氨氮废水处理技术现状及发展

合集下载

废水脱氮技术的现状与新发展

废水脱氮技术的现状与新发展

中图 分 类号 : 6 G
文 献 标 识 码 : A
文章 编 号 : 6 4 0 8 ( 0 o o () 0 1 - 1 1 7 — 9 X 2 l )9 b一 0 9 0
1 引 言
含 氮 废 水 , 其 是 一 些 高 浓 度 的 含 氮 尤 废 水 , 果 没 有 得 到好 的处 理 , 如 由于 废 水 中 的氮 能 够 促 进 藻 类 生 长 引 起 水 体 富 营 养 化, 消耗 水 中的 溶 解 氧 , 致 水 体 生 态 系 统 导 遭 到 破坏 , 终 使 得水 中生 物 大 量 死 亡 。 最 因 此 , 氮 废 水 的 处 理 在 国 内 外 都 已 经 被 广 含 泛 重 视 , 现 有 城 市 污 水 生 物 处 理 系统 进 对 行 了改 进 , 在保 持 原 有 有 机物 去 除 率 的 同 时, 使脱 氮 能 力 增 强 ; 另有 许 多研 究 者 对 脱 氮 机 理 做 了深 入 研 究 , 继 提 出 了一 系 列 相 新 的 脱 氮 技 术 , 一 步 完 善 了 生 物 脱 氮 的 近


Sci ce nd en a Techn o ol gy 『 nov i Her d n aton al
技 术 创 新
废 水 脱 氮 技术 的现 状 与 新 发 展
薛荣 梅 ’ ( 山市丰 南 区建 设局 唐 山市 唐 030 ) 6 0 0
摘 要 : 文 阐 述 了废 水 脱 氮 的 基 本 原 理 , 绍 了A/ X 艺 , B 氧 化 沟 等 传 统 生 物 脱 氮 工 艺 及 特 点 , 对 生 物 脱 氮 新 工 艺及 其 特 点 进 本 介 O. S R、 并 行 综 述 , 这 些 技 术 工 艺 的 应 用 前 景 进 行 了展 望 。 时 关键词 : 氮 硝化 反硝 化 发展 屁

氨氮废水处理技术现状及发展

氨氮废水处理技术现状及发展
’*(
化学沉淀法从 #) 世纪 *) 年代就开始应用于废 水处理, 随着对化学沉淀法的不断研究, 发现化学沉 淀法最好使用 +! ,-% 和 ./-。 其基本பைடு நூலகம்理是向 0+%
#1 !2 1 1
废水中投加 ./ 和 ,-% ,使之和 0+% 生成难溶复 盐 ./0+% ,-% ・*+# - 3 简称 .4, 5 结晶,再通过重力 沉淀使 .4, 从废水中分离。 这样可以避免往废水中 带入其它有害离子,而且 ./- 还起到了一定程度的 中和 + 的作用, 节约了碱的用量。 经化学沉淀后, 若
’%(
景, 但要广泛应用于工业废水处理, 尚需解决以下两 ( ( 寻找价廉高效的沉淀剂; 开发 .4, 个问题: ") #) 作为肥料的价值。
!
工业应用
氨氮处理技术的选择与氨氮浓度密切相关。对
于低浓度氨氮废水处理,应用较多的方法是空气吹 脱法、离子交换法、生物硝化和反硝化法等,其中 对于无机类氨氮废水的处理,以前两种方法应用较 多;而对于有机类氨氮废水的处理,则以生物硝化 和反硝化法为主。 !$ " 低浓度氨氮废水 !$ "$ " 天然沸石离子交换法 ’ & ( 天然沸石为一种骨架状的铝硅酸盐,具有离子 交换特性,尤其是对 0+% 1 具有特殊的选择性;还具 有良好的热稳定性和耐酸性, 在高温或强酸条件下, 晶格仍可保持稳定。天然沸石离子交换法处理氨氮 废水具有工艺简单、 操作方便、 投资少等特点, 一般 来说, 对于氨碱厂和一些工艺比较先进、 管理水平较 高的联碱厂,部分高浓度含氨再生液均可返回到生 产系统中去, 这样既能简化整个污水处理工艺流程, 也能大幅度降低污水处理成本。但对合成氨及其他 氨加工行业不能返回工艺中的高浓度含氨再生液, 必须进行空气吹脱 ( 吹脱气经 +# 8-% 吸收后排空 ) 、 蒸馏等方法处理后使之循环使用。 空气吹脱费用低, 但受到环境制约, 而蒸馏法则不受环境影响, 但费用 较高,硫酸吸收吹脱气中氨所得硫酸铵可作为复合 肥料生产的原料使用,而蒸馏所回收氨则可返回到 生产系统。 !$ "$ # 生物脱氮法 !$ "$ #$ " 在焦化废水中的应用 氨氮是焦化废水中的主要污染物之一,目前来 说,生物脱氮基本流程为 4— 4—- 工艺

污水处理中的氨氮去除技术

污水处理中的氨氮去除技术

污水处理中的氨氮去除技术污水处理是一项重要而复杂的环境工程技术,其中氨氮去除技术是其中一个关键环节。

本文将详细介绍污水处理中的氨氮去除技术,并分点列出其相关内容。

一、氨氮的来源及危害1. 氨氮的来源:工业废水、农业面源废水、生活污水、农业非点源废水等。

2. 氨氮的危害:氨氮过量排放会导致水体富营养化,引发水华、水生生物死亡及水环境恶臭等问题,严重危害生态环境和人类健康。

二、常见的氨氮去除技术1. 生物法:包括厌氧法和好氧法。

- 厌氧法:利用厌氧菌群将氨氮转化为氮气,常见的反应器有厌氧反应槽和厌氧滤池等。

- 好氧法:利用好氧菌群将氨氮转化为硝酸盐,常见的处理单元有好氧池、好氧滤池和硝化反硝化池等。

2. 物理法:主要用于氨氮浓度较低的水体。

- 蒸发浓缩法:利用加热蒸发水体,浓缩氨氮浓度,常用于工业废水处理。

- 膜分离法:利用膜的选择性透过性,将氨氮分离出来,常见的膜法有超滤、反渗透和离子交换膜等。

3. 化学法:通过添加化学药剂达到去除氨氮的目的。

- 高锰酸钾法:利用高锰酸钾氧化氨氮生成氮气,广泛应用于农村生活污水处理。

- 硝化法:通过添加化学药剂加速氨氮转化为硝态氮,常见的药剂有硝酸铵和硫酸铵等。

三、氨氮去除技术的特点及应用情况1. 生物法:- 特点:技术成熟、操作简单、能耗低、无二次污染。

- 应用情况:广泛应用于城市生活污水处理、工业废水处理和农村污水处理等领域。

2. 物理法:- 特点:适用于氨氮浓度较低的水体、处理效果稳定。

- 应用情况:主要应用于工业废水处理和海水淡化等领域。

3. 化学法:- 特点:适用性广、处理效果较好。

- 应用情况:常见于农村生活污水处理和工业废水处理等领域。

四、氨氮去除技术的发展趋势1. 生物法:加强氮素转化功能菌的研究,提高转化效率。

2. 物理法:研发更高效、节能的膜分离技术,开发新型浓缩设备。

3. 化学法:研究更环保、高效的化学药剂,减少药剂使用量。

五、国内外氨氮去除技术研究进展1. 国内研究进展:随着环保意识的提高,氨氮去除技术研究受到重视,取得了不少成果。

氨氮废水处理技术现状及发展

氨氮废水处理技术现状及发展

氨氮废水处理技术现状及发展氨氮废水的危害严重,对环境的影响巨大,关乎着人类社会、生态环境的可持续发展。

因此,如何处理氨氮废水,一直是人类及社会发展所关注的重要课题。

一、氨氮废水处理技术现状1、化学方法化学氧化是最常用的氨氮废水处理技术,主要包括臭氧氧化、臭氧/复合氧化、氯氧化及氯化氢氧化等。

目前,这些技术已被实际应用于氨氮废水处理,具有较高的氨氮去除效率及处理成本比较优势。

2、物理方法物理方法是氨氮废水处理的一种常用技术,主要包括溶解性吸附、膜分离、沉淀、析出、过滤、催化及超声等。

它们能够有效降低氨氮水体的污染程度,但仍需优化工艺参数及研究催化剂的性质,以提高处理效果。

3、生物方法生物方法是氨氮废水处理中广泛采用的技术,主要通过污泥过程、滞留池及流化床等处理手段,达到去除氨氮的目的。

经过研究发现,较理想的氨氮去除效果,可通过调节污泥处理池内污泥及废水浓度,和合理设计池容及污泥流去量等,以达到最优化管理的目的。

二、氨氮废水处理技术发展氨氮废水的性质及复杂的处理技术,一直以来都困扰着环保行业的发展。

为更好地处理氨氮废水,研究人员们不断研发新的技术及创新理念,以实现对氨氮废水处理的更有效率和可持续性管理。

1、无害化处理无害化处理是新一代氨氮废水处理技术,它旨在通过化学、物理、生物等处理工艺,实现对氨氮废水的无害化,最终达到回用、吸收甚至再利用的目的。

2、混凝处理混凝处理已被视为一种有效的氨氮废水处理技术,它能够有效的去除氨氮及其他悬浮物质。

其去除效果极佳,而且具有易操作、低成本、再来源化利用等特点。

3、膜技术膜法是最近发展起来的氨氮废水处理技术,它利用膜通道将氨氮进行过滤及分离,以达到去除氨氮的目的。

它具有高效、低成本、无污染、安全可靠等优点,可有效的处理氨氮废水,提高废水的回用水质。

三、结论氨氮废水的处理技术,从过去的化学及物理方法,到现在的生物方法,再到未来发展中的无害处理、混凝处理及膜技术,已经取得了很大的进步。

氨氮废水处理技术研究进展

氨氮废水处理技术研究进展

氨氮废水处理技术研究进展氨氮废水是指含有氨态氮物质的废水,其排放对水环境造成严重影响,引起了人们的广泛关注。

针对氨氮废水处理问题,研究人员一直在努力寻找高效、经济、环保的处理技术,以提高废水处理效果和减少对环境的损害。

本文将对氨氮废水处理技术的研究进展进行探讨。

一、生物处理技术生物处理技术是目前处理氨氮废水最常用的方法之一。

传统的生物处理技术包括活性污泥法、生物膜法和植物床等。

活性污泥法通过利用污水中的微生物对氨氮进行氧化还原反应,将氨氮转化为亚硝酸盐和硝酸盐,进而实现氨氮的去除。

生物膜法则是利用生物膜固定化处理废水中的氨氮。

植物床则是利用植物的吸收能力将废水中的氨氮去除。

近年来,研究人员还提出了一些新的改进方法,如厌氧氨氧化法和氨氧化菌具体群的调控等,以进一步提高生物处理技术的效果。

二、物化处理技术物化处理技术主要包括吸附法、膜分离技术和化学沉淀法等。

吸附法通过添加吸附剂将废水中的氨氮吸附到表面,并将废液进行分离。

常用的吸附剂有活性炭、改性膨润土等。

膜分离技术通过利用半透膜,将废水中的氨氮分离出来,达到去除的效果。

化学沉淀法则是通过添加化学沉淀剂与废水中的氨氮发生反应,生成不溶性沉淀物,从而达到去除氨氮的目的。

三、电化学处理技术电化学处理技术近年来发展迅速,成为一种新兴的氨氮废水处理技术。

通过电解电池,利用电流在电极之间引发化学反应,从而使废水中的氨氮转化成硝酸盐等化合物。

电化学处理技术具有高效、低能耗和易操作等优势,但目前还存在电极材料选择和耐久性等方面的问题需要解决。

四、复合处理技术为了更好地处理氨氮废水,研究人员还提出了一些复合处理技术。

常见的复合处理技术有生物-物理化学技术、生物-电化学技术等。

这些技术将不同的废水处理技术进行组合,取长补短,以提高氨氮废水的处理效果。

综上所述,氨氮废水处理技术在过去几十年中取得了显著的进展。

生物处理技术、物化处理技术、电化学处理技术和复合处理技术等都在不同程度上对氨氮废水的处理起到了积极作用。

电解沉积法处理废水中氨氮的研究

电解沉积法处理废水中氨氮的研究

电解沉积法处理废水中氨氮的研究近年来,随着工业化进程的不断推进,废水排放量也在快速增长,废水中含有大量有害物质,如氨氮、重金属等,这些物质不仅对环境造成污染,而且对人们的生产生活产生了巨大的威胁。

废水中的氨氮是一种常见的有害物质,它来自于人类的排泄物、畜禽养殖、化肥等,对水体的生态系统和生命健康造成了巨大的危害。

因此,如何高效、经济地处理废水中的氨氮成为了环保工作中的重要课题。

本文将从电解沉积法处理废水中氨氮的角度入手,探讨其研究现状及发展趋势。

一、电解沉积法处理废水中氨氮的原理电解沉积法是指通过电解作用来将氨氮还原成气态氮的一种方法。

电解沉积法通过电化学反应来达到去除废水中氨氮的目的,反应方程式为:NH4+ + H2O + 3e- → ½N2↑ + 4H+ 。

原理与普通的电解池相同,将废水放在电解槽中,通过电流作用下发生络合反应,将氨氮原子还原成气态氮后,沉积在废水中的阴极上,这样就达到了去除氨氮的目的。

二、电解沉积法处理氨氮的优缺点优点:1. 电解沉积法处理氨氮的效率高,可以达到90%以上的去氨氮率,而且不需要添加任何其他的化学试剂。

2. 电解沉积法处理废水中的氨氮过程中,不会产生二次污染,对环境造成的影响较小。

3. 电解沉积法具有运行成本低、操作简单等优点,因此在实际应用中有一定的优势。

缺点:1. 电解沉积法处理氨氮需要消耗大量电能,成本较高。

2. 当废水种类发生变化时,需要重新进行调整,以适应新的处理条件。

三、电解沉积法处理氨氮的研究现状目前,电解沉积法处理废水中氨氮的技术已经得到了广泛应用和研究。

同时,人们也发现该技术在处理不同类型的废水时会存在不同的问题。

针对不同种类的废水,人们对电解沉积法进行了优化和改进,以提高氨氮的去除率。

以畜禽养殖废水为例,其氨氮含量一般高于50mg/L,这种废水偏碱性强,比较难以处理。

传统的电解沉积法在这种情况下效果较差,需要在系统中添加一些化学试剂进行调配,以提高反应效率。

氨氮废水的处理技术及发展

氨氮废水的处理技术及发展

氨氮废水的处理技术及发展氨氮废水的处理技术及发展摘要:氨氮废水是由于工业、农业和城市污水排放中含有氨氮而产生的一种污染物。

氨氮废水具有较高的溶解性和毒性,对水体生态环境和人体健康造成了严重的威胁。

因此,氨氮废水的处理技术及发展备受关注。

本文综述了氨氮废水的处理技术,包括物理、化学和生物处理方法,并对其发展趋势进行了讨论。

1.引言氨氮废水是工业、农业和城市污水排放中普遍存在的一种污染物。

主要来自于肥料、养殖业、制药业、纺织业等行业的生产过程中,以及人类排泄的尿液中。

氨氮废水的高浓度和毒性对环境和人体健康造成了严重威胁,因此,氨氮废水的处理技术及发展备受关注。

2.氨氮废水的特性氨氮废水的主要特性包括高浓度、溶解性强、毒性大等。

氨氮浓度超过环境标准会导致水生生物死亡和水体富营养化等问题。

此外,氨氮还会与有机物反应生成亚硝酸盐和硝酸盐,进一步加重水体污染程度。

3.氨氮废水的处理技术3.1 物理处理技术物理处理技术主要包括气浮法、吸附法和过滤法等。

其中,气浮法通过在氨氮废水中注入气体来形成气泡,使氨氮颗粒浮于水面,然后通过刮板进行除去。

吸附法运用吸附剂吸附氨氮颗粒,例如活性炭、聚合物等。

过滤法则利用过滤介质将氨氮颗粒拦截在过滤介质中。

这些物理处理技术简单易行,并且不会产生二次污染,但处理效果受到浓度、温度和pH值等因素的影响。

3.2 化学处理技术化学处理技术主要包括沉淀法、离子交换法和吸附交换法等。

沉淀法利用化学反应使氨氮生成不溶于水的沉淀物,例如氢氧化铁和氢氧化铝。

离子交换法通过离子交换材料上的离子交换来去除氨氮颗粒。

吸附交换法使用吸附材料吸附氨氮颗粒,例如氨基树脂、陶粒等。

这些化学处理技术处理效果较好,但运行成本较高,并且产生的浮渣、污泥需要进一步处理。

3.3 生物处理技术生物处理技术是利用微生物将废水中的氨氮转化为无机氮的技术,主要包括曝气法、厌氧/好氧法和生物膜法等。

曝气法通过将氨氮废水暴露在空气中,利用空气中的氧气将氨氮氧化成亚硝酸盐和硝酸盐。

污水处理中的高氨氮废水处理技术

污水处理中的高氨氮废水处理技术

污水处理中的高氨氮废水处理技术1.随着我国经济的快速发展,工业和生活污水的排放量逐年增加,其中高氨氮废水已成为我国水环境污染的重要来源之一。

高氨氮废水主要来源于食品加工、制药、化工等行业,若未经处理直接排放,将对水环境造成严重污染,影响生态系统的平衡。

因此,研究高氨氮废水的处理技术具有重要的现实意义。

本文将对高氨氮废水的来源、危害及处理技术进行探讨。

2. 高氨氮废水的来源与危害2.1 高氨氮废水的来源高氨氮废水主要来源于以下几个行业:1.食品加工行业:动物制品、豆制品、水产品加工等过程中产生的废水,含有较高的氨氮成分。

2.制药行业:制药生产过程中使用的原料、溶剂、催化剂等,可能含有较高浓度的氨氮。

3.化工行业:合成氨、尿素、硝酸等化工产品的生产过程中,产生的废水含有较高氨氮。

2.2 高氨氮废水对环境的危害高氨氮废水对环境的危害主要表现在以下几个方面:1.水体富营养化:氨氮废水中的氨氮物质在水中被微生物转化为硝酸盐和磷酸盐,进一步导致水体富营养化,引发藻类过度生长,破坏水体生态平衡。

2.恶臭污染:氨氮废水具有强烈的刺激性气味,直接排放到环境中,会对周围居民的生活环境造成严重影响。

3.毒性效应:氨氮废水中的氨氮物质在生物体内转化为氨,对人体和动植物产生毒性效应,影响生长发育,甚至造成死亡。

3. 高氨氮废水处理技术目前,高氨氮废水处理技术主要包括生物处理法、化学处理法和物理处理法。

以下是几种常见的处理技术:3.1 生物处理法生物处理法是利用微生物的代谢作用,将有机污染物转化为无害物质的过程。

生物处理法包括好氧生物处理和厌氧生物处理两种。

好氧生物处理法如活性污泥法、生物膜法等,适用于较高浓度氨氮废水的处理。

厌氧生物处理法如升流式厌氧污泥床(UASB)、厌氧滤池等,适用于低浓度氨氮废水的处理。

3.2 化学处理法化学处理法是通过化学反应,将氨氮废水中的氨氮转化为无害物质。

常见的化学处理法有吹脱法、吸附法、离子交换法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氨氮废水处理技术现状及发展/# 前言近年来,随着城市人口的日益膨胀和工农业的不断发展,水环境污染事故屡屡发生,对人、畜构成严重危害。

许多湖泊和水库因氮、磷的排放造成水体富营养化,严重威胁到人类的生产生活和生态平衡。

氨氮是引起水体富营养化的主要因素之一,为满足公众对环境质量要求的不断提高,国家对氮制订了越来越严格的排放标准,研究开发经济、高效的除氮处理技术已成为水污染控制工程领域研究的重点和热点。

本文系统地阐述了氨氮废水处理现状和发展。

! 处理技术现状氨氮存在于许多工业废水中,特别是钢铁、化肥、无机化工、铁合金、玻璃制造、肉类加工和饲料等生产过程,均排放氨氮废水,其浓度取决于原料性质、工艺流程、水的耗量及水的复用等。

对一给定废水,选择技术方案主要取决于:(#)水的性质;(!)处理效果;(,)经济效益。

以及处理后出水的最后处置方法等。

虽然有许多方法都能有效地去除氨,如物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电渗析、电化学处理、催化裂解;生物方法有硝化及藻类养殖,但其应用于工业废水的处理,必须具有应用方便、处理性能稳定、适应于废水水质及比较经济等优点,因此,目前氨氮处理实用性较好的技术为:(#)生物脱氮法;(!)氨吹脱、汽提法;(,)折点氯化法;(%)离子交换法; # < , =。

!$ # 生物脱氮法生物脱氮通常包括生物硝化和生物反硝化。

生物硝化是在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐和硝酸盐的过程。

如果反应完全,氨氧化成硝酸盐分两阶段完成:开始,在亚硝酸菌的作用下使氨氧化成亚硝酸盐,亚硝酸菌属于强好氧性自养细菌,利用氨作为其唯一能源,方程式(#)为这个反应关系式。

第二阶段,在硝酸菌的作用下,使亚硝酸盐转化为硝酸盐,硝酸菌是以亚硝酸作为唯一能源的特种自养细菌,方程式(!)为这个反应的关系式。

整个硝化反应可以用总方程式(,)来表示。

从此关系式中可看到要达到完全硝化,#$ & >? >?@1/, 1 A B 9(以氮计)就需要%$ C >? B 9的溶解氧。

!虽然有些异养生物也能进行硝化,但硝化中最主要的生物是亚硝酸菌属和硝酸菌属。

硝化最佳E/值为’$ %,当E/ 在+$ ’< ’$ " 范围时,为最佳速度的"&F。

当温度从( G提高到,& G时,硝化速度也随之不断增加,而剩余溶解氧大于#$ & >? B 9 就足以维持这一反应。

反硝化就是在缺氧条件下,由于反硝化菌的作用,将和. 还原为的过程。

其过程的电子供体是各种碳源,若以甲醇作碳源为例,其反应式为:对于硝化反应,温度对其影响比其它生物处理过程要大些,一般温度应维持在为宜。

用生物法处理含氨氮废水时,有机碳的相对浓度是考虑的主要因素,维持最佳碳氮比也是生物处理法成功的关键之一。

若废水性质不宜直接进行生物处理,则采用物化法或物化. 生物联合法达到排放要求较为经济。

生物脱氮可去除多种含氮化合物,其处理效果稳定,不产生二次污染,而且比较经济,但有占地面积大、低温时效率低、易受有毒物质影响且运行管理比较麻烦等缺点。

氨吹脱、汽提法吹脱、汽提法用于脱除水中溶解气体和某些挥发性物质。

即将气体通入水中,使气水相互充分接触,使水中溶解气体和挥发性溶质穿过气液界面,向气相转移,从而达到脱除污染物的目的。

常用空气或水蒸气作载气,前者称为吹脱,后者称为汽提。

氨吹脱、汽提是一个传质过程,即在高0* 时,使废水与空气密切接触从而降低废水中氨浓度的过程,推动力来自空气中氨的分压与废水中氨浓度相当的平衡分压之间的差。

吹脱法一般采用吹脱池(也称曝气池)和吹脱塔两类设备,但吹脱池占地面积大,而且易污染周围环境,所以有毒气体的吹脱都采用塔式设备。

汽提则都在塔式设备中进行。

自然吹脱法依靠水面与空气自然接触而脱除溶解性气体,它运用于溶解气体极度易解吸、水温较高、风速较大、有开阔地段和不产生二次污染的场合。

此类池子兼有贮水作用。

塔式设备中填料吹脱塔主要特征是在塔内装置一定高度的填料层,使具有大表面积的填充塔来达到气. 水间充分接触,利于气. 水间的传质过程。

常用填料有木格板、纸质蜂窝、拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。

废水被提升到填充塔的塔顶,并分布到填料的整个表面,水通过填料往下流,与气流逆向流动,废水在离开塔前,氨组分被部分汽提,但需保持进水的0* 值不变。

空气中氨的分压随氨的去除程度增加而增加,随气水比增加而减少,对要求达到的任何氨去除程度,进口浓度、0* 和塔温度曲线图有一个最小的气水比。

由于氨吹脱、汽提的同时起到了冷却塔的作用,气水比增加将同时降低出口冷水的温度,如果0* 低于1"/ 2 时,它会降低吹脱效果。

氨吹脱、汽提工艺具有流程简单、处理效果稳定、基建费和运行费较低等优点,但其缺点是生成水垢,在大规模的氨吹脱、汽提塔中,生成水垢是一个严重的操作问题。

如果生成软质水垢,可以安装水的喷淋系统;而如果生成硬质水垢,不论用喷淋或刮刀均不能消除此问题。

(/ ! 折点氯化法折点氯化法是投加过量的氯或次氯酸钠,使废水中氨完全氧化为$( 的方法。

其反应可表示为$当氯气通入废水中达到某一点,在该点时水中游离氯含量最低,而氨的浓度降为零。

当)3( 通入量超过该点时,水中的游离氯就会增多。

因此,该点为折点。

处理时所需的实际氯气量取决于温度、0* 值及氨氮浓度。

折点氯化法处理后的出水在排放前一般需用活性炭或与%( 进行反氯化,以去除水中残余的氯。

在反氯化时产生的氢离子而引起的0* 值下降一般可忽略,因为去除1 45 残余氯只消耗( 45 左右的碱(以)6)%! 计)。

活性炭去除残余氯的同时还具有去除其他有机物的优点。

此法效果最佳,不受水温影响,操作方便,投资省,但对于高浓度氨氮废水的处理运行成本很高。

(/ + 离子交换法沸石是一种对氨离子有很强选择性的硅铝酸盐,一般作为离子交换树脂用于去除氨氮的为斜发沸石,其对离子的选择顺序依次为。

此法具有投资省、工艺简单、操作较为方便的优点,但对于高浓度的氨氮废水,会使树脂再生频繁而造成操作困难,且再生液仍为高浓度氨氮废水,需再处理。

常用的离子交换系统有三种类型:(1)固定床;(()混合床;(!)移动床A ! B。

(/ +/ 1 固定床在此系统中,溶液的去离子过程为二阶段间歇过程。

溶液通过阳树脂床时阳离子与氢离子交换生成酸溶液,然后此溶液再通过阴树脂床,以去除阴离子。

交换能力将耗尽时,树脂在原位再生,经常采用向下流再生法,此法操作可靠方便,但其化学效率相对较低,容积较大,联系到树脂用量大,有时为了适应连续流的要求,还需要有储备装置,因而投资费用较高。

#$ %$ # 混合床混合床系统用一步法来去除溶液中的离子。

溶液流过阳、阴树脂充分混合的混合床。

混合床的再生比两个单生床再生要复杂一些,因为在再生前必须将两种树脂分开。

在水力学上可利用两种树脂的比重差用水力反洗使其分层。

虽然混合床的化学效率较高,但它需要大量的清洗水。

这对节约用水不利,另外将交换离子作为回收产品收集时,回收液稀,其浓缩费用也很高。

#$ %$ ! 移动床移动床系统通过二阶段过程来去除溶液中的离子。

在这两个过程中,虽然实际上工作流体处理的水是间歇的,而它的效果却是连续的。

首先溶液和阳树脂逆向流动,阳树脂脉动通过容器,新鲜树脂从一端补充,用过的树脂从另一端排出,在此过程中完成离子交换和树脂再生。

然后溶液游向流过一个与上面相似的阴树脂移动床来完成阴离子的交换。

#$ & 化学沉淀法’% (化学沉淀法从#) 世纪*) 年代就开始应用于废水处理,随着对化学沉淀法的不断研究,发现化学沉淀法最好使用+!,-% 和./-。

其基本原理是向0+%1废水中投加./# 1 和,-%! 2 ,使之和0+%1 生成难溶复盐./0+%,-%·*+#-3 简称.4,5 结晶,再通过重力沉淀使.4, 从废水中分离。

这样可以避免往废水中带入其它有害离子,而且./- 还起到了一定程度的中和+1 的作用,节约了碱的用量。

经化学沉淀后,若0+%1 60 和,-%! 2 的残留浓度还比较高,则有研究建议化学沉淀放在生物处理前,经过生物处理后0 和, 的含量可进一步降低。

产物.4, 为圆柱形晶体,无吸湿性,在空气中很快干燥,沉淀过程中很少吸收有毒物质,不吸收重金属和有机物。

另外,.4, 溶解度随着7+ 的升高而降低;温度越低,.4, 溶解度也越低。

化学沉淀法可以处理各种浓度氨氮废水。

其与生物法结合处理高浓度氨氮废水,曝气池不需达到硝化阶段,曝气池体积比硝化2 反硝化法可以减小约一倍。

0+%1 60 在化学沉淀法中被沉淀去除,与硝化6 反硝化法相比,能耗大大节省,反应也不受温度限制,不受有毒物质的干扰,其产物.4, 还可用作肥料,可在一定程度上降低处理费用。

因此,.4, 沉淀法是一种技术可行、经济合理的方法,很有开发前景,但要广泛应用于工业废水处理,尚需解决以下两个问题:(")寻找价廉高效的沉淀剂;(#)开发.4,作为肥料的价值。

! 工业应用氨氮处理技术的选择与氨氮浓度密切相关。

对于低浓度氨氮废水处理,应用较多的方法是空气吹脱法、离子交换法、生物硝化和反硝化法等,其中对于无机类氨氮废水的处理,以前两种方法应用较多;而对于有机类氨氮废水的处理,则以生物硝化和反硝化法为主。

!$ " 低浓度氨氮废水!$ "$ " 天然沸石离子交换法’& (天然沸石为一种骨架状的铝硅酸盐,具有离子交换特性,尤其是对0+%1 具有特殊的选择性;还具有良好的热稳定性和耐酸性,在高温或强酸条件下,晶格仍可保持稳定。

天然沸石离子交换法处理氨氮废水具有工艺简单、操作方便、投资少等特点,一般来说,对于氨碱厂和一些工艺比较先进、管理水平较高的联碱厂,部分高浓度含氨再生液均可返回到生产系统中去,这样既能简化整个污水处理工艺流程,也能大幅度降低污水处理成本。

但对合成氨及其他氨加工行业不能返回工艺中的高浓度含氨再生液,必须进行空气吹脱(吹脱气经+#8-% 吸收后排空)、蒸馏等方法处理后使之循环使用。

空气吹脱费用低,但受到环境制约,而蒸馏法则不受环境影响,但费用较高,硫酸吸收吹脱气中氨所得硫酸铵可作为复合肥料生产的原料使用,而蒸馏所回收氨则可返回到生产系统。

!$ "$ # 生物脱氮法!$ "$ #$ " 在焦化废水中的应用氨氮是焦化废水中的主要污染物之一,目前来说,生物脱氮基本流程为4—4—- 工艺’* (,焦化废水含有高浓度0+!60 和有机物,其中很多物质具有较强生物毒性,从而对硝化、反硝化过程有抑制作用。

相关文档
最新文档