅助线:公共弦AB ,得∠E=∠DBA ,易证CA=CE 。
证明 连结AB 。
CA 切⊙O 2于A =>∠DAF=∠DBA四边形ABCE 内接于⊙O 1 =>∠E=∠DBA ∠DAF=∠CAE=>∠E=∠CAE => CA=CE说明,由两圆相交及用到弦切角和圆内接四边形想到作公共弦。
C D E M NG ABO 2O 1F FEB CAO 1 O 2..图 7D例8 如图8,在梯形ABCD 中,以两腰 AD 、BC 分别为直径的两个圆相交于M 、N 两点, 过M 、N 的直线与梯形上、下底交于E 、F 。
求证: MN ⊥AB 。
分析:因为MN 是公共弦,若作辅助线O 1O 2,必有MN ⊥O 1O 2,再由O 1O 2是梯形的中位线,得O 1O 2//AB ,从而易证MN ⊥AB 。
证明 连结O 1O 2交EF 于G => MN ⊥O 1O 2。
DO 1=O 1A ,CO 2=O 2B => O 1O 2是梯形ABCD 的中位线 => O 1O 2//AB =>∠EFA=∠EGO 1=Rt ∠ => MN ⊥AB 说明,由两圆相交连心线垂直于公共弦想到作连心线。
6.有半圆,可作整圆例9 如图9,BC 为⊙O 的直径,AD ⊥BC 于D , = , AD 交BF 于E 。
求证 AE=BE 分析:欲证AE=BE ,可考虑在三角形中证这两边所对角相等。
即∠ABF=∠BAE ,再考虑证这两个圆周角 所对的弧相等,故需补全⊙O ,可证 = ,故有 = 易证AE=BE. 证明 补全⊙O ,延长AD 交⊙O 于H , 直径BC ⊥AD => ==> = =>∠ABF=∠BAH => AE=BE说明,由平分弦的直径必平分弦所对的弧想到补全圆。
7.相交两圆中至少有一个圆经过另一个圆的圆心,遇到这类问题,常用的辅助线是连结过交点的半径例10 如图10,⊙O 1与⊙O 2相交于 A 、B 两点,且O 2在⊙O 1上,点P 在⊙O 1上, 点Q 在⊙O 2上,若∠APB=40°,求∠AQB 的度数。
BA (AF(BA ( BH ((AF ( BH (F AB DO . HE C图9 BA (BH (AF, (BH ( BA= AF , (分析 连结O 2A 、O 2B ,在⊙O 1中利用圆内接四边形性质求得∠AO 2B=140°,在⊙O 2中, ∠AQB=1/2∠AO 2B=70°。
证明过程略。
说明,由同圆内同弧所对的圆周角等于所对圆心角的一半想到连结过交点的半径。
几何辅助线的添加,是几何学习的一个难点,正确添加辅助线,是沟通题设和结论的桥梁,也是解题的重要手段。
学生在做几何题时,明知需要引辅助线,但又不知如何引,而是乱加辅助线,反而使图形复杂,影响思路与问题的解决。
因此,恰当添加辅助线,使问题迎刃而解,从而调动学生积极性,激发学习兴趣,开发智力,掌握解题技能与技巧,提高解题效率,培养思维能力。
PA B O 2 O 1. 图 10。