热力学 喷管和扩压管31页PPT
合集下载
热工基础(5.1.1)--喷管和扩压管

pcr Tcr vcr 称临界压力、临界温度及临界比体积。
M a<1
dA = 0 M a=1
M a>1
dA < 0
( 临界截面 )
dA > 0
pcr Tcr ccr = cfcr
12/20
热工基础
1-3 喷管的计算 喷管计算包括设计计算和校核计算 。 设计计算:
已知:工质进口参数 (p1, T1, cf1) 、背压 ( 出口外环境压力 ) pb 、流量 qm
10/20
热工基础
dA A
=
(Ma2
- 1)
dc f cf
喷管:绝热膨胀、压力降低、流速增加
气流截面的变化规律:
Ma<1 ,亚声速流动, dA<0 ,截面收缩;
Ma=1 ,声速流动, dA=0 ,截面缩至最小;
Ma > 1 ,超声速流动, dA>0 ,截面扩张;
喉部 Ma=1
渐缩喷管
Ma < 1 dA < 0
假定:可逆绝热过程
3/20
热工基础
1-1 一维稳定流动的基本方程
一、 连续性方程
稳定流动:
qm1
= qm2
= qm
=
Acf v
A1cf1 v1
=
A2cf2 v2
=
Acf v
= const
1
cf1
1 p1, v1, T1, A1
2 cf2
2 p2, v2, T2, A2
微分形式:
dA A
+
dc f cf
渐扩喷管
Ma > 1 dA > 0
缩放喷管(拉伐尔喷管) Ma < 1, Ma = 1, Ma > 1
M a<1
dA = 0 M a=1
M a>1
dA < 0
( 临界截面 )
dA > 0
pcr Tcr ccr = cfcr
12/20
热工基础
1-3 喷管的计算 喷管计算包括设计计算和校核计算 。 设计计算:
已知:工质进口参数 (p1, T1, cf1) 、背压 ( 出口外环境压力 ) pb 、流量 qm
10/20
热工基础
dA A
=
(Ma2
- 1)
dc f cf
喷管:绝热膨胀、压力降低、流速增加
气流截面的变化规律:
Ma<1 ,亚声速流动, dA<0 ,截面收缩;
Ma=1 ,声速流动, dA=0 ,截面缩至最小;
Ma > 1 ,超声速流动, dA>0 ,截面扩张;
喉部 Ma=1
渐缩喷管
Ma < 1 dA < 0
假定:可逆绝热过程
3/20
热工基础
1-1 一维稳定流动的基本方程
一、 连续性方程
稳定流动:
qm1
= qm2
= qm
=
Acf v
A1cf1 v1
=
A2cf2 v2
=
Acf v
= const
1
cf1
1 p1, v1, T1, A1
2 cf2
2 p2, v2, T2, A2
微分形式:
dA A
+
dc f cf
渐扩喷管
Ma > 1 dA > 0
缩放喷管(拉伐尔喷管) Ma < 1, Ma = 1, Ma > 1
【优】喷管PPT资料

(4)补充方程
状态方程: 等熵方程:
p RT
p k
Const
或
dp k d p
故完全气体在喷管中的一维定常等熵流动的控制方程为:
m VA Const
dp VdV 0
H
V2
Const
2
p RT
dp p
k
d
3. 拉瓦尔喷管的理论基础
几何喷管是依靠通道截面积变化使燃气膨胀加速, 以将燃气热能转换为动能。因此,研究燃气在喷管 中的流动特性就是研究在一维定常等熵流动条件下, 通道截面积的变化对燃气流动特性的影响。从而得 到燃气流动参数沿喷管轴线的分布规律。
M<1
M<1 dA>0
V减小 p增大
M>1 dA>0
V增大 p减小
扩张管道中的流动变化
亚声速区
M<1 M=1
超声速区
M>1
拉瓦尔喷管原理图
(2)喷管截面变化对其他参数的影响
变化方向 参数
条件
收敛管道dA<0
M<1
M>1
扩张管道dA>0
M<1
M>1
dp/p
<0
>0
>0
<0
d/
<0
>0
>0
<0
dT/T
• 目前火箭发动机中最常用的是几何喷管,它是依靠喷管本身特殊的 几何形状来实现以上功能的。
• 本章主要讨论燃气在几何喷管中流动的基本规律,它是研究火箭发 动机性能参数的主要理论基础。
• 1. 流动假设
• 实践证明,燃气在喷管中的流动可简化为理想气体的一维定
工程热力学和传热学08气体蒸汽流动

临界截面上的温度、压力、速度分别称为临界温度、临 界压力、临界速度。 Tcr 、 Pcr 、 Wg,cr 临界压力与进口压力之比称为“临界压力比”
wg ,cr c
pcr 1 2 即: RT1 1 ( ) RTcr 1 p1
pcr cr p1
Ma
பைடு நூலகம்
wg c
马赫数是研究气体流动特性的一个很重要的数值。 Ma>1,超音速流动 Ma=1,临界流动 Ma<1,亚音速流动
气流的马赫数对气流截面的变化规律有很大的影响。
水蒸汽、可逆绝热过程
k
cp cv
κ=1.3 取经验数据
过热蒸汽
κ=1.135 饱和蒸汽
比体积变化率与 流速变化率之比
dwg dA dv v 分析: ( 1) A dwg wg wg
如为理想气体 可逆绝热流动:
T2 p2 ( ) T1 p1
1
p2 1 wg 2 2 p1v1 1 ( ) 1 p1
适用于理想气体的可逆绝热过程 当 p2 / p1 = 0,即出口处为真空时,出口流速达到最大
wg ,max 2
1
截面上Ma=1,cf,cr=c,称临界截面[也称喉 部截面],临界截面上速度达当地音速 。
第二节
一、流速
气体和蒸汽在喷管中的流速和质量流量
将开口系统稳定流动能量方程应用于喷管: 1 2 2 q h2 h1 ( wg 2 wg1 ) ws 2
q 0,ws 0
2 2
wg 2 wg1 2(h1 h2 )
qm,max
0
β 1/ 2
cr
喷管(课堂PPT)

在缩-扩形喷管出口建立超音速流的条件有两个, 这就是: 要满足面积比公式 和压力比公式
超音速喷管是一个( )的管道
A、圆柱形 B、扩张形
C、收敛形 D、先缩敛后扩张形
D
超音速缩扩形喷管的工作状态有( )
A、亚音速流动工作状态 B、管内产生激波的工作状态 C、管外产生斜激波的工作状态 D、管外产生膨胀波的工作状态
出口静压等于反压, 而且都等于临界压力是完全膨胀
实际落压比等于可用落压比, 都等于临界压比, 这时, 当来流总压和总温不变时, 通过喷管的质量流量达到 最大值
所以我们定义: 喷管出口反压等于气流的临界压力, 喷 管出口处气流的速度等于音速的工作状态称为临界工 作状态
C、超临界工作状态
当:
π*b
p*4 pb
喷管处于亚临界工作状态喷管内和喷管出口处气流的速度全部为亚音速气流的工作状态称为亚临界工作状态通过喷管的质量流量达到最大值喷管出口处气流的速度等于音速的工作状态称为临界工作状态是不完全膨胀通过喷管的质量流量不随反压的变化而变化喷管出口反压小于气流的临界压力喷管出口处气流的速度等于音速的工作状态称为超临界工作状态
A、排气管和喷口 B、整流锥和喷口 C、中介管和喷口 D、导流器和旋流器
AC
亚音速喷管的喷口位于:
A、排气管之前 C、扩压器之前
B、排气管之后 D、扩压器之后
B
燃气涡轮喷气发动机喷管的实际落压比 是:
A、 喷管进口处的静压与出口处的总压之比 B、喷管进口处的静压与出口处的静压之比 C、喷管进口处的总压与出口处的总压之比 D、喷管进口处的总压与出口处的静压之比
1、亚音速流态: 当p* > pb ≥ pb1时,
缩-扩形喷管内全为亚音速流, 同时Mae<1。是完全膨胀状态。
超音速喷管是一个( )的管道
A、圆柱形 B、扩张形
C、收敛形 D、先缩敛后扩张形
D
超音速缩扩形喷管的工作状态有( )
A、亚音速流动工作状态 B、管内产生激波的工作状态 C、管外产生斜激波的工作状态 D、管外产生膨胀波的工作状态
出口静压等于反压, 而且都等于临界压力是完全膨胀
实际落压比等于可用落压比, 都等于临界压比, 这时, 当来流总压和总温不变时, 通过喷管的质量流量达到 最大值
所以我们定义: 喷管出口反压等于气流的临界压力, 喷 管出口处气流的速度等于音速的工作状态称为临界工 作状态
C、超临界工作状态
当:
π*b
p*4 pb
喷管处于亚临界工作状态喷管内和喷管出口处气流的速度全部为亚音速气流的工作状态称为亚临界工作状态通过喷管的质量流量达到最大值喷管出口处气流的速度等于音速的工作状态称为临界工作状态是不完全膨胀通过喷管的质量流量不随反压的变化而变化喷管出口反压小于气流的临界压力喷管出口处气流的速度等于音速的工作状态称为超临界工作状态
A、排气管和喷口 B、整流锥和喷口 C、中介管和喷口 D、导流器和旋流器
AC
亚音速喷管的喷口位于:
A、排气管之前 C、扩压器之前
B、排气管之后 D、扩压器之后
B
燃气涡轮喷气发动机喷管的实际落压比 是:
A、 喷管进口处的静压与出口处的总压之比 B、喷管进口处的静压与出口处的静压之比 C、喷管进口处的总压与出口处的总压之比 D、喷管进口处的总压与出口处的静压之比
1、亚音速流态: 当p* > pb ≥ pb1时,
缩-扩形喷管内全为亚音速流, 同时Mae<1。是完全膨胀状态。
工程热力学第7章-气体与蒸汽的流动v3ppt课件

水蒸气 cp / cV
理想气体定比热双原子 cr 0.528
k=1.4
cr f 随工质而变 过热水蒸气k=1.3
cr 0.546
干饱和蒸汽k=1.135 cr 0.577
2) pcr cr p0
可编辑课件PPT
31
3)几何条件
Ma2 1 dcf dA 约束,临界截面只可能
cf A
发生在dA= 0处,考虑到工程实际
第七章 气体与蒸汽的流动
Gas and Steam Flow
7-1 稳定流动的基本方程式 7-2 促使流速改变的条件 7-3 喷管的计算 7-5 有摩阻的绝热流动 7-6 绝热节流
可编辑课件PPT
1
工程热力学的研究内容
1、能量转换的基本定律
2、工质的基本性质与热力过程
3、热功转换设备、工作原理 4、化学热力学基础
p
cf
M a20
d c f d p 异号 cf p
喷管 cf p 扩压管 p cf
即:气体在流动过程中流速增加,则压力下降;
压力升高,则流速必降低。
2)cfdcf vdp
cf
1 2
cf2
的能量来源
是压降,是焓(即技术功)转换成机械能。
h11 2cf21h21 2 可编c辑f22 课 件Ph PT1 2cf2
可编辑课件PPT
27
cf2 2h0h2 普适
cf 2h0 h
2cpT0 T2 理想气体、定比热容
cp 1Rg
2R g1T0T2
pvRgT
分析:
T0 T
p0 p
1
1
2p0v10 1
p2 p0
c f f 1 , p 0 , v 0 , p 2 p 0 , 而 p 0 , v 0 取 决 于 p 1 , v 1 , T 1 , 所 以
理想气体定比热双原子 cr 0.528
k=1.4
cr f 随工质而变 过热水蒸气k=1.3
cr 0.546
干饱和蒸汽k=1.135 cr 0.577
2) pcr cr p0
可编辑课件PPT
31
3)几何条件
Ma2 1 dcf dA 约束,临界截面只可能
cf A
发生在dA= 0处,考虑到工程实际
第七章 气体与蒸汽的流动
Gas and Steam Flow
7-1 稳定流动的基本方程式 7-2 促使流速改变的条件 7-3 喷管的计算 7-5 有摩阻的绝热流动 7-6 绝热节流
可编辑课件PPT
1
工程热力学的研究内容
1、能量转换的基本定律
2、工质的基本性质与热力过程
3、热功转换设备、工作原理 4、化学热力学基础
p
cf
M a20
d c f d p 异号 cf p
喷管 cf p 扩压管 p cf
即:气体在流动过程中流速增加,则压力下降;
压力升高,则流速必降低。
2)cfdcf vdp
cf
1 2
cf2
的能量来源
是压降,是焓(即技术功)转换成机械能。
h11 2cf21h21 2 可编c辑f22 课 件Ph PT1 2cf2
可编辑课件PPT
27
cf2 2h0h2 普适
cf 2h0 h
2cpT0 T2 理想气体、定比热容
cp 1Rg
2R g1T0T2
pvRgT
分析:
T0 T
p0 p
1
1
2p0v10 1
p2 p0
c f f 1 , p 0 , v 0 , p 2 p 0 , 而 p 0 , v 0 取 决 于 p 1 , v 1 , T 1 , 所 以
喷管和扩压管

热工基础
第五章 热工基础的应用
§5-1 喷管和扩压管 §5-2 换热器及其热计算 §5-3 压气机 §5-4 内燃机循环 §5-5 燃气轮机循环 §5-6 蒸汽动力循环 §5-7 制冷循环
1/20
热工基础
第一节 喷管和扩压管
对象:气体和蒸汽在管路设备,如喷管、扩压管、节
流阀内的流动过程。 喷管:用于增加气体或蒸气流速的变截面短管。 主要问题:气体在流经喷管等设备时,气流参数变化与
pcr Tcr vcr 称临界压力、临界温度及临界比体积。
Ma < 1
dA = 0
Ma = 1
Ma > 1
dA < 0
(临界截面)
dA > 0
pcr Tcr ccr = cfcr
12/20
1-3 喷管的计算
热工基础
喷管计算包括设计计算和校核计算。
设计计算:
已知:工质进口参数 (p1, T1, cf1)、背压(出口外环境压力) pb、流量qm 由工作条件(锅炉、发动机)决定
已知条件: p1, T1, cf1, pb, qm 设计原则:符合热力学原理(可逆绝热充分膨胀)。
(1) 外形选择 (2) 尺寸计算
p2 pb
pb pcr cr p1 pb pcr cr p1
渐缩喷管 缩放喷管
A2
qm
v2 cf2
Amin
qm
vcr cf,cr
渐缩喷管 缩放喷管
A2
qm
vdp dh
dh c f dc f 0
c f dc f vdp
流动过程中,欲使工质流速增加,必须有压力降落。
压差是提高工质流动速度的必要条件。
6/20
热工基础
第五章 热工基础的应用
§5-1 喷管和扩压管 §5-2 换热器及其热计算 §5-3 压气机 §5-4 内燃机循环 §5-5 燃气轮机循环 §5-6 蒸汽动力循环 §5-7 制冷循环
1/20
热工基础
第一节 喷管和扩压管
对象:气体和蒸汽在管路设备,如喷管、扩压管、节
流阀内的流动过程。 喷管:用于增加气体或蒸气流速的变截面短管。 主要问题:气体在流经喷管等设备时,气流参数变化与
pcr Tcr vcr 称临界压力、临界温度及临界比体积。
Ma < 1
dA = 0
Ma = 1
Ma > 1
dA < 0
(临界截面)
dA > 0
pcr Tcr ccr = cfcr
12/20
1-3 喷管的计算
热工基础
喷管计算包括设计计算和校核计算。
设计计算:
已知:工质进口参数 (p1, T1, cf1)、背压(出口外环境压力) pb、流量qm 由工作条件(锅炉、发动机)决定
已知条件: p1, T1, cf1, pb, qm 设计原则:符合热力学原理(可逆绝热充分膨胀)。
(1) 外形选择 (2) 尺寸计算
p2 pb
pb pcr cr p1 pb pcr cr p1
渐缩喷管 缩放喷管
A2
qm
v2 cf2
Amin
qm
vcr cf,cr
渐缩喷管 缩放喷管
A2
qm
vdp dh
dh c f dc f 0
c f dc f vdp
流动过程中,欲使工质流速增加,必须有压力降落。
压差是提高工质流动速度的必要条件。
6/20
热工基础
热力学 喷管和扩压管ppt课件

到 M 1 。为使气体流速增加,压力是不断
下降的。气体在喷管内的绝热流动中,压力下 降,温度下降,声速也将不断下降,流速的不 断增加和声速的不断降低使得马赫数总是不断 增加。在渐缩喷管内,马赫数可增加到极限值 1;在渐扩喷管内,马赫数可从1开始增加。
SUCCESS
THANK YOU
2019/6/24
根据过程方程 p
v s
p v有
ca pv RgT
上式说明,气体的声速与气体的热 力状态有关,气体的状态不同,声速也不同。 在气体的流动过程中,气体的热力状态发生 变化,声速也要变化。因此在气体介质中的 声速是当地声速,即某截面处热力状态下的 声速。
马赫数是气体在某截面处的流速与该处声速之比
1 2
c 2
gz
wsh
在喷管和扩压管的流动中,由于流道
较短,工质流速较高,故工质与外界几乎无
热交换。在流动中,工质与外界也无轴功交 换,工质进出口位能差可忽略不计,因此上
式变为
c2 2h
两边微分得
cdc dh
上式说明,工质的流速升高来源于工质 在流动过程中的焓降;工质的流速减小时, 焓将增加。
因而,为使M从 M 1 连续增加
到 M 1 ,在压差足够大的条件下,应采
用由渐缩喷管和渐扩喷管组合而成的缩放喷 管,又称拉伐尔喷管。在缩放喷管中,最小 截面即喉部截面处的流动是M=1的声速流
动。该截面是 M 1的亚声速流动与 M 1
的超声速流动转折点,称为临界截面。临界
截面上的状态参数称为临界参数,用下标cr
种扩压管称为渐扩扩压管。工程上扩压管 比较简单,仅限于M<1的情况,故渐扩 两字通常省略。
下降的。气体在喷管内的绝热流动中,压力下 降,温度下降,声速也将不断下降,流速的不 断增加和声速的不断降低使得马赫数总是不断 增加。在渐缩喷管内,马赫数可增加到极限值 1;在渐扩喷管内,马赫数可从1开始增加。
SUCCESS
THANK YOU
2019/6/24
根据过程方程 p
v s
p v有
ca pv RgT
上式说明,气体的声速与气体的热 力状态有关,气体的状态不同,声速也不同。 在气体的流动过程中,气体的热力状态发生 变化,声速也要变化。因此在气体介质中的 声速是当地声速,即某截面处热力状态下的 声速。
马赫数是气体在某截面处的流速与该处声速之比
1 2
c 2
gz
wsh
在喷管和扩压管的流动中,由于流道
较短,工质流速较高,故工质与外界几乎无
热交换。在流动中,工质与外界也无轴功交 换,工质进出口位能差可忽略不计,因此上
式变为
c2 2h
两边微分得
cdc dh
上式说明,工质的流速升高来源于工质 在流动过程中的焓降;工质的流速减小时, 焓将增加。
因而,为使M从 M 1 连续增加
到 M 1 ,在压差足够大的条件下,应采
用由渐缩喷管和渐扩喷管组合而成的缩放喷 管,又称拉伐尔喷管。在缩放喷管中,最小 截面即喉部截面处的流动是M=1的声速流
动。该截面是 M 1的亚声速流动与 M 1
的超声速流动转折点,称为临界截面。临界
截面上的状态参数称为临界参数,用下标cr
种扩压管称为渐扩扩压管。工程上扩压管 比较简单,仅限于M<1的情况,故渐扩 两字通常省略。
工程热力学(喷管)

c22 c22 c22
12
N
h1 h2 h1 h2
2
工程热力学 Thermodynamics 二、第二定律分析
s sg 0 I qmT0sg
s
cp
T2 T1
Rg
ln
p2 p1
s2 s1
理想气体 蒸气
T2 c2 2cp T1 T2 c2
s2 h2 , p2查 h2 c2 c2
1、绝热滞止:气体在绝热流动过程中,因受某种物体的阻碍,或 经扩压管后,气体流速降低为零的过程称为绝热滞止过程。
2、滞止参数:气流速度在绝热滞止过程中滞止为0的状态称 为滞止状态,其状态参数称为滞止参数。
h0
h1
c12 2
T0
T1
c12 2cp
p0
工程热力学 Thermodynamics
工程热力学 Thermodynamics
1、比体积 :比体积就是单位质量的工质所占的体积。即
v V m3 /kg m
2、压力 :压力即物理学中的压强,单位是Pa。
绝对压力:p
大气压力:pb
pe :表压力 pv :真空度
p pb pe p pb pv
工程热力学 Thermodynamics
三、研究步骤
1、*定熵流动的基本规律; 2、有黏性摩阻的流动。
工程热力学 Thermodynamics
第一节 一维稳定流动的基本方程
一、连续性方程
qm1
qm2
A1c1 v1
A2c2 v2qm NhomakorabeaAc v
const
dA dc dv 0 Ac v
工程热力学 Thermodynamics
解:a) 确定出口压力:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢!热力学 喷管和扩Fra bibliotek管21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿