奥赛高中物理压轴题训练专题测试

合集下载

高中物理奥林匹克竞赛模拟题及答案

高中物理奥林匹克竞赛模拟题及答案

图2图3高中物理奥赛模拟试题一1. (10分)1961年有人从高度H=22.5m 的大楼上向地面发射频率为υ0的光子,并在地面上测量接收到的频率为υ,测得υ与υ0不同,与理论预计一致,试从理论上求出0υυυ-的值。

2. (15分)底边为a ,高度为b 的匀质长方体物块置于斜面上,斜面和物块之间的静摩擦因数为μ,斜面的倾角为θ,当θ较小时,物块静止于斜面上(图1),如果逐渐增大θ,当θ达到某个临界值θ0时,物块将开始滑动或翻倒。

试分别求出发生滑动和翻倒时的θ,并说明在什么条件下出现的是滑动情况,在什么条件下出现的是翻倒情况。

3. (15分)一个灯泡的电阻R 0=2Ω,正常工作电压U 0=4.5V ,由电动势U =6V 、内阻可忽略的电池供电。

利用一滑线变阻器将灯泡与电池相连,使系统的效率不低于η=0.6。

试计算滑线变阻器的阻值及它应承受的最大电流。

求出效率最大的条件并计算最大效率。

4. (20分)如图2,用手握着一绳端在水平桌面上做半径为r 的匀速圆周运动,圆心为O ,角速度为ω。

绳长为l ,方向与圆相切,质量可以忽略。

绳的另一端系着一个质量为m 的小球,恰好也沿着一个以O 点为圆心的大圆在桌面上运动,小球和桌面之间有摩擦,试求: ⑴ 手对细绳做功的功率P ;⑵ 小球与桌面之间的动摩擦因数μ。

5. (20分)如图3所示,长为L 的光滑平台固定在地面上,平台中间放有小物体A 和B ,两者彼此接触。

A 的上表面是半径为R 的半圆形轨道,轨道顶端距台面的高度为h 处,有一个小物体C ,A 、B 、C 的质量均为m 。

在系统静止时释放C ,已知在运动过程中,A 、C 始终接触,试求:⑴ 物体A 和B 刚分离时,B 的速度; ⑵ 物体A 和B 分离后,C 所能达到的距台面的最大高度;⑶ 试判断A 从平台的哪边落地,并估算A 从与B 分离到落地所经历的时间。

6. (20分)如图4所示,PR 是一块长L 的绝缘平板,整个空间有一平行于PR 的匀强电场E ,图1在板的右半部分有一个垂直于纸面向外的匀强磁场B 。

高中力学奥赛试题及答案

高中力学奥赛试题及答案

高中力学奥赛试题及答案一、选择题(每题5分,共20分)1. 一个质量为m的物体在水平面上以速度v做匀速直线运动,若摩擦力为f,求物体在水平面上的加速度a。

A) 0B) f/mC) f/vD) m/v2. 一个弹簧振子的周期T与振幅A的关系是:A) T与A成正比B) T与A成反比C) T与A无关D) T与A的平方成正比3. 一个物体从静止开始自由下落,忽略空气阻力,其下落高度h与时间t的关系是:A) h = 1/2gtB) h = gtC) h = 1/2gt^2D) h = gt^24. 一个物体在竖直方向上受到两个力的作用,一个向上的拉力F1,一个向下的重力G,物体处于静止状态,求物体所受合力的大小。

A) F1 - GB) G - F1C) F1 + GD) 0二、填空题(每空5分,共30分)1. 牛顿第二定律的表达式为:__________。

2. 根据能量守恒定律,一个物体在没有外力作用的情况下,其机械能__________。

3. 一个物体在水平面上做匀速圆周运动,其向心力的表达式为:__________。

4. 根据动量守恒定律,两个物体在碰撞过程中,其总动量__________。

5. 一个物体在斜面上做匀加速直线运动,其加速度a与斜面倾角θ的关系为:a = __________。

三、计算题(每题25分,共50分)1. 一个质量为2kg的物体在水平面上以10m/s的速度运动,受到一个大小为5N的摩擦力作用,求物体在10秒内所经过的位移。

2. 一个质量为5kg的物体从高度为10m的平台上自由下落,忽略空气阻力,求物体落地时的速度。

试题答案一、选择题1. 答案:A) 02. 答案:C) T与A无关3. 答案:C) h = 1/2gt^24. 答案:D) 0二、填空题1. 答案:F = ma2. 答案:守恒3. 答案:Fc = mv^2/r4. 答案:守恒5. 答案:a = g sinθ三、计算题1. 解:根据牛顿第二定律 F = ma,由于物体做匀速直线运动,所以a = 0,因此 F = 0。

高中物理奥赛复赛专项训练(全12套)每日两题

高中物理奥赛复赛专项训练(全12套)每日两题

物理竞赛真题专项(1) 静力学平衡1.〔26届复赛〕二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。

已知桌腿受力后将产生弹性微小形变。

现于桌面中心点O 至角A 的连线OA 上某点P 施加一竖直向下的力F ,令c OAOP,求桌面对桌腿1的压力F 1。

A设桌面对四条腿的作用力皆为压力,分别为1F 、2F 、3F 、4F .因轻质刚性的桌面处在平衡状态,可推得1234F F F F F +++= (1)由于对称性,24F F =. (2)考察对桌面对角线BD 的力矩,由力矩平衡条件可得13F cF F =+. (3)根据题意, 10≤≤c ,c =0对应于力F 的作用点在O 点,c =1对应于F 作用点在A 点.设桌腿的劲度系数为k , 在力F 的作用下,腿1的形变为1F k ,腿2和4的形变均为2F k ,腿3的形变为3F k .依题意,桌面上四个角在同一平面上,因此满足13212F F F k k k⎛⎫+=⎪⎝⎭, 即 1322F F F +=. (4)由(1)、(2)、(3)、(4)式,可得 1214c F F +=, (5) 3124cF F -=, (6) 当12c ≥时,03≤F .30F =,表示腿3无形变;30F <,表示腿3受到桌面的作用力为拉力,这是不可能的,故应视30F =.此时(2)式(3)式仍成立.由(3)式,可得1F cF = (7)综合以上讨论得F c F 4121+=, 102c ≤≤ . (8) cF F =1,121≤≤c . (9)评分标准:本题20分. (1)式1分,(2)式1分,(3)式2分,(4)式7分,得到由(8)式表示的结果得4分,得到由(9)式表示的结果得5分. 2.〔20届复赛〕五、(22分)有一半径为R 的圆柱A ,静止在水平地面上,并与竖直墙面相接触.现有另一质量与A 相同,半径为r 的较细圆柱B ,用手扶着圆柱A ,将B 放在A 的上面,并使之与墙面相接触,如图所示,然后放手.己知圆柱A 与地面的静摩擦系数为0.20,两圆柱之间的静摩擦系数为0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱B 与墙面间的静摩擦系数和圆柱B 的半径r 的值各应满足什么条件?五、参考解答放上圆柱B 后,圆柱B 有向下运动的倾向,对圆柱A 和墙面有压力。

高二上册物理压轴题考卷01-2024-2025学年高中物理培优专题训练(人教版必修第三册)(解析版)

高二上册物理压轴题考卷01-2024-2025学年高中物理培优专题训练(人教版必修第三册)(解析版)

高二上册物理压轴题考卷01(考试时间:90分钟 试卷满分:100分)注意事项:1.测试范围:人教版(2019): 必修第三册第9~10章。

2.本卷平均难度系数0.15。

第Ⅰ卷 选择题一、选择题(本题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分)1.如图所示,半径为2r 的均匀带电球体电荷量为Q ,过球心O 的x 轴上有一点P ,已知P 到O 点的距离为3r ,现若挖去图中半径均为r 的两个小球,且剩余部分的电荷分布不变,静电力常量为k ,则下列分析中不正确的是( )A P 点产生的电场强度相同B .挖去两小球前,整个大球在P 点产生的电场强度大小为29Q kr C .挖去两小球后,P 点电场强度方向与挖去前相同D .挖去两小球后,剩余部分在P 点产生的电场强度大小为2.如图所示,一足够大的空间内有一无限长的均匀带正电的导体棒水平放置,导体棒所在q>的微粒,通过多次摆的竖直平面内放有三个质量相同、电荷量分别为q、2q、3q()0放发现,当三个微粒均静止时,它们距导体棒的距离之比总是1:2:3,不考虑微粒间的相互作用。

现撤去该三个微粒,在导体棒所在的竖直平面内距导体棒1.5h、2.5h处分别放有电子A、B(不计重力),给它们各自一个速度使其以导体棒为轴做匀速圆周运动,则A、B做圆周运动的线速度之比为( )A .1:1B .3:5C .1:2D .5:33.如图所示,有一半径为R ,一带处,小球与地面碰撞后速度可认为变为零,则下列说法正确的是( )A.在圆环中心正上方还存在另一位置,小球移至该处仍可保持平衡B.将小球移至距圆环中心正上方高为0.5R处由静止释放,小球一定向下运动C.将小球移至距圆环中心正上方高为R处由静止释放,小球一定向上运动D.将小球移至距圆环中心正上方高为2R处由静止释放,小球运动过程中电势能一直增大故选B 。

山东省淄博市2024高三冲刺(高考物理)苏教版能力评测(押题卷)完整试卷

山东省淄博市2024高三冲刺(高考物理)苏教版能力评测(押题卷)完整试卷

山东省淄博市2024高三冲刺(高考物理)苏教版能力评测(押题卷)完整试卷一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题自由式滑雪大跳台作为北京冬奥会新增项目备受期待,滑道由助滑道、起跳台、着陆坡停止坡组成。

如图所示,运动员使用双板进行滑行,下列说法正确的是( )A.助滑时运动员两腿尽量深蹲是为了降低重心增大重力B.起跳后运动员在完成空中动作时运动员可看作质点C.着陆时运动员控制身体屈膝下蹲,可以减小冲击力D.滑行时运动员张开手臂是为了减小空气阻力第(2)题如图所示,、、、、、、、是正方体的八个顶点。

则下列说法不正确的是( )A.只在、两点放置等量同种点电荷,则、两点电势相等B.只在、两点放置等量异种点电荷,则、两点电势相等C.只在、两点放置等量异种点电荷,则、两点电场强度相同D.在八个顶点均放置电荷量为的点电荷,则立方体每个面中心的电场强度大小相等第(3)题如图甲所示,一理想变压器一端接入交流发电机,其中矩形线框在足够大的匀强磁场中绕轴做匀速圆周运动,匝数为5匝,穿过线圈平面的磁通量随时间变化的图像如图乙所示,线框的电阻不计,理想变压器的另一端接有灯泡、与二极管,灯泡上均标有“2.5V 1A”的字样,开关S断开时,灯泡正常发光,A为理想电流表,则下列说法正确的是( )A.从图示位置开始计时,线框内产生的交变电压的瞬时值为B.理想变压器原、副线圈的匝数比为2:1C.开关闭合时,发电机的输出功率变为原来的倍D.开关闭合时,电流表的示数是第(4)题某同学使用轻弹簧、直尺钢球等制作了一个“竖直加速度测量仪”。

如图所示,弹簧上端固定,在弹簧旁沿弹簧长度方向固定一直尺。

不挂钢球时,弹簧下端指针位于直尺20cm刻度处;下端悬挂钢球,静止时指针位于直尺40cm刻度处。

将直尺不同刻度对应的加速度标在直尺上,就可用此装置直接测量竖直方向的加速度。

高中物理力学压轴题及解析

高中物理力学压轴题及解析

高中物理力学压轴题及解析高中物理力学是高中阶段物理课程的重要组成部分,压轴题往往考察学生对力学知识的综合运用能力。

本文将针对高中物理力学压轴题,给出详细的题目及解析,帮助同学们巩固力学知识,提高解题能力。

一、高中物理力学压轴题题目:一质量为m的小车,在水平地面上受到一恒力F作用,从静止开始加速运动。

已知小车所受阻力与速度成正比,比例系数为k。

求小车在力F作用下的加速度a与速度v的关系。

二、解析1.首先,根据题目描述,小车受到的合力F合= F - kv,其中F为恒力,kv为阻力。

2.根据牛顿第二定律,合力等于质量乘以加速度,即F合= ma。

3.将合力表达式代入牛顿第二定律,得到ma = F - kv。

4.整理得到加速度a的表达式:a = (F - kv) / m。

5.由于小车从静止开始加速,可以使用初速度为0的匀加速直线运动公式v = at,将加速度a代入,得到v = (F - kv)t / m。

6.进一步整理得到速度v与时间t的关系:v = (F/m)t - (k/m)t^2。

7.由于要求速度v与加速度a的关系,可以将v对a求导,得到dv/da = (F/m) - 2(k/m)t。

8.令dv/da = 0,求得极值点,即t = F / (2km)。

将此值代入v的表达式,得到v = F^2 / (4km)。

9.因此,小车在力F作用下的加速度a与速度v的关系为:a = F / m - 2k/m * v。

三、总结通过对本题的解析,我们可以发现,解决这类力学压轴题的关键在于熟练运用牛顿第二定律、运动学公式,以及掌握阻力与速度成正比的关系。

此外,同学们在解题过程中要注意合理运用数学知识,如求导、求极值等,以提高解题速度和准确度。

注意:本文所提供的题目及解析仅供参考,实际考试题目可能有所不同。

高中物理奥赛班试题-,经典试题,通用

高中物理奥赛班试题-,经典试题,通用

一、解答题1.如下图为火车站装载货物的原理示意图,设AB 段是距水平传送带装置高为H = 5m ,夹角为30°的光滑斜面,水平段BC 使用水平传送带装置,BC 长L = 8m ,与货物包的摩擦系数为μ= 0.6 ,皮带轮的半径为R = 0.2m ,上部距车厢底水平面的高度h = 0.45m。

设货物由静止开头从A 点下滑,经过B 点的拐角处无机械能损失〔即经过B 点速度大小不变〕。

通过调整皮带轮〔不打滑〕的转动角速度ω可使货物经C 点抛出后落在车厢上的不同位置,取g = 10m / s2,求:(1)当皮带轮静止时,货物包在车厢内的落地点到C 点的水平距离;(2)当皮带轮以角速度ω= 20rad / s 顺时方针方向匀速转动时,包在车厢内的落地点到C 点的水平距离;(3)试写出货物包在车厢内的落地点到C 点的水平距离s 随皮带轮角速度ω变化关系,并画出s -ω〔ω取值范围为-20~80rad s-1〕图象。

〔设皮带轮顺时方针方向转动时,角速度ω取正值,水平距离向右取正值〕。

= 16N / C ,2.如图,在直角坐标系xoy 的第一象限中,存在竖直向上的匀强电场,场强E1虚线是电场的抱负边界限,虚线右端与x 轴的交点为A(4,0) ,虚线与x 轴所围成的空间内没有电场;在其次象限存在水平向左的匀强电场,场强E = 4N / C 。

有一粒子发2生器能在M(-4,4)和N (-4,0) 两点连线上的任意位置产生初速度为零的负粒子,粒子质量均为m = 4 ⨯10-23 kg 、电荷量q =-6.4 ⨯10-19 C ,不计粒子重力和相互间的作用力,且整个装置处于真空中。

从MN 上静止释放的全部粒子,最终都能到达A 点:(1)假设粒子从M 点由静止开头运动,进入第一象限后始终在电场中运动并恰好到达A 点,求到达A 点的速度大小;(2)假设粒子从MN 上的中点由静止开头运动,求该粒子从释放点运动到A 点的时间;3 (3) 求第一象限的电场边界限〔图中虚线〕方程。

2024物理竞赛高中试题

2024物理竞赛高中试题

2024物理竞赛高中试题一、选择题(每题3分,共15分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

如果一个物体的质量为2kg,受到的力为10N,那么它的加速度是多少?A. 5 m/s²B. 10 m/s²C. 15 m/s²D. 20 m/s²2. 光在真空中的传播速度是3×10^8 m/s。

如果一束光从地球到月球需要1.28秒,那么月球到地球的距离是多少?A. 3.84×10^8 mB. 4.16×10^8 mC. 4.48×10^8 mD. 5.12×10^8 m3. 一个简单的电容器,其电容为10μF,当电压变化为5V时,储存的电荷量是多少?A. 50 μCB. 100 μCC. 150 μCD. 200 μC4. 根据热力学第一定律,能量守恒。

在一个封闭系统中,如果系统放出了500J的热量,同时做了300J的功,那么系统的内能变化了多少?A. -200JB. -800JC. 200JD. 800J5. 波长为600nm的光在折射率为1.5的介质中传播,其波速是多少?A. 2×10^8 m/sB. 1.5×10^8 m/sC. 1×10^8 m/sD. 0.75×10^8 m/s二、填空题(每空2分,共10分)6. 根据爱因斯坦的质能方程 E=mc²,其中E代表能量,m代表质量,c代表光速。

如果一个物体的质量为1kg,那么它对应的能量是_______J。

7. 在电路中,电阻R、电流I和电压V之间的关系由欧姆定律描述,即V=IR。

如果电路中的电阻为100Ω,电流为0.5A,那么电压是_______V。

8. 一个物体在自由落体运动中,忽略空气阻力,其加速度为9.8m/s²。

如果物体从静止开始下落,那么在第2秒末的速度是_______ m/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理竞赛题训练专题命题人: 张国辉 审核人: 马茹冰 编写时间:2017.12.26【学习目标】1.理解与掌握物理学基本知识,能够对问题进行分析求解。

2.可以灵活运用物理知识的综合与具体问题的分析,以及掌握压轴题做题方法。

3.能够准确的对复杂的物理问题进行解答,以及对物理过程进行分析。

【训练范围】物理必修1,物理必修2,物理选修3-1.1(20分)如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。

当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2(3)磁感应强度B 的大小(4)电场强度E 的大小和方向2(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)3. (20分)如图,足够长的水平传送带始终以大小为v =3m/s 的速度向左运动,传送带上有一质量为M =2kg 的小木盒A ,A 与传送带之间的动摩擦因数为μ=0.3,开始时,A 与传送带之间保持相对静止。

先后相隔△t =3s 有两个光滑的质量为m =1kg 的小球B 自传送带的左端出发,以v 0=15m/s 的速度在传送带上向右运动。

第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t 1=1s/3而与木盒相遇。

求(取g =10m/s 2)(1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大?(2)第1个球出发后经过多长时间与木盒相遇?(3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?图124.(20分)如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A 板比B 板电势高300V ,即U AB =300V 。

一带正电的粒子电量q =10-10C ,质量m =10-20kg ,从R 点沿电场中心线垂直电场线飞入电场,初速度v 0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。

已知两界面MN 、PS 相距为L =12cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。

求(静电力常数k =9×109N·m 2/C 2)(1)粒子穿过界面PS 时偏离中心线RO 的距离多远?(2)点电荷的电量。

5(20分)如图10是为了检验某种防护罩承受冲击能力的装置,M 为半径为 1.0R m =、固定于竖直平面内的14光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面内的截面为半径r =的14圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m kg =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取210/g m s =,求:(1)发射该钢珠前,弹簧的弹性势能p E 多大?(2)钢珠落到圆弧N 上时的速度大小N v 是多少?(结果保留两位有效数字)BA R E F场和匀强磁场,左侧匀强电场的场强大小为E、方向水平向右,其宽度为L;中间区域匀强磁场的磁感应强度大小为B、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B、方向垂直纸面向里。

一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a点,然后重复上述运动过程。

(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。

(1)中间磁场区域的宽度d为多大;(2)带电粒子在两个磁场区域中的运动时间之比;(3)带电粒子从a点开始运动到第一次回到a点时所用的时间t.在cd边的中点有一小孔e,盒子中存在着沿ad方向的匀强电场,场强大小为E。

一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好从e处的小孔射出。

现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。

(带电粒子的重力和粒子之间的相互作用力均可忽略)(1)所加磁场的方向如何?(2)电场强度E与磁感应强度B的比值为多大?8.(10分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值.(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.9(10分)如图所示,为某一装置的俯视图,PQ 、MN 为竖直放置的很长的平行金属板,两板间有匀强磁场,其大小为B ,方向竖直向下.金属棒AB搁置在两板上缘,并与两板垂直良好接触.现有质量为m ,带电量大小为q ,其重力不计的粒子,以初速v 0水平射入两板间,问:(1)金属棒AB 应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动?(2)若金属棒的运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv 0/qB 时的时间间隔是多少?(磁场足够大)10.(14分)如图所示,物块A 的质量为M ,物块B 、C的质量都是m ,并都可看作质点,且m <M <2m 。

三物块用细线通过滑轮连接,物块B 与物块C 的距离和物块C到地面的距离都是L 。

现将物块A 下方的细线剪断,若物块A 距滑轮足够远且不计一切阻力。

求:(1) 物块A 上升时的最大速度;(2) 物块A 上升的最大高度。

.11.(15分)如图,在竖直面内有两平行金属导轨AB 、CD 。

导轨间距为L ,电阻不计。

一根电阻不计的金属棒ab 可在导轨上无摩擦地滑动。

棒与导轨垂直,并接触良好。

导轨之间有垂直纸面向外的匀强磁场,磁感强度为B 。

导轨右边与电路连接。

电路中的三个定值电阻阻值分别为2R 、R 和R 。

在BD 间接有一水平放置的平行板电容器C ,板间距离为d 。

(1)当ab 以速度v 0匀速向左运动时,电容器中质量为m 的带电微粒恰好静止。

试判断微粒的带电性质,及带电量的大小。

(2)ab 棒由静止开始,以恒定的加速度a 向左运动。

讨论电容器中带电微粒的加速度如何变化。

(设带电微粒始终未与极板接触。

)第10题图12(20分)如图11所示,在真空区域内,有宽度为L 的匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,MN 、PQ 是磁场的边界。

质量为m ,带电量为-q 的粒子,先后两次沿着与MN 夹角为θ(0<θ<90º)的方向垂直磁感线射入匀强磁场B 中,第一次,粒子是经电压U 1加速后射入磁场,粒子刚好没能从PQ 边界射出磁场。

第二次粒子是经电压U 2加速后射入磁场,粒子则刚好垂直PQ 射出磁场。

不计重力的影响,粒子加速前速度认为是零,求:(1)为使粒子经电压U 2加速射入磁场后沿直线运动,直至射出PQ 边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向。

(2)加速电压12U U 的值。

13. (15分)如图所示,ABCDE 为固定在竖直平面内的轨道,ABC 为直轨道,AB 光滑,BC 粗糙,CDE 为光滑圆弧轨道,轨道半径为R ,直轨道与圆弧轨道相切于C 点,其中圆心O 与BE 在同一水平面上,OD 竖直,∠COD =θ,且θ<5°。

现有一质量为m 的小物体(可以看作质点)从斜面上的A 点静止滑下,小物体与BC 间的动摩擦因数为 ,现要使小物体第一次滑入圆弧轨道即恰好做简谐运动(重力加速度为g )。

求:(1)小物体过D 点时对轨道的压力大小(2)直轨道AB 部分的长度S14(20分)地球周围存在磁场,由太空射来的带电粒子在此磁场的运动称为磁漂移,以下是描述的一种假设的磁漂移运动,一带正电的粒子(质量为m ,带电量为q )在x =0,y =0处沿y 方向以某一速度v 0运动,空间存在垂直于图中向外的匀强磁场,在y >0的区域中,磁感应强度为B 1,在y <0的区域中,磁感应强度为B 2,B 2>B 2,如图所示,若把粒子出发点x =0处作为第0次过x 轴。

求:(1)粒子第一次过x 轴时的坐标和所经历的时间。

(2)粒子第n 次过x 轴时的坐标和所经历的时间。

(3)第0次过z 轴至第n 次过x 轴的整个过程中,在x 轴方向的平均速度v 与v 0之比。

(4)若B 2:B 1=2,当n 很大时,v :v 0趋于何值?L N M P15(20分)如图所示,xOy 平面内的圆O ′与y 轴相切于坐标原点O 。

在该圆形区域内,有与y 轴平行的匀强电场和垂直于圆面的匀强磁场。

一个带电粒子(不计重力)从原点O 沿x轴进入场区,恰好做匀速直线运动,穿过圆形区域的时间为T 0若撤去磁场,只保留电场,其他条件不变,该带电粒子穿过圆 形区域的时间为02T ;若撤去电场,只保留磁场,其他条件不变 求该带电粒子穿过圆形区域的时间。

16(20分)如图所示,为一个实验室模拟货物传送的装置,A 是一个表面绝缘质量为1kg 的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q =1×10-2C 的绝缘货柜,现将一质量为0.9kg 的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E 1=3×102N/m 的电场,小车和货柜开始运动,作用时间2s 后,改变电场,电场大小变为E 2=1×102N/m ,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。

相关文档
最新文档