霍尔效应测磁场实验报告
霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:一、实验室名称:霍尔效应实验室二、 实验项目名称:霍尔效应法测磁场三、实验学时:四、实验原理:(一)霍耳效应现象将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。
如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。
如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。
霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即d BI RU H H =(1)式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。
因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有B KI U H H = (2)式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。
如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式HH KI U B =(3)算出磁感应强度B 。
图 1霍耳效应示意图图2 霍耳效应解释(二)霍耳效应的解释现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。
当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为evB f B =方向沿Z 方向。
在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为H E eE f =方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。
当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为vbB U H = (4)通过的电流H I 可表示为nevbd I H -=式中n 是电子浓度,得nebdI v H -=(5)将式(5)代人式(4)可得 nedBI U H H -= 可改写为B KI dBI RU H H H == 该式与式(1)和式(2)一致,neR 1-=就是霍耳系数。
实验十六 霍尔效应测量磁场_北大物院普物实验报告

±
������������������
=
������ ������������
=
(14.42
±
0.05)mV
⋅
mT−1
⋅
A−1
3. 根据 2 中计算的������������和������������,计算������,并作磁化曲线图
将由
������
=
������������ ������������������������
������������(mV) 32.22 32.19 32.13 32.11 32.09 32.06 32.05 32.04 32.03 32.02 32.01 31.99 31.98 31.97 31.97 31.97
������(mT) 223.4 223.2 222.8 222.7 222.5 222.3 222.3 222.2 222.1 222.1 222.0 221.8 221.8 221.7 221.7 221.7
2
������������������ )
+
������������ (������������������
2
������������������ )
+
������������ (������������������
2
������������������ )
且有σKH = 0.05mV ⋅ mT−1 ⋅ A−1, ������������������ = 0.09mA,σUH = 0.07mV,可得到 ������������ = 5mT
做出������ − ������图线如下:
表格 5
31.96 31.95 31.94 31.92 31.9 31.87 31.83 31.76 31.67 31.51 31.23 30.81 29.77 27.73 23.94 19.00 14.91 11.96 9.68 8.22 7.03 6.08 5.35 4.77 4.25 3.89 3.48 3.16 2.88 2.65 2.43 2.26 1.90 1.57 1.29
霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
利用霍尔效应测磁场实验报告

六、实验误差分析
1、系统误差
实验仪器本身的精度限制,如电源输出的稳定性、电表的测量精度等。
磁场的不均匀性,可能导致测量的磁场值与实际值存在偏差。
2、随机误差
读数误差,在读取电表数据时,由于人的视觉和反应时间等因素,可能会产生一定的误差。
实验环境的干扰,如电磁场的干扰等。
|01|50|25|-24|245|
|பைடு நூலகம்2|50|48|-47|475|
|03|50|72|-71|715|
|04|50|96|-95|955|
根据实验数据,计算霍尔系数RH。由于VH=RHIB,所以RH=VH/(IB)
以第一组数据为例,RH=245×10^-3/(01×50×10^-3)=49×10^-3(m³/C)
三、实验仪器
霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计。
四、实验步骤
1、连接实验仪器
将霍尔效应实验仪的电源、毫安表、伏特表等按照正确的方式连接好。
确保连接线路牢固,接触良好。
2、校准仪器
使用特斯拉计对实验仪器进行校准,确保测量磁场的准确性。
3、测量霍尔电压
接通电源,调节电流I为某一固定值。
改变磁场B的大小,测量不同磁场下对应的霍尔电压VH。
eEH=e(v×B)
设导体的宽度为b,厚度为d,则霍尔电压VH=EHb=(v×B)bd
又因为电流I=nevbd,其中n为单位体积内的电子数,所以v=I/(nebd)
将v代入霍尔电压的表达式,可得:
VH=IB/(ned)
令RH=1/(ned),称为霍尔系数,则VH=RHIB
通过测量霍尔电压VH、电流I和导体的几何尺寸b、d,就可以计算出磁场B的大小。
霍尔元件测量磁场实验报告

霍尔元件测量磁场实验报告1. 引言嘿,大家好,今天咱们来聊聊一个酷炫的实验,那就是用霍尔元件测量磁场。
这玩意儿听起来可能有点高深,但其实也没那么复杂。
就像喝水一样,简单明了,来,跟我一块儿探究吧!霍尔元件,它的工作原理就像魔法一样。
你只需把它放到磁场中,它就能告诉你磁场的强度。
是不是很神奇?而且我们用这个实验,不仅能让大家对物理有更直观的认识,还能让学习变得更有趣,谁不想当个科学小达人呢?2. 实验原理2.1 霍尔效应首先,咱们得聊聊霍尔效应。
简单来说,就是当电流流过一个导体,放在垂直磁场里时,导体的一侧会出现电压差,这就是霍尔电压。
哇,这个原理听起来就像是在讲故事一样,对吧?电流、磁场、电压,这些元素混在一起,真的是一场科学的盛宴。
霍尔元件通过这种效应,能把磁场的强度转化成电信号,太厉害了!2.2 实验准备在实验之前,咱们得准备一些材料。
别担心,所需的东西可不复杂:一个霍尔元件、一块电源、一根电流表,还有一个可以调节磁场的装置。
哦,对了,还有个小黑板,用来记录数据。
只要把这些东西都准备好,就可以开始这场科学之旅啦!记得保持耐心哦,科学可不是一蹴而就的事情。
3. 实验步骤3.1 连接电路接下来,咱们开始实验。
首先,把霍尔元件连上电源。
电流一开,霍尔元件就开始“工作”了。
真是好像打开了一扇新世界的大门!记得检查一下连接是不是牢靠,别让电流跑了。
这就像养花,浇水的时候要保证水分足够,也不能太多,否则就容易烂根。
3.2 测量磁场好了,现在就轮到咱们测量磁场了。
把霍尔元件放进调节好的磁场里,慢慢调整磁场强度。
每次调整后,看看电流表上的数值,哇,真的是一目了然,数据在眼前一闪一闪的,就像星星一样。
记得要记录下每个强度对应的电压哦,数据可不能遗漏!这些数据将来可是你展示成果的“秘密武器”呢!4. 数据分析4.1 结果讨论当数据收集完后,咱们就要进行数据分析了。
看看这些数值有没有规律,能不能从中找到一些有趣的结论。
霍尔效应法测磁场实验报告

霍尔效应法测磁场实验报告一、实验目的1、了解霍尔效应的基本原理。
2、学习用霍尔效应法测量磁场的原理和方法。
3、掌握霍尔元件的特性和使用方法。
二、实验原理1、霍尔效应将一块半导体薄片置于磁场中(磁场方向垂直于薄片平面),当有电流通过时,在垂直于电流和磁场的方向上会产生一个横向电位差,这种现象称为霍尔效应。
这个横向电位差称为霍尔电压,用$U_H$ 表示。
霍尔电压的大小与电流$I$、磁感应强度$B$ 以及薄片的厚度$d$ 等因素有关,其关系式为:$U_H = K_H IB$其中,$K_H$ 称为霍尔系数,它与半导体材料的性质有关。
2、用霍尔效应法测磁场若已知霍尔元件的灵敏度$K_H$ ,通过测量霍尔电压$U_H$ 和电流$I$ ,就可以计算出磁感应强度$B$ :$B =\frac{U_H}{K_H I}$三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。
四、实验步骤1、仪器连接(1)将霍尔效应实验仪的各个部件按照说明书正确连接。
(2)将直流电源、毫安表、伏特表等仪器与实验仪连接好。
2、调节仪器(1)调节直流电源的输出电压,使通过霍尔元件的电流达到预定值。
(2)调节特斯拉计,使其归零。
3、测量霍尔电压(1)在不同的磁场强度下,测量霍尔元件两端的电压。
(2)改变电流的方向,再次测量霍尔电压。
4、数据记录将测量得到的数据记录在表格中,包括电流、磁场强度、霍尔电压等。
五、实验数据及处理1、实验数据记录|电流(mA)|磁场强度(T)|霍尔电压(mV)(正电流)|霍尔电压(mV)(负电流)|||||||50|01|256|-258||50|02|512|-515||50|03|768|-771||100|01|512|-515||100|02|1024|-1028||100|03|1536|-1542|2、数据处理(1)计算每个测量点的平均霍尔电压:$U_{H平均} =\frac{U_{H正} + U_{H负}}{2}$(2)根据霍尔系数$K_H$ 和平均霍尔电压、电流计算磁场强度:$B =\frac{U_{H平均}}{K_H I}$3、绘制曲线以磁场强度为横坐标,霍尔电压为纵坐标,绘制霍尔电压与磁场强度的关系曲线。
霍尔效应法测磁场的实验报告

霍尔效应法测磁场的实验报告一、实验目的本实验旨在通过霍尔效应法测量不同磁场强度下的霍尔电压,并计算出磁场的大小。
二、实验原理1. 霍尔效应当导体中有电流流过时,如果将另一个垂直于电流方向和导体面的磁场施加在导体上,则会产生一种称为霍尔效应的现象。
该效应表明,在垂直于电流方向和导体面的方向上,将会产生一个电势差,这个电势差就叫做霍尔电压。
2. 磁场大小计算公式根据霍尔效应原理,可以得到计算磁场大小的公式为:B = (VH/IR)×1/K其中,B表示磁场强度;VH表示测得的霍尔电压;I表示通过样品的电流;R表示样品材料的电阻率;K表示霍尔系数。
三、实验器材1. 万用表2. 稳压直流电源3. 磁铁4. 霍尔元件四、实验步骤及数据处理1. 将稳压直流电源接入到霍尔元件上,并设置合适的输出电压和输出电流。
2. 将磁铁放置在霍尔元件的两侧,使磁场垂直于霍尔元件的平面。
3. 测量不同磁场强度下的电压值,并记录数据。
4. 计算出每个电压值对应的磁场大小,并绘制磁场强度与电压之间的关系曲线。
5. 根据实验数据计算出样品材料的电阻率和霍尔系数,并进行比较分析。
五、实验结果分析通过实验测量得到了不同磁场强度下的霍尔电压,根据计算公式可以得到相应的磁场大小。
绘制出了磁场强度与电压之间的关系曲线,可以看出二者呈现线性关系。
通过计算得到样品材料的电阻率和霍尔系数,可以发现不同样品材料具有不同的电阻率和霍尔系数,这也说明了不同材料对于磁场强度的响应程度是不同的。
六、实验结论本次实验通过测量霍尔效应法测量了不同磁场强度下的霍尔电压,并计算出了相应的磁场大小。
通过数据处理得到了样品材料的电阻率和霍尔系数,并进行了比较分析。
实验结果表明,不同材料对于磁场强度的响应程度是不同的,这也为磁场探测提供了一定的参考依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1.0可编辑可修改
(3)
实验报告
学生姓名: 学 号: 指导教师:
实验地点:
实验时间:
一、 实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、 实验学时: 四、 实验原理:
(一)霍耳效应现象
将一块半导体(或金属)薄片放在磁感应强度为 B 的磁场中,并让薄片平面与磁场
方向(如Y 方向)垂直。
如在薄片的横向( X 方向)加一电流强度为|H 的电流,那么在与
磁场方向和电流方向垂直的
Z 方向将产生一电动势 U H 。
如图1所示,这种现象称为霍耳效应,
U H 称为霍耳电压。
霍耳发现,霍耳电压
U H 与
电流强度I H 和磁感应强度 B 成正比,与磁场方向薄片的厚度
d 反比,即
U H R-^^B
( 1
)
d
式中,比例系数R 称为霍耳系数,对同一材料 R 为一常数。
因成品霍耳元件 (根据霍耳效应
制成的器件)的d 也是一常数,故 R/d 常用另一常数 K 来表示,有
U H KI H B
式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位
电流I H 和霍耳电压U H ,就可根据式
U H KI H
电流作用下霍耳电压的大小。
如果霍耳元件的灵敏度
K 知道(一般由实验室给出),再测出
算出磁感应强度Bo
(5)
v
(5)
v
(二)霍耳效应的解释
现研究一个长度为I 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。
当沿 X 方向
通以电流I H 后,载流子(对 N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方 向运动,在磁感应强度为 B 的磁场中,电子将受到洛仑兹力的作用,其大小为
f B evB
方向沿Z 方向。
在f B 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场 E H (见图2), 它会对载流子产生一静电力
f E ,其大小为
f E eE H
方向与洛仑兹力 f B 相反,即它是阻止电荷继续堆积的。
当 f B 和f E 达到静态平衡后,有
f B f E ,即evB eE H eU H /b ,于是电荷堆积的两端面(Z 方向)的电势差为
U H vbB
通过的电流I H 可表示为
I H
nevbd
式中n 是电子浓度,得
n ebd
将式(5)代人式(4)可得
(4)
图1霍耳效应示意图 图2霍耳效应解释
可改写为
I H B
U H R 」
KI H B
d 1 该式与式(1)和式(2) 一致,R
一就是霍耳系数。
ne
五、实验目的:
研究通电螺线管内部磁场强度
六、实验内容:
(一) 测量通电螺线管轴线上的磁场强度的分布情况,并与理论值相比较; (二) 研究通电螺线管内部磁场强度与励磁电流的关系。
七、实验器材:
霍耳效应测磁场装置,含集成霍耳器件、螺线管、稳压电源、数字毫伏表、直流毫安表 等。
八、实验步骤及操作:
(一)研究通电螺线管轴线上的磁场分布。
要求工作电流
I H 和励磁电流l N 都固定,并让
I M 500 mA 逐点(约12-15个点)测试霍耳电压 U H ,记下I H 和K 的值,同时记录长直 螺线管的长度和
匝数等参数。
1 •接线:霍尔传感器的 1、3脚为工作电流输入,分别接“ I H 输出”的正、负端; 2、 4脚为霍尔电
压输出,分别接“ V H 输入”的正、负端。
螺线管左右接线柱(即“红” 、
“黑”)
分别接励磁电流I M 的“正”、“负”,这时磁场方向为左边 N 右边S 。
2、 测量时应将“输入选择”开关置于“ V H ”挡,将“电压表量程”选择按键开关置于
“ 200 ” mV 挡,霍尔工作电流I H 调到,霍尔传感器的灵敏度为:
245mV/mA/T 。
3、 螺线管励磁电流l M 调到“ 0A ”,记下毫伏表的读数 V 0 (此时励磁电流为 0,霍尔工 作电流I H 仍
保持不变)。
U H
I H B ned
4、再调输出电压调节钮使励磁电流为l M500mA。
5、 将霍耳元件在螺管线轴线方向左右调节,读出霍耳元件在不同的位置时对应的毫伏
表读数V j ,对应的霍耳电压 V Hi V V 0。
霍尔传感器标尺杆坐标 x =0.0mm 对准读数环时,
表示霍尔传感器正好位于螺线管最左端,
测量时在0.0mm 左右应对称地多测几个数据,推荐
的测量点为x =、、、、、、、、、、、75.0mm 。
(开始电压变化快的时候位置取密一点,电压变化慢的 时候位置取疏一点)。
6、 为消除副效应,改变霍耳元件的工作电流方向和磁场方向测量对应的霍耳电压。
计
算霍尔电压时,V i 、V V V 4方向的判断:按步骤(4 )的方向连线时,I M 、I H 换向开关置 于“O'(即“ +”时对应于 V i ( +B 、+I H ),其余状态依次类推。
霍尔电压的计算公式是
V=
(V 1-V 2+V 3-V 4) - 4 。
7、实验应以螺线管中心处
(x ~ 75mm 的霍尔电压测量值与理论值进行比较。
测量BT M
关系时也应在螺线管中心处测量霍尔电压。
(二)研究励磁特性。
固定I H 和霍耳元件在轴线上的位置(如在螺线管中心) ,改变I M ,测量相应的U H 。
将霍耳元件调至螺线管中心处(
x - 75mm ,调稳压电源输出电压调节钮使励磁电流在
0mA 至 600mA 之间变化,每隔100mA 测一次霍耳电压(注意副效应的消除)。
绘制l M 〜B 曲
线,分析励磁电流与磁感应强度的关系。
九、实验数据及结果分析:
1、计算螺线管轴线上磁场强度的理论值 B 理:
x =L /2=75.1mm 时得到螺线管中心轴线上的磁场强度:
8、计算螺线管轴线上磁场的理论值应按照公式
比NI
B
n l(cos 2 cos 1)
x 2 L-x
(参见教材实
验16,公式3-16-6 )计算,即B 理
量点的理论值,并绘出B 理论~x 曲线与B ¥~X 曲线,误差分析时分析两 如只计算螺线管中点和端面走向上的磁场强度,公式分别简化为
c
用NI
9、 2
「,分析这两点B 理论与实测不能吻合的原因。
2
在坐标纟D 上绘制 &X 曲线,分析螺线管内磁场的分布规律。
2 £ ,计算各测
曲线不能吻合的原因。
丙
Nl
H 、
x =0或x =L 时,得到螺线管两端轴线上的磁场强度:
同理,可以计算出轴线上其它各测量点的磁场强度。
3、不同励磁电流下螺线管中点霍尔电压测量值和磁场强度
零差(I M F0.000A 时):V o1= ____ , V o2= ___ , V )3= _ , V o4= ____
”NI
L 2
D 2
4
4 3.142 10
1535 0.500 f
2
2
• 0.1502
0.0189
6.37(mT),
M )NI
2 L 2 D 2/4
4
4 3.142 10 153
5 0.500 2 .0.15022 0.01892 /4
3.20(mT);
4、螺线管轴线上的磁场强度分布图(注:理论曲线不是必作内容)
5、螺线管中点磁场强度随励磁电流的变化关系图
B(mT)
螺线管轴线上的磁场强度分布图
7
6、误差分析:(只列出部分,其余略)
B理论~x曲线与B测量~x曲线,不能吻合的原因主要是:
(1)螺线管中部不吻合是由于霍尔灵敏度K存在系统误差,可以通过与实验数据比较进行修正。
(2)霍尔灵敏度K修正后,螺线管两端处的磁场强度的测量值一般偏低,原因是霍尔传感器标尺杆越往外拉,就越倾斜,由于磁场没有完全垂直穿过霍尔传感器,检测到的霍尔电压就
会下降。
(3)x=-30.0mm处磁场强度的测量值一般偏高,因为这里可能螺线管产生的磁场已经很弱,主要是地磁和其它干扰磁场引起检测到的霍尔电压增大。
十、实验结论:
1、在一个有限长通电螺线管内,当L>>R时,轴线上磁场在螺线管中部很大范围内近于均匀,
在端面附近变化显著。
2、通电螺线管中心轴线上磁场强度与励磁电流成正比。
卜一、总结及心得体会:
1、霍耳元件质脆、引线易断,实验时要注意不要碰触或振动霍耳元件。
2、霍耳元件的工作电流I H有一额定值,超过额定值后会因发热而烧毁,实验时要注意实验室给出的额定值,一定不要超过。
3、螺线管励磁电流有一额定值,为避免过热和节约用电,在不测量时应立即断开电源。
4、消除负效应的影响要注意VI、V2、V3、V4的方向定义。
十二、对本实验过程及方法、手段的改进建议:
霍耳元件在螺线管中移动时,与螺线管间有较大间隙,导致霍尔传感器标尺杆越往外拉,就越倾斜,由于磁场没有完全垂直穿过霍尔传感器,检测到的霍尔电压就会下降,从而带来较大的误差。
可以考虑在霍尔传感器标尺杆拉出时,额外增加一个支架类的支撑装置,使其能沿轴线方向移动。