地下水氨氮处理技术研究进展
探讨地下水污染现状及控制技术研究进展

探讨地下水污染现状及控制技术研究进展地下水是地表水中的一种重要水源,被广泛用于生活、农业和工业生产中。
随着工业化和城市化进程的加快,地下水污染问题日益严重。
地下水污染是指地下水中溶解或悬浮的有害物质超过环境质量标准的现象。
地下水污染对环境和人类健康造成严重威胁,因此探讨地下水污染现状及控制技术研究进展是非常重要的。
地下水污染现状主要呈现以下特点:一是地下水污染的种类多样化。
地下水污染的物质种类繁多,主要包括有机物(如石油、石油产品、有机溶剂)、无机物(如重金属、氨氮、氯离子)和放射性物质等。
二是地下水污染的来源复杂化。
地下水污染的来源多样,包括工业废水、农业面源污染、城市污水、垃圾填埋场渗滤液、地表水污染物渗入等。
三是地下水污染的空间分布不均衡。
地下水污染的程度和分布不均匀,一些地区地下水严重污染,严重威胁了当地的饮用水安全。
一是原位污染物修复技术研究。
原位修复技术是指在不取水和污染水体接触的情况下,通过添加生物修复剂、化学修复剂或气体修复剂等,使污染物发生降解、转化或吸附,达到修复水质的目的。
常用的原位修复技术包括生物修复、气气相萃取、电动力场强化吸附等。
二是地下水提取修复技术研究。
地下水提取修复技术是指将受到污染的地下水提升到地面进行处理后再返注地下水井,通常采用的方法有充气地下排污技术、增压地下排污技术等。
三是防控地下水污染技术研究。
防控地下水污染技术主要包括地表水与地下水联防联控技术、土壤修复技术和污染源控制技术等。
通过加强地表水与地下水联防联控,采取合理的土壤修复措施和严格的污染源控制,可以有效防止和控制地下水污染。
地下水污染问题日益突出,对环境和人类健康带来严重影响。
为了保护地下水资源,必须加强地下水污染现状的调查研究,并通过开展控制技术研究,针对不同的污染物和源头,选择合适的修复技术、防控技术,以降低地下水污染的风险。
还需要加强污染源管控,加大对地下水环境的保护力度。
只有这样,才能有效解决地下水污染问题,保障地下水的安全和可持续利用。
地下水氨氮处理技术

工业废水
工业生产过程中产生的废水, 未经处理或处理不达标直接排 放,导致氨氮等污染物进入地 下水。
生活污水
生活污水中的洗涤剂、粪便等 含有氨氮成分,通过下水道渗 漏或直接排放进入地下水。
畜禽养殖
畜禽养殖过程中产生的粪便和 废水,未经处理直接排放,导 致氨氮等污染物渗入地下水。
氨氮污染的危害
01
03
02
经济性
考虑技术的投资、运行成本和经济 效益。
可操作性
选择易于操作、维护和管理的方法 。
04
技术选择建议
对于低浓度氨氮地下水,可采 用物理吸附或生物法进行处理
。
对于高浓度氨氮地下水,可采 用化学沉淀法或组合法进行处
理。
对于特殊水质要求,如饮用水 源地,应选择安全可靠的物理 或化学法进行深度处理。
在选择技术时,应综合考虑各 种因素,进行多方案比较,选 择最优方案。
04
氨氮处理技术案例分析
物理处理技术应用案例
沉淀法
通过向地下水中投加药剂,使氨氮与药剂发生反应后沉淀,然后通过固液分离技术将沉淀物去除。例 如,在某地下水处理工程中,通过投加镁盐和磷酸盐,使氨氮形成磷酸铵镁沉淀,再通过斜板沉淀池 进行固液分离,达到去除氨氮的目的。
的智能化控制,提高处理效率和稳定性。
高效低耗
02
研究低能耗、低成本的氨氮处理技术,提高处理效率的同时降
低运行成本,实现环保与经济的双重目标。
资源化利用
03
将处理过程中产生的副产物进行资源化利用,如将产生的二氧
化碳进行捕集和利用,实现资源的循环利用。
对策与建议
加强基础研究
加大对地下水氨氮处理技术的基础研究力度,提高技术的理论支 撑和实践指导能力。
拓展——氨氮废水处理技术研究进展

二、氨氮污染主要来源
城市废水是指家庭、 公共设施和天然水资源排放的水。 随着生活水平的提高, 城市废水中化学物质种类增多, 尤其是含有大量的生物需氧量、 氨氮、 磷、 硝酸盐、 总悬浮物和脂质。城市废水通常在污水处理厂进行集中 处理, 废水具有水量大、 C/ N 低的特点, 最常使用的处理方法是生物法, 但是该法在一些高纬度或寒冷地区处理 城市氨氮废水时, 低温会抑制微生物的活性。 尽管还有许多关于鸟粪石法和吸附法的尝试,但鉴于城市废水水量 大, 出于成本考虑, 生物法处理仍然是推荐的方法, 为了增大生物法的适用条件, 近期关于耐低温菌株、 短程硝化 和厌氧氨氧化的研究逐渐增多。 此外, 厌氧膜生物反应器法处理城市废水时具有很好的经济性及实用性, 研究表 明, 该法对 COD 的去除率在 90% 以上, 同时仅消耗少量的可溶性铵和磷酸盐, 处理后的废水含有丰富的营养物 质, 可作为农业灌溉水使用。 颗粒污泥法最近受到了越来越多的关注, 研究表明, 该法可以去除 90% 的有机物和 铵。 同时,城市废水中的大部分铵和磷可以通过微生物异化作用被同化为微藻-细菌颗粒污泥, 处理过程产生的 CO2 可以被微藻利用。 因此, 厌氧膜生物反应器和微藻-细菌颗粒污泥处理法是极具发展前景的方法。
硝化反硝化生物处理技术是典型的活性污泥法。 有氧条件下, 硝化细菌将氨氮转化为硝酸盐。 随 后, 在缺氧条件下, 反硝化细菌将硝酸盐还原为无害的氮气。 在缺氧池中, 反硝化细菌以有机物为碳源, 以返回的硝酸盐和亚硝酸盐为电子供体进行反硝化, 同时, 还能将大分子有机物水解成小分子有机物, 提高后续好氧池的生物降解效率。 此外, 为了解决污泥回流问题, 提高氮磷去除效率, 还开发了循环曝 气池和厌氧-缺氧-好氧工艺等方法。 但由于回流比大、 曝气量大或废水 C/ N 低等原 因, 运行成本高, 应用受到限制。
β-环糊精改性沸石去除稀土矿区地下水氨氮污染研究

β-环糊精改性沸石去除稀土矿区地下水氨氮污染研究β-环糊精改性沸石是一种新型的吸附材料,在去除地下水氨氮污染方面具有很好的应用前景。
稀土矿区地下水氨氮污染是当前环境问题面临的挑战之一,而β-环糊精改性沸石则是一种潜在的解决方案。
本文旨在探讨β-环糊精改性沸石在去除稀土矿区地下水氨氮污染方面的研究进展和应用前景。
稀土矿区地下水氨氮污染是由矿区排放的废水中的氨氮所引起的。
氨氮是一种有害物质,对环境和人体健康造成严重危害。
因此,去除稀土矿区地下水氨氮污染成为了一个迫切的任务。
β-环糊精改性沸石是沸石表面经过改性后形成的一种新型材料,具有良好的吸附性能。
研究表明,β-环糊精改性沸石具有高吸附容量、快速吸附速度和良好的选择性,可以有效去除地下水中的氨氮污染。
其吸附机制是通过β-环糊精和氨氮分子之间的相互作用力,使氨氮被沸石表面吸附和固定。
研究者们对β-环糊精改性沸石的应用进行了广泛的研究。
实验结果表明,在一定的操作条件下,β-环糊精改性沸石对地下水中的氨氮具有很好的去除效果。
在一系列的静态吸附实验中,β-环糊精改性沸石的去除率达到了90%以上。
同时,β-环糊精改性沸石还表现出较好的重复利用性能,多次循环使用后仍能保持较高的吸附能力。
除了静态实验,研究者们还进行了一系列动态实验来模拟实际环境中的地下水污染情况。
实验结果表明,β-环糊精改性沸石在动态环境中同样具有较好的去除效果。
在模拟的地下水流速下,β-环糊精改性沸石仍能够达到90%以上的去除率,并且能够很好地适应不同水质条件下的吸附。
此外,研究者们还对β-环糊精改性沸石的吸附机制进行了深入研究。
他们发现,β-环糊精的形成使沸石表面生成了一定的孔洞结构,这有利于氨氮的吸附。
同时,β-环糊精与氨氮分子之间的氢键作用力也是吸附的重要机制之一。
通过理论计算和实验分析,研究者们对β-环糊精改性沸石的吸附机制有了初步的解释,为进一步优化吸附材料提供了理论指导。
总之,β-环糊精改性沸石作为一种新型吸附材料在去除稀土矿区地下水氨氮污染方面具有广阔的应用前景。
水体中氨氮去除技术研究进展

第49卷第8期2021年4月广州化工Guangzhou Chemical IndustryVol.49No.8Apr.2021水体中氨氮去除技术研究进展贺琳杰,屈撑囤(西安石油大学化学化工学院,陕西西安710065)摘要:含氨氮废水作为一种难处理污水,对其进行有效处理一直是国内外环境工程领域研究的热点。
由于其组成的复杂性,使传统处理技术难以满足高氨氮废水的处理需要。
本文讨论并总结了硝化反硝化法、化学沉淀法、电渗析法和液膜法等新型氨氮处理技术特点。
针对高浓度氨氮废水中氨分子在较高温度与较高pH值条件下易于从水中挥发的特点,分析对比了氨氮处理联合装置优势,展望了氨氮废水处理研究方向。
关键词:氨氮;水;硝化;反硝化中图分类号:X703文献标志码:A文章编号:1001-9677(2021)08-0017-04Research Progress on Removal Technology of Ammonia Nitrogen in WaterHE Lin-jie,QU Cheng-tun(College of Chemistry and Chemical Engineering,Xi'an Shiyou University,Shaanxi Xi'an710065,China)Abstract:As a common domestic sewage,ammonia-c ontaining wastewater is relatively difficult to treat in the field of industrial production.Its treatment technology has always been the focus of research in the field of environmental engineering at home and abroad(effective treatment of it has always been the focus of research in the field of environmental engineering at home and abroad).Traditional treatment technology is increasingly difficult to meet the needs of high ammonia nitrogen wastewater treatment.Based on the analysis and research of traditional ammonia nitrogen removal technology,nitrification and denitrification,selective ion exchange,breakpoint chlorination,and chemical advantages and disadvantages of new ammonia nitrogen treatment technologies such as precipitation method,blow-off method,catalytic wet oxidation method,electrodialysis method and liquid membrane methodwere discussed and summarized.On this basis,in view of the characteristics of ammonia molecules in high-concentration ammonia-n itrogen wastewater that were easy to volatilize from the water under the conditions of higher temperature and higher pH value,the combined device designed for ammonia nitrogen treatment was further analyzed and compared,and the research direction was prospected.Key words:ammonia nitrogen;water area;black smell;nitrification and denitrification;treatment technology氨氮废水是生活中中最常见的污染物之一,常以游离氨(NH3)和钱离子(NH:)形态存在于水中,是引起水体富营养化以及环境污染的重要污染物之一⑴。
氨氮废水处理技术研究进展

氨氮废水处理技术研究进展氨氮废水处理技术研究进展摘要:氨氮废水是一种常见的工业废水,具有高毒性和难以降解的特点,对环境造成严重污染。
近年来,针对氨氮废水的处理技术不断发展,包括物理、化学和生物方法等。
本文对氨氮废水处理技术的研究进展进行综述,介绍了各种处理方法的原理和应用情况,分析了存在的问题,并展望了未来的发展方向。
一、引言氨氮废水是指含有高浓度氨氮物质的废水。
氨氮在工业生产中广泛存在,如化肥、石化、制药、食品加工等行业都会产生大量氨氮废水。
这些废水不仅对生态环境造成污染,而且对人体健康也有极大影响。
因此,氨氮废水的处理技术一直是环境科学和工程领域的研究热点。
二、物理处理方法物理处理方法是一种利用物理力学原理处理废水的方法。
常见的物理处理方法包括沉淀、吸附和膜分离等。
其中,沉淀是将废水中的悬浮物通过重力沉降分离的过程,吸附是利用吸附剂将废水中的氨氮物质吸附到表面,膜分离是通过膜的选择性渗透作用将废水中的氨氮物质与水分离。
物理处理方法具有操作简便、效果明显、不产生二次污染等优点,但也存在废水处理成本较高和废弃物处置问题等缺点。
三、化学处理方法化学处理方法是一种利用化学反应将废水中的氨氮物质进行转化或分解的方法。
常见的化学处理方法包括氧化还原反应、酸碱中和反应和复合絮凝等。
其中,氧化还原反应是通过氧化剂将废水中的氨氮物质氧化为无害物质,酸碱中和反应是通过酸碱中和将废水中的氨氮物质中和成中性物质,复合絮凝是利用絮凝剂将废水中的氨氮物质凝聚成沉淀物。
化学处理方法具有处理效果好、可控性强、适用范围广等优点,但也存在化学药剂消耗大和产生二次污染的问题。
四、生物处理方法生物处理方法是利用微生物和生物反应器等进行废水处理的方法。
常见的生物处理方法包括生物膜法、生物吸附法和生物降解法等。
其中,生物膜法是在膜表面形成生物膜,利用生物膜对废水中的氨氮物质进行吸附和降解,生物吸附法是利用微生物对废水中的氨氮物质进行吸附和转化,生物降解法是利用特定微生物将废水中的氨氮物质降解为无害物质。
氨氮废水处理技术现状及发展

氨氮废水处理技术现状及发展/# 前言近年来,随着城市人口的日益膨胀和工农业的不断发展,水环境污染事故屡屡发生,对人、畜构成严重危害。
许多湖泊和水库因氮、磷的排放造成水体富营养化,严重威胁到人类的生产生活和生态平衡。
氨氮是引起水体富营养化的主要因素之一,为满足公众对环境质量要求的不断提高,国家对氮制订了越来越严格的排放标准,研究开发经济、高效的除氮处理技术已成为水污染控制工程领域研究的重点和热点。
本文系统地阐述了氨氮废水处理现状和发展。
! 处理技术现状氨氮存在于许多工业废水中,特别是钢铁、化肥、无机化工、铁合金、玻璃制造、肉类加工和饲料等生产过程,均排放氨氮废水,其浓度取决于原料性质、工艺流程、水的耗量及水的复用等。
对一给定废水,选择技术方案主要取决于:(#)水的性质;(!)处理效果;(,)经济效益。
以及处理后出水的最后处置方法等。
虽然有许多方法都能有效地去除氨,如物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电渗析、电化学处理、催化裂解;生物方法有硝化及藻类养殖,但其应用于工业废水的处理,必须具有应用方便、处理性能稳定、适应于废水水质及比较经济等优点,因此,目前氨氮处理实用性较好的技术为:(#)生物脱氮法;(!)氨吹脱、汽提法;(,)折点氯化法;(%)离子交换法; # < , =。
!$ # 生物脱氮法生物脱氮通常包括生物硝化和生物反硝化。
生物硝化是在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐和硝酸盐的过程。
如果反应完全,氨氧化成硝酸盐分两阶段完成:开始,在亚硝酸菌的作用下使氨氧化成亚硝酸盐,亚硝酸菌属于强好氧性自养细菌,利用氨作为其唯一能源,方程式(#)为这个反应关系式。
第二阶段,在硝酸菌的作用下,使亚硝酸盐转化为硝酸盐,硝酸菌是以亚硝酸作为唯一能源的特种自养细菌,方程式(!)为这个反应的关系式。
整个硝化反应可以用总方程式(,)来表示。
水体中氨氮分析方法研究进展

水体中氨氮分析方法研究进展杜永(十堰市环境保护监测站,湖北十堰442000)摘要:氨氮是我国水体环境监测的重要指标。
本文重点归纳总结了近年来我国在水环境中氨氮分析方法的研究进展,内容主要包括:氨氮的化学分析方法和仪器分析方法,同时阐述了氨氮测定的发展方向。
关键词:水体;氨氮;分析方法;研究进展中图分类号:X-1文献标志码:AA Review on determination methods of ammonia nitrogen in waterDu Yong(Environmental Protection Monitoring Station of Shiyan, Shiyan 44200,China)Abstract :Ammonia nitrogen i s an important indicator of water environment monitoring in China.Int h i s paper, the progress of ammonia nitrogen analysis in water environment in China in recent years i ssummarized.The main contents include :c hemical analysis method and instrument analysis met ammonia nitrogen,and t he development direction of ammonia nitrogen determination i s also discussed.Keywords :water ; ammonia nitrogen ; analytical method ; research progresses氨氮是指水中以游离氨(N H3)和铵盐(N H4+)形式存在的氮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下水氨氮处理技术研究进展
[摘要]本文介绍了地下水中氨氮的来源及危害,针对地下水的氨氮污染状况,文中主要阐述了地下水中氨氮的异位和原位修复技术,并对地下水中氨氮处理技术的前景进行了展望。
[关键词]地下水氨氮异位修复原位修复
地下水是我国主要的饮用水源,近年来由于人类活动的影响,地下水受到了不同程度的污染。
污水回灌、垃圾填埋场渗滤液、农田过度使用化肥等使地下水受到氨氮污染[1]。
氨氮超标的地下水作为饮用水时,水中氨氮会促进管网中细菌的殖,造成水质恶化、管网腐蚀。
目前常用地下水氨氮的去除方法主要有异位修复技术和原位修复技术。
1地下水异位除氨氮的方法
抽出处理修复技术是地下水异位修复的代表技术,用水泵将受污染地下水抽出,之后对其中污染物进行处理。
地下水异位除氨方法主要有吸附法和生物法。
1.1吸附法
目前用于吸附水中氨氮的材料主要有:沸石、蛭石、膨润土等,由于沸石价格低,无毒无味,是最为常见的吸附材料。
陈坚[2]利用天然沸石对地下水中的氨氮进行处理,结果表明,天然沸石对氨氮去除是有效可行的,最高去除率可达93.71%。
辛晓华[3]通过比较四种常用的沸石,结果表明缙云沸石能够对氨氮产生良好的吸附效果,硬度较高,能够对pH产生良好的缓冲作用。
刘玉亮[4]的静态、动态和再生实验结果表明,斜发沸石对氨氮的静态饱和吸附量为3.1g/100g,再生后的有效寿命可达140h以上。
1.2生物法
生物法去除水中氨氮是指利用微生物的新陈代谢活动,对水中的氨氮进行去除。
上海惠南水厂的接触氧化池对氨氮去除率达85%以上,出厂水氨氮10℃的条件下,对氨氮的去除率为70%~90%。
地下水异位修复技术能有效地去除地下水中污染物,但是其存在如下缺点,
(1)需要持续提供动力,提高了运行费用;(2)停止运行后,受污染地下水会继续扩散,对下游水造成污染。
2地下水原位除氨氮的方法
可渗透反应墙(PRB)是目前常用地下水原位除氨技术,污染地下水通过PRB时,产生吸附、生物降解等反应使水中污染物得以去除。