第四章土壤环境化学
004.3土壤环境化学-土壤污染(农药)

④磷酰胺和硫代磷酰胺 磷酰胺:磷酸中的羟基被被氨基取代
硫代磷酰胺:磷酰胺中的氧被硫取代。
⑵有机磷农药降解
有机磷农药是为取代有机氯农药而发展起来的, 但其毒性较高,大部分对生物体内胆碱酯酶有抑 制作用
较有机氯农药易降解
有
吸附催化水解
机 非生物降解
磷
光降解
农
绿色木霉
药 土壤微生物降解
降 解
假单胞菌
吸附作用是农药与土壤固相之间相 互作用的主要过程,直接影响其他过程 的发生。如土壤对除草剂2,4-D的化学 吸附,使其有效扩散系数降低。
○阳离子型农药,易溶于水并完全离子化,很快吸附于粘土矿物 ○弱碱性农药,可以接受质子带正电荷,吸附于粘土矿物或有机 质表面 ○酸性农药在水溶液中解离成有机阴离子,不易被胶体吸附,是 靠范德华力和其他物理作用
有机物的离子或基团从自由水向 土壤矿物的亚表面层扩散;离子 或基团以表面反应或进入双电层 的扩散层的方式为土壤矿物质吸 附。
分配作用(partition)
有机化合物在自然环境中 的主要化学机理之一,指 水-土壤(沉积物)中, 土壤有机质对有机化合物 的溶解,或称吸附( sorption, uptake),用分 配系数 Kd 来描述。
4.光解
4.南方水田里DDT降解快于北方
1.从土壤和空气转入水体 林 2.挥发而进入大气 丹 3.在土壤生物体内积累
4.植物积累
1. 易溶于水 2. 挥发性强,持久性低 3. 在生物体内积累性较DDT低
2.有机磷农药(organophosphorpus pesticides,
ops)
磷酸的脂类或酰胺类化合物
非生物降解 降解
水解反应
(Hydrolysis Reaction)
土壤环境化学

土壤环境化学
土壤环境化学是研究土壤中化学元素、化学反应和化学过程的学科。
土壤是地球上最重要的自然资源之一,它不仅是植物生长的基础,也是生态系统的重要组成部分。
因此,了解土壤环境化学对于保护土壤资源、提高农业生产和维护生态平衡具有重要意义。
土壤中的化学元素是土壤环境化学的重要研究内容之一。
土壤中的化学元素包括有机元素和无机元素。
有机元素主要来自于植物和动物的残体,而无机元素则来自于岩石、土壤和大气等。
土壤中的化学元素对于植物生长和土壤肥力有着重要的影响。
例如,氮、磷、钾等元素是植物生长所必需的营养元素,而铁、锰、铜、锌等微量元素则对植物生长和发育有着重要的作用。
土壤中的化学反应和化学过程也是土壤环境化学的重要研究内容。
土壤中的化学反应和化学过程包括酸碱反应、氧化还原反应、络合反应、离子交换等。
这些反应和过程对土壤的肥力、酸碱度、微生物活动等都有着重要的影响。
例如,土壤的酸碱度对于植物生长和土壤微生物的生长和活动都有着重要的影响。
土壤中的氧化还原反应则对土壤中的有机物质分解和微生物代谢有着重要的作用。
土壤环境化学的研究对于保护土壤资源、提高农业生产和维护生态平衡具有重要意义。
通过研究土壤中的化学元素、化学反应和化学过程,可以制定科学的土壤管理措施,提高土壤肥力和农业生产效益。
同时,也可以减少土壤污染和土地退化,保护生态环境。
因此,
加强土壤环境化学的研究和应用,对于实现可持续发展具有重要的意义。
环境化学复习资料第四章 土壤环境化学 名词术语

第四章土壤环境化学名词术语1.土壤化学组成(Chemical composition of soil)指构成土壤的各种化学物质的种类和比例,土壤的化学组成包括①土壤矿物质:包括原生矿物和次生矿物;②土壤有机质,主要源于动植物和微生物残体,包括非腐殖物质和腐殖质;③土壤水分,并非纯水,实际上是土壤中各种成分和污染物溶解形成的溶液;④土壤中的空气。
2.土壤反应(Soil reaction)土壤酸碱性质的量度。
取决于土壤中氢离子浓度的大小,以pH值表示。
氢离子浓度高时,土壤呈酸性反应。
反之,呈碱性反应。
3.盐基饱和度(Base saturation percentage of soil)指土壤交换性阳离子中盐基离子所占的百分数,与土壤母质、气候等因素有关4.土壤吸附(Soil adsorption)指土壤矿物质、土壤胶体和土壤有机质通过各种物理化学作用力对外源物质的结合。
土壤吸附能降低污染物的扩散系数,影响其生物可利用性,从而影响污染物在土壤中的行为和生态风险。
5.土壤络合(Soil complex)指土壤中,一些配位体通过配位键结合与进入土壤的物质结合而形成复杂的分子或离子,从而影响土壤中污染物的迁移和转化行为。
6.土壤退化(Soil degradation)又称土壤衰弱,是指土壤肥力衰退导致生产力下降的过程。
是土壤环境和土壤理化性状恶化的综合表征,包括有机质含量下降、营养元素减少、土壤结构遭到破坏、土壤侵蚀,土层变浅,土体板结、土壤盐化、酸化、沙化等。
其中,有机质下降,是土壤退化的主要标志。
在干旱、半干旱地区,原来稀疏的植被受破坏,土壤沙化,就是严重的土壤退化现象。
7.土壤污染源(Soil contaminant source)造成土壤污染的污染物来源,主要为工业和城市的废废弃物堆放、农业用的化肥及农药、污水直接排放、受污染的地表径流、大气沉降、以及放射性物质和有害微生物等。
8.土壤酸化(Soil acidification)土壤内部产生和外部输入的氢离子引起土壤pH值降低和盐基饱和度减少的过程,它又是一种重要的土壤退化形式,对区域食物安全、环境质量及人畜健康产生明显负面影响。
第四章土壤环境化学(SoilEnvironmentalChemistry)

可交换性盐基总量 盐基饱和度(%) 100 阳离子交换量
(2)土壤胶体的阴离子交换吸附
带正电荷的胶体吸附的阴离子与土壤溶 液中的阴离子交换。 吸附顺序:
F- > C2O42- > 柠檬酸根 > PO43- > HCO3-> H2BO3- > Ac- > SCN- > SO42- > Cl- > NO3-
代换性酸度:
用过量中性盐(KCl、NaCl等) 溶液 淋洗土壤,溶液中金属离子与土壤中H+、 Al3+发生离子交换作用:
|土壤胶体|-H+ + KCl → |土壤胶体|-K+ + HCl |土壤胶体|-Al3++ 3KCl→|土壤胶体|-3K+ + AlCl3 AlCl3 + H2O → Al(OH)3 + 3HCl
形成过程:由地壳的岩石、矿物经过风化作用形成的。 按成因类型分类: 原生矿物
Soil)
次生矿物
原生矿物:
土壤中原先存在的岩石颗粒,受到不同
程度物理风化后形成的。
类别:
硅酸盐(石英、长石、云母等);
氧化物(SiO2 、Al2O3、 TiO2、 Fe2O3);
硫化物 (FeS);
磷酸盐如氟磷灰石Ca5(PO4)3F等。
有机质和低价金属离子。
土壤氧化还原能力的大小可以用土壤的氧 化还原电位(Eh)来衡量。 根据土壤Eh值可以确定土壤中有机物和
无机物可能发生的氧化还原反应和环境行为。
一般旱地土壤的氧化还原电位(Eh)为 +400—+700mV;水田的Eh值在-200—300mV。
4.1污染物在土壤中的迁移转化

第四章土壤环境化学——污染物在土壤中的迁移转化本节内容要点:土壤污染源、主要污染物,氮和磷的污染及其迁移转化,土壤的重金属污染及其迁移转化,土壤的农药污染及其迁移转化,土壤中温室气体的释放、吸收及传输等。
人类活动产生的污染物进入土壤并积累到一定程度,引起土壤质量恶化的现象即为土壤污染。
土壤与水体和大气环境有诸多不同,它在位置上较水体和大气相对稳定,污染物易于集聚,故有人认为土壤是污染物的“汇”。
污染物可通过各种途径进入土壤。
若进入污染物的量在土壤自净能力范围内,仍可维持正常生态循环。
土壤污染与净化是两个相互对立又同时存在的过程。
如果人类活动产生的污染物进入土壤的数量与速度超过净化速度,造成污染物在土壤中持续累积,表现出不良的生态效应和环境效应,最终导致土壤正常功能的失调,土壤质量下降,影响作物的生长发育,作物的产量和质量下降,即发生了土壤污染。
土壤污染可从以下两个方面来判别:(1)地下水是否受到污染;(2)作物生长是否受到影响。
土壤受到污染后,不仅会影响植物生长,同时会影响土壤内部生物群的变化与物质的转化,即产生不良的生态效应。
土壤污染物会随地表径流而进入河、湖,当这种径流中的污染物浓度较高时,会污染地表水。
例如,土壤中过多的N、P,一些有机磷农药和部分有机氯农药、酚和氰的淋溶迁移常造成地表水污染。
因此,污染物进入土壤后有可能对地表水、地下水造成次生污染。
土壤污染物还可通过土壤植物系统,经由食物链最终影响人类的健康。
如日本的“痛痛病”就是土壤污染间接危害人类健康的一个典型例子。
1)土壤污染源土壤污染源可分为人为污染源和自然污染源。
人为污染源:土壤污染物主要是工业和城市的废水和固体废物、农药和化肥、牲畜排泄物、生物残体及大气沉降物等。
污水灌溉或污泥作为肥料使用,常使土壤受到重金属、无机盐、有机物和病原体的污染。
工业及城市固体废弃物任意堆放,引起其中有害物的淋溶、释放,也可导致土壤及地下水的污染。
现代农业大量使用农药和化肥,也可造成土壤污染。
004.2土壤环境化学-土壤污染(重金属)

而不同种类的重金属,在土壤和农作物系统中迁移转化规律明 显不同。
重金属在土壤中的含量和植物吸收累积研究的结果为: Cd、As较易被植物吸收, Cu、Mn、Se、Zn等次之, Co、Pb、Ni等难于被吸收, Cr极难被吸收。
研究春麦受重金属污染状况后发现, Cd是强积累性元素, 而Pb的迁移性则相对较弱; 铬和铅是生物不易积累的元素。������
5
(3)土壤环境容量:
土壤环境单元所容许承纳的污染物质的最大 允许量或负荷量(土壤环境静容量).
土壤环境单元一定时限内遵循环境质量标准, 既保证农产品产量和生物学质量,同时也不使环 境污染时,土壤所能允许承纳的污染物的最大数 量或负荷量(土壤环境动容量)。
6
(4)当土壤中含有害物质过多,超过土壤的自净能 力,就会引起土壤的组成、结构和功能发生变化, 微生物活动受到抑制,有害物质或其分解产物在 土壤中逐渐积累,通过“土壤→植物→人体”, 或通过“土壤→水→人体” 间接被人体吸收,达 到危害人体健康的程度,就是土壤污染。
4.放射性污染物
9
(6)重金属污染土壤的特点:
重金属不被土壤微生物降解,可在土壤中 不断积累,也可以为生物所富集,并通过食物 链在人体内积累,危害人体健康。
重金属一旦进入土壤就很难予以彻底的 清除。日本的“痛痛病”,我国沈阳郊区张 士灌区的“镉米”事件等是重金属污染的典 型实例。
10
•克山病 •大骨节病 •水俣病 •痛痛病 •黑脚病
第四章 土壤环境化学
Chapter 4. Soil Environmental Chemistry
补充掌握
土壤污染概述
(1)土壤背景值 土壤本身含有微量的金属元素,其中很
多是作物生长必需的微量营养元素,如Mn、 Zn、Cu等。不同地区土壤中重金属的种类和 含量也有很大差别。
4.3土壤的农药污染及其迁移转

第四章土壤环境化学——土壤的农药污染及其迁移转土壤的农药污染是由施用杀虫剂、杀菌剂及除草剂等引起的。
农药大多是人工合成的分子量较大的有机化合物(有机氯、有机磷、有机汞、有机砷等)。
目前全世界有机农药约1000余种,常用的约200种,其中杀虫剂100种、杀菌和除草剂各50余种。
到1988年止,我国已批准登记的农药产品和正在试验的农药新产品,共有248种、435个产品。
施于土壤的化学农药,有的化学性质稳定,存留时间长,大量而持续使用农药,使其不断在土壤中累积,到一定程度便会影响作物的产量和质量,而成为污染物质。
农药还可以通过各种途径,挥发、扩散、移动而转入大气、水体和生物体中,造成其他环境要素的污染,通过食物链对人体产生危害。
因此,了解农药在土壤中的迁移转化规律以及土壤对有毒化学农药的净化作用,对于预测其变化趋势及控制土壤的农药污染都具有重大意义。
农药在土壤中保留时间较长。
它在土壤中的行为主要受降解、迁移和吸附等作用的影响。
降解作用是农药消失的主要途径,是土壤净化功能的重要表现。
农药的挥发、径流、淋溶以及作物的吸收等,也可使农药从土壤转移到其他环境要素中去。
吸附作用使一部分农药滞留在土壤中,并对农药的迁移和降解过程产生很大的影响。
●土壤对化学农药的吸附作用自然界中农药的行为受土壤影响很大,其中土壤的吸附作用影响最大。
土壤胶体的吸附作用影响着农药在土壤的固、液、气三相中的分配,是影响土壤中农药迁移转化及毒性的重要因素之一。
土壤对农药的吸附可分为物理吸附、离子交换吸附、氢键吸附分配作用等,其中离子交换吸附较重要。
土壤对农药的吸附作用,符合弗莱特利希和朗格缪尔等温吸附方程式。
(1)物理吸附:土壤对农药的物理吸附作用,主要是胶体内部和周围农药的离子或极性分子间的偶极作用。
物理吸附的强弱决定于土壤胶体比表面的大小。
例如,无机黏土矿物中,蒙脱石和高岭石对丙体六六六的吸附量分别为10.3 mg/g和2.7 mg/g;有机胶体比无机胶体对农药有更强的吸附力;许多农药如林丹、西玛津和2,4D等,大部分吸附在有机胶体上;土壤腐殖质对马拉硫磷的吸附力较蒙脱石大70倍。
4.1污染物在土壤中的迁移转化

第四章土壤环境化学——污染物在土壤中的迁徙转变本节内容重点:土壤污染源、主要污染物,氮和磷的污染及其迁徙转变,土壤的重金属污染及其迁徙转变,土壤的农药污染及其迁徙转变,土壤中温室气体的开释、汲取及传输等。
人类活动产生的污染物进入土壤并积累到必定程度,惹起土壤质量恶化的现象即为土壤污染。
土壤与水体和大气环境有诸多不一样,它在地点上较水体和大气相对稳固,污染物易于集聚,故有人以为土壤是污染物的“汇”。
污染物可经过各样门路进入土壤。
若进入污染物的量在土壤自净能力范围内,仍可保持正常生态循环。
土壤污染与净化是两个互相对峙又同时存在的过程。
假如人类活动产生的污染物进入土壤的数目与速度超出净化速度,造成污染物在土壤中连续积累,表现出不良的生态效应和环境效应,最后以致土壤正常功能的失调,土壤质量降落,影响作物的生长发育,作物的产量和质量降落,即发生了土壤污染。
土壤污染可从以下两个方面来鉴别:(1)地下水能否遇到污染;作物生长能否遇到影响。
(2)土壤遇到污染后,不单会影响植物生长,同时会影响土壤内部生物群的变化与物质的转变,即产生不良的生态效应。
土壤污染物会随处表径流而进入河、湖,当这类径流中的污染物浓度较高时,会污染地表水。
比如,土壤中过多的N、P,一些有机磷农药和部分有机氯农药、酚和氰的淋溶迁徙常造成地表水污染。
所以,污染物进入土壤后有可能对地表水、地下水造成次生污染。
土壤污染物还可经过土壤植物系统,经由食品链最后影响人类的健康。
如日本的“痛痛病”就是土壤污染间接危害人类健康的一个典型例子。
)土壤污染源土壤污染源可分为人为污染源和自然污染源。
人为污染源:土壤污染物主假如工业和城市的废水和固体废物、农药和化肥、牲口排泄物、生物残体及大气沉降物等。
污水浇灌或污泥作为肥料使用,常使土壤遇到重金属、无机盐、有机物和病原体的污染。
工业及城市固体荒弃物随意堆放,惹起此中有害物的淋溶、开释,也可以致土壤及地下水的污染。
现代农业大量使用农药和化肥,也可造成土壤污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章土壤环境化学
2.什么是土壤的活性酸度与潜性酸度?试用它们二者的关系讨论我国南方土壤酸度偏高的原因。
根据土壤中H+的存在方式,土壤酸度可分为活性酸度与潜性酸度两大类。
(1)活性酸度:土壤的活性酸度是土壤溶液中氢离子浓度的直接反映,又称有效酸度,通常用pH表示。
(2)潜性酸度:土壤潜性酸度的来源是土壤胶体吸附的可代换性H+和Al3+。
当这些离子处于吸附状态时,是不显酸性的,但当它们经离子交换作用进入土壤溶液后,即可增加土壤溶液的H+浓度,使土壤pH值降低。
南方土壤中岩石或成土母质的晶格被不同程度破坏,导致晶格中Al3+释放出来,变成代换性Al3+,增加了土壤的潜性酸度,在一定条件下转化为土壤活性酸度,表现为pH值减小,酸度偏高。
3.土壤的缓冲作用有哪几种?举例说明其作用原理。
土壤缓冲性能包括土壤溶液的缓冲性能和土壤胶体的缓冲性能:
(1)土壤溶液的缓冲性能:土壤溶液中H
2
CO3、H3PO4、H4SiO4、腐殖酸和其他有机酸等弱酸及其盐类具有缓冲作用。
以碳酸及其钠盐为例说明。
向土壤加入盐酸,碳酸钠与它生成中性盐和碳酸,大大抑制了土壤酸度的提高。
Na2CO3 + 2HCl2NaCl + H2CO3
当加入Ca(OH)2时,碳酸与它作用生成难溶碳酸钙,也限制了土壤碱度的变化范围。
H2CO3 + Ca(OH)2CaCO3 + 2H2O
土壤中的某些有机酸(如氨基酸、胡敏酸等)是两性物质,具有缓冲作用,如氨基酸既有氨基,又有羧基,对酸碱均有缓冲作用。
R
CH
NH2
COOH
+ HCl
NH3Cl
R CH
COOH
+ NaOH+ H
2
O
R CH
NH2
COOH R CH
NH2
COONa
(2)土壤胶体的缓冲作用:土壤胶体吸附有各种阳离子,其中盐基离子和氢离子能分别对酸和碱起缓冲作用。
对酸缓冲(M -盐基离子): 土壤胶体 M +HCl 土壤胶体 H +MCl
对碱缓冲: 土壤胶体 H
+MOH 土壤胶体 M +H 2O
Al 3+对碱的缓冲作用:在pH 小于5的酸性土壤中,土壤溶液中Al 3+有6个水分子围绕,当OH -增多时,Al 3+周围的6个水分子中有一、二个水分子离解出H +,中和OH -:
2Al(H 2O)63+ + 2OH - [Al 2(OH)2(H 2O)8]4+ + 4H 2O
7.植物对重金属污染产生耐性作用的主要机制是什么?
不同种类的植物对重金属的耐性不同,同种植物由于其分布和生长的环境各异可能表现出对某种重金属有明显的耐性。
(1)植物根系通过改变根系化学性状、原生质泌溢等作用限制重金属离子的跨膜吸收。
(2)重金属与植物的细胞壁结合,而不能进入细胞质影响细胞代谢活动,使植物对重金属表现出耐性。
(3)酶系统的作用。
耐性植物中酶活性在重金属含量增加时仍能维持正常水平,此外在耐性植物中还发现另一些酶可被激活,从而使耐性植物在受重金属污染时保持正常代谢过程。
(4)形成重金属硫蛋白或植物络合素,使重金属以不具生物活性的无毒螯合物形式存在,降低了重金属离子活性,从而减轻或解除其毒害作用。
7.举例说明影响农药在土壤中进行扩散和质体流动的因素有哪些?
(1)影响农药在土壤中扩散的因素主要是土壤水分含量、吸附、孔隙度、温度及农药本身的性质等:
①土壤水分含量:研究表明林丹的汽态和非汽态扩散情况随土壤水分含量增加而变化。
②吸附:土壤对农药的吸附改变了其扩散的情况,如土壤对2,4-D的化学吸附,使其有效扩散系数降低了,两者呈负相关关系。
③土壤紧实度:土壤紧实度对农药的扩散的情况有影响是因为对于以蒸汽形式进行扩散的化合物来说,增加紧实度就降低了土壤孔隙率,扩散系数就自然降低了。
如二溴乙烷、林丹等农药在土壤中的扩散系数随紧实度增加而降低。
④温度:温度增高的总效应是使扩散系数增大。
⑤气流速度:气流速度可直接或间接地影响农药的挥发。
如果空气的相对湿度不是100%,那么增加气流就促进土壤表面水分含量降低,可以使农药蒸汽更快地离开土壤表面,同时使农药蒸汽向土壤表面运动的速度加快。
⑥农药种类:不同农药的扩散行为不同。
如有机磷农药乐果和乙拌磷在Broadbalk粉砂壤土中的扩散行为就是不同的。
(2)影响农药在土壤中质体流动的因素有农药与土壤的吸附、土壤种类和农药种类等。
①农药与土壤吸附:非草隆、灭草隆、敌草隆、草不隆四种农药吸附最强者移动最困难,反之亦然。
②土壤种类:土壤有机质含量增加,农药在土壤中渗透深度减小;增加土壤中粘土矿物的含量,农药的渗透深度也减小。
③农药种类:不同农药在土壤中通过质体流动转移的深度不同。
如林丹和DDT。
9.比较DDT和林丹在环境中的迁移、转化与归趋的主要途径与特点。
DDT和林丹迁移转化、归趋主要途径与特点比较如下表所示:
10.试述有机磷农药在环境中的主要转化途径,并举例说明其原理。
有机磷农药在环境中转化途径有非生物降解和生物降解。
(1)有机磷农药的非生物降解
①吸附催化水解:吸附催化水解是有机磷农药在土壤中降解的主要途径。
如地亚农等硫代硫酸酯的水解反应如下
(RO)2P S
,
+H2O
(H或OH)
(RO)2P
S
+ R,OH
②光降解:有机磷农药可发生光降解反应,如辛硫磷在253.7nm的紫外光下照射30小时,其光解产物如下
(C2H5O)2P S
ON C
CN
(C2H5O)2P
O
SN C
CN
(C2H5O)2P
O
O P
O
(OC2H5)2
(C2H5O)2P
O
P(OC2H5)2
S
(辛硫磷)
(辛硫磷感光异构体)
(特普)
(一硫代特普)
(辛氧磷)
(C2H5O)2
O
ON
CN
(2)有机磷农药的生物降解
有机磷农药在土壤中被微生物降解是它们转化的另一条重要途径。
化学农药对土壤微生物有抑制作用。
同时,土壤微生物也会利用有机农药为能源,在体内酶或分泌酶的作用下,使农药发生降解作用,彻底分解为CO2和H2O。
如马拉硫磷被绿色木霉和假单胞菌两种土壤微生物以不同方式降解,其反应如下:
(CH 3O)2P S
SCHCOOC 2H 5
CH 2COOC 2H
53O)2S
SH + HO CHCOOC 2H 5
CH 2COOC 2H 5S CH 3O HO SCH CH 2COOC 2H 5
COOC 2H 53O)2S
SCHCOOH
CH 2COOC 2H 5
(CH 3O)2S SCHCOOH CH 2COOH。