二元一次方程组课件人教版
合集下载
课件《二元一次方程组》课件PPT_人教版1

和9x-15y=0 ④ 的解相同,求a , b的值。
2y=、3已知x,y满足方程组
求代数式x+y的值。
x4=x+-14y=4
找x或y的系数的最小公倍数 当把未x=知-3代数入的①系得数的符号相反时,用_______.
2把、y=会-3用代加入减①消得元,法解二元一次方程组
∴y=-3x=-1
2、例4解方程组的基本思路是什么?主 自x=学-1检测2(6分钟)
把s=-1代入②得
2× (-1)-t=-5
t=3
s=-1
∴原方程组的解是
t=3
解:①×2得
10x-12y=18 ③
②×3得
21x-12y=-15 ④
③-④得 -11x=33
x=-3
把x=-3代入①得
5× (-3)-6y =9
y=-4
x=-3
∴原方程组的解是 y=-4
3、解下列方程组:
(2 x3
y)
当未知数的系数的符号相反时,用_______.
x=-1
学生自学,教师巡视(3分钟)
∴ x=-1
y=0
×3得:9x+6y=3
自学检测1(6分钟)
5、(思考题)解二元一次 方程组 学生自学,教师巡视(3分钟)
把s=-1代入②得
21x-12y=-15 ④
自学指导2(1分钟)
x y x y 第五章 二元一次方程组 7 ∴ x=-1 4x+4y=4 2 4 学生自学,教师巡视(3分钟) 4x+4y=4 x y x y 3 4、(选做题)已知关于X,y的方程组
×2得:4x+6y=8 ×3得:9x+6y=3 -得:-5x=5
x=-1 把x=-1代入得:2×(-1)+3y-4=0
二元一次方程组课件(共42张PPT)

设篮球队胜了x场,负了y场
胜 负 合计 场数 x y 10 得分 2x y 16
x+y=10 2x+y=16
小组讨论
观察:
x+y=10 ①
2x+y=16 ②
在未知数的个数和含有未知数的项的 次数与方程
x+(10-x)=16 有什么不一样?
定义1
含有两个未知数,并且 含有未知数的项的次数 都是1的整式方程叫做二 元一次方程.
• 4.一般地,二元一次方程组的两个方程的 ___叫
做二元一次方程组的解 • 方程3x-y=1有_____对解
巩固练习
已知二元一次方程组
5x+4y=5 ① 3x+2y=9 ②
下列说
法正确的是(A)
A.同时适合方程①和②的x、y的值是方程组的解
B.适合方程①的x、y的值是方程组的解
C.适合方程②的x、y的值是方程组的解
知识树
在NBA篮球联赛中,比赛规则是:每场比赛都要分出胜负,每队胜一场得2分,负一场得1分. 姚 明所在的火箭队在10场比赛中得到16分,那么这个队胜负场数应分别是多少?
设这个队设胜x场,根据题意得:
2x+(10-x)=16
设这个队胜x场,负y场;你能根据题意列出方程吗?
用方程表示为:
x y 10 2xy16
从中你体会到二元一次方程有_ 对解解,叫做二元一次方程组的解.
x+(10-x)=16
会检验二元一次方程的解
设2x这+(1个0队-胜x()=x1场6,2负)y场;举例说明二元一次方程、二元一次方程组的
已知二元一次方程组
下列说
解的概念. 同时适合①、②的x、y值不一定是方程组的解
(完整版)二元一次方程组优秀课件PPT

矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。
人教版七年级下册 8.2《消元——解二元一次方程组》【 课件】(共18张PPT)

③+④,得 19x=114 x=6
把x=6代入①,得
3×6+4y=16
y=
-
1 2
x=6
所以这个方程组的解是 y= - 1
2
你能不能用加减消元的方法消去x呢?
x+y=10 ① 2x+y=16 ②
解:①×2,得
2x+2y=20
③
③- ②,得 y=4
把y=4代入①,得 x=6
所以这个方程组的解是 x=6 y=4
x=6 y=4
① -②也能消去 未知数y,求得x 吗?
联系上面的解法,想一想怎样解方程组
3x+10y =2.8
①
15x-10y =8
②
解:
① +②,得
18x=10.8 从上面两个方解程得组的解法x=可0.以6 看出:当二元一次方程组的两个方程中同一未知数 的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知
x+yy=10 ① 2x+y=16 ② 的解,这个方程组的两个方程中,y的系数有什么关系?利用这 种关系你能发现新的消元方法吗?
这两个方程中未知数y的系数相等,②-①可消去未知数y,得x=6
②-①就是用方程 ②的左边减去①的 左边,方程②的右 边减去方程①的右 边
把x=6代入①,得y=4
所以这个方程组的解是
解:设这些消毒液应该分装x大瓶、y小瓶.根据大、小瓶数的比,以及消毒液分装量 与总生产量的数量关系,得
5x=2y
①
500x+250y=22500000 ②
5
由①,得y= 2 x ③
把③代入②,得
500x+250×
5 2
x=22500000.
课件《二元一次方程组》优秀PPT课件 _人教版1

二级能力提升练
8. 小锦和小丽分别购买了价格相同的中性笔和笔芯, 小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支 笔和3盒笔芯,仅用了28元,求每支中性笔和每盒笔芯 的价格各是多少钱?
解:设每支中性笔的价格为x元,每盒笔芯的价格为y元, 由题意,得 答:每支中性笔的价格为2元,每盒笔芯的价格为8元.
小锦和小丽分别购买了价格相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;
根据题意,得 10x+5y=75
B.
第6课 二元一次方程组的应用(1)——
解得
解:设男生x人,女生y人,
明朝《永乐大典》中有这样一道题:“今有银钱二十贯,上街去买绫和罗,四十三文一尺绫,四十四文一尺罗,共买四百六十尺,绫、
37座客车y辆,根据题意可列出方程组( )
∵6 840>6 500.
(1)求1个大餐厅、1个小餐厅可分别供多少名学生就餐;
解:设买了绫x尺,罗y尺. (1)求1个大餐厅、1个小餐厅可分别供多少名学生就餐;
解:每辆A型车和B型车的售价分别是x万元、y万元, 某班共有学生45人,其中男生比女生的2倍少9人,该班的男生有多少人?
罗数量各几何?”请你求出文中绫和罗的数量各是多少尺.
答:买了绫240尺,罗220尺.
一级基础巩固练
三级检测练
6. 学校八年级师生共468人准备到飞翔教育实践基地 参加研学旅行,现已预备了49座和37座两种客车共10 辆,刚好坐满,设49座客车x辆,37座客车y辆,根据 题意可列出方程组( )
B
7. 某家具生产厂生产某种配套桌椅(一张桌子,两把 椅子),已知每块板材可制作桌子1张或椅子4把,现 计划用120块这种板材生产一批桌椅(不考虑板材的损 耗),设用x块板材做桌子,用y块板材做椅子,则下 列方程组正确的是( D )
二元一次方程组-图课件

解二元一次方程组时,可以通过消元 法、代入法等方法得到不同的解。
二元一次方程组的拓展
多元一次方程组
除了二元外,还可以扩展 到更多未知数的多元一次 方程组。
分式方程组
将一次方程组的未知数次 数降低,可以得到分式方 程组。
高次方程组
将一次方程组的未知数次 数提高,可以得到高次方 程组。
二元一次方程组与其他数学知识的结合
二元一次方程组可以表示为平面上的两条直线, 这两条直线的交点就是解。解的几何意义是两条 直线的交点坐标,即两条直线的公共点。
02
二元一次方程组的图解法
直线交点法
总结词
通过作图找到两条直线的交点,该交点即为方程组的解 。
详细描述
首先,将二元一次方程组中的两个方程分别表示为两条 直线的方程。然后,在坐标系上画出这两条直线。最后 ,找到这两条直线的交点,该交点的坐标即为方程组的 解。
02 代数问题
在代数中,二元一次方程组是基本的问题类型之 一,需要掌握其解法。
03 概率统计问题
在概率统计中,经常需要计算两个事件同时发生 的概率或两个变量的相关性。
科学中的二元一次方程组问题
01
02
03
物理问题
在物理学中,经常需要解 决与速度、力和加速度相 关的二元一次方程组问题 。
化学问题
在化学中,二元一次方程 组可以用来描述化学反应 中两种物质的反应速率和 反应条件。
进阶习题2
解方程组$begin{cases}x + 2y = 6 2x + y = 4end{cases}$
进阶习题3
解方程组$begin{cases}5x - y = 11 x + 2y = 7end{cases}$
人教版初中数学《二元一次方程组》_精美课件

四清导航 【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_精 美课件1 -课件 分析下 载
5.(5 分)如图①,在边长为 a 的大正方形中剪去一个边长为 b 的 小正方形,再将图中的阴影部分剪拼成一个长方形,如图②.这个拼成 的长方形的长为 30,宽为 20,则图②中Ⅱ部分的面积是___1_0_0___.
3.(5分)一个长方形的长减少15 cm,宽增加6 cm,就变成一个正方形, 并且这两个图形的面积相等,则原长方形的面积为___1_0_0___cm2.
4.(5分)如图所示,在桌面上放着A,B两个正方形,共遮住了27 cm2的面 积,若这两个正方形重叠部分的面积为3 cm2,且正方形B除重叠部分外的面 积是正方形A除重叠部分外的面积的2倍,则正方形A的面积是___1_1____cm2.
解:设小长方形的长为 x m,宽为 y m.依题意有:2xx++2yy= =180,,解此 方程组得:xy==24,,故小长方形的长为 4 m,宽为 2 m
四清导航 【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_ 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_精 美课件1 -课件 分析下 载
x=y+50 D.x+y=90
四清导航 【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_精 美课件1 -课件 分析下 载
2.(5分)一根木棒长8 m,分成两段,其中一段比另一段长1 m,求这两段 的长时,设其中一段为x m,另一段长为y m,那么可列二元一次方程组为 __xx_+ -__yy_= =__81 ,.
【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_精 美课件1 -课件 分析下 载
5.(5 分)如图①,在边长为 a 的大正方形中剪去一个边长为 b 的 小正方形,再将图中的阴影部分剪拼成一个长方形,如图②.这个拼成 的长方形的长为 30,宽为 20,则图②中Ⅱ部分的面积是___1_0_0___.
3.(5分)一个长方形的长减少15 cm,宽增加6 cm,就变成一个正方形, 并且这两个图形的面积相等,则原长方形的面积为___1_0_0___cm2.
4.(5分)如图所示,在桌面上放着A,B两个正方形,共遮住了27 cm2的面 积,若这两个正方形重叠部分的面积为3 cm2,且正方形B除重叠部分外的面 积是正方形A除重叠部分外的面积的2倍,则正方形A的面积是___1_1____cm2.
解:设小长方形的长为 x m,宽为 y m.依题意有:2xx++2yy= =180,,解此 方程组得:xy==24,,故小长方形的长为 4 m,宽为 2 m
四清导航 【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_ 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_精 美课件1 -课件 分析下 载
x=y+50 D.x+y=90
四清导航 【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《二 元一次 方程组 》_精 美课件1 -课件 分析下 载
2.(5分)一根木棒长8 m,分成两段,其中一段比另一段长1 m,求这两段 的长时,设其中一段为x m,另一段长为y m,那么可列二元一次方程组为 __xx_+ -__yy_= =__81 ,.
(完整版)二元一次方程组优秀课件PPT

答案解析
答案解析1
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
答案解析2
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
几何问题
例如,在计算几何图形的面积、 周长或体积时,需要使用二元一 次方程组来表示相关变量之间的
关系。
代数问题
例如,在解决代数方程组时,需要 使用二元一次方程组来表示未知数 之间的关系。
概率统计问题
例如,在计算概率分布或统计数据 时,需要使用二元一次方程组来表 示相关变量之间的关系。
科学中的二元一次方程组问题
化学反应
在化学反应中,常常需要用到 二元一次方程组来表示反应物 和生成物的关系。
几何问题
在解决涉及两个未知数的几何 问题时,如两点之间的距离、 角度等,常常需要用到二元一
次方程组。
02
二元一次方程组的解法
代入消元法
通过代入一个方程中的未知数,将其表示为另一个变量的函数,从而简化方程组的方法。
代入消元法是解二元一次方程组的一种常用方法。首先,选择一个方程中的未知数,用另一个未知数表示出来,然后将其代 入到另一个方程中,消去一个未知数,得到一个一元一次方程。接着解这个一元一次方程,得到一个变量的值,再将其代回 原方程中求得另一个变量的值。
01
02
03
购物问题
例如,在购买商品时,需 要计算不同商品的价格和 折扣,以确定最佳购买方 案。
交通问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
值,叫做这个二元一次方程的一个解
通常记作:
x y
2 20
······
若不考虑实际意义你还能再找出几个方程的解吗?
一般地,一个二元一次方程有无数个解。 如果对未知数的取值附加某些限制条件,则 可能有有限个解
1、下面4组数值中,哪些是二元一次方程 2x+y=10的解?
x = -2
x=3
x=4
x=6
把两个方程 x y 22 写在一起: 2x y 40
像这样把两个二元一次方程合在一起, 就组成了一个二元一次方程组
二元一次方程
xy22 2xy40
观察上面四个方程,有何共同特征? (1)2个未知数 (2)未知数的项的次数是1
含有两个未知数,并且所含未知数的 项的次数都是1次的方程叫做二元一次方程.
1、若关于x,y的方程 ax yb 1 是二元一次 方程,则a, b须满足条件( D )
(A )a0, b1(B)a1 , b1
(C )a2, b1(D )a0, b1
2、下列方程中是二元一次方程的是( B )
次数是2
分母中含有未知数
(A)2x1=1 (B)xy2(xy)
(C)3xy1 (D) 1 y 2 x
2、满足方程 2xy40且符合问题的实际意
义的x、 y 的值有哪些?把它们填入下表中
x 0 1 2 3 4 5 … 18 … 22
y 40 38 36 34 32 30 … 4 … -4
不难发现x=18,y=4既是 x+y=22的解,也是2x+y=40 的解,也就是说是这两个方程的公共解,我们把它们叫
是
x x
y y
5 4
(
5
)
不是
x 1 x
+
3 y
y 2
x 2 0
(是6 )
y
3
我们再来看引言中的方程 xy22,
符合问题的实际意义的 x 、y 的值有哪些?
x 0 1 2 3 4 5 … 18 … 22
y 22 21 20 19 18 17 … 4 … 0
使二元一次方程左右两边相等的一组未知数的
(1)
(2)
(3)
(4)
y=6
y=4
y=3
y = -2
2、找出上述方程的所有正整数解
x=2
3、请写出一个以
为一组解的二元一次
方程
y=3
1、满足方程 xy22且符合问题的实际意
义的 x 、y 的值有哪些?把它们填入下表中
x 0 1 2 3 4 5 … 18 … 22
y 22 21 20 19 18 17 … 4 … 0
x=1 x=3 x=5 y=2 y=1 y=0
写出二元一次方程 4x+y=20的所有正整 数解.
学习了本节课你有 哪些 收获?
作 业
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
x y 15 2x 4 y 38
探索新知
把具有相同未知数的两个二元一次方程合在一起,
就组成了一个二元一次方程组
抢答:请判断下列各方程组中,哪些是二元一
次方 程组,哪些不是?并说明理由.
x y 3
不是(1)
x
2
y
7
不(2是) xx
z 2
y
4 8
不 3是 xx
y
2
2 y
5
(4)
二元一次方程组课件人教版
引言 篮球联赛中,每场比赛都要分出胜负,每队 胜一场得2分,负一场得1分.如果某队为了争取 较好名次,想在全部22场比赛中得40分,那么这 个队胜负场数应分别是多少?
用学过的一元一次方 程能解决此问题吗?
这可是两个 未知数呀?
议一议
篮球联赛中,每场比赛都要分出胜负,每队
胜一场得2分,负一场得1分.如果某队为了争取较 好名次,想在全部22场比赛中得40分,那么这个 队胜负场数应分别是多少?
4
x y 0
x y 0
x y 5
C
x
2
y2
4、方程组
3x 5x
A
x 1
y
1
x
B
y
1
2y 4y
1
1
5 1
D
y
1 2
x
x y 1
的解是(
C
x y
2 1 2
2
D
)
x y
1 3 2
探究:对于x+2y=5,思考下列问题:
(1)用含y的式子表示x;
(2)用含x的式子表示y; (3)在自然数范围内方程的解是
那么,能设两个未知数吗?比如设胜x场,
负y场;你能根据题意列出方程吗?
依题意有:
胜 负 合计
场数 x y 22
积分 2x y 40
xy22 用方程表示为: 2xy40 两个耶!
二元一次方程
xy22 2xy40
观察上面两个方程,有何共同特征?
(1)2个未知数 (2)未知数的项的次数是1
含有两个未知数,并且所含未知数的 项的次数都是1次的方程叫做二元一次方程.
做方程组
x y 22 2x y 40
的解。记作:
x y
18 4
二元一次方程(组)的解
综上所述:
使二元一次方程两边的值相等的两个未知 数的值,叫做二元一次方程的解.它的解 有无数个。
二元一次方程组的两个方程的公共解,叫 做二元一次方程组的解。显然二元一次方 程组只有一对解,记作 X=
Y=
(1)“一次”是指含未知数的项的次数
是1,而不是未知数的次数
(2)方程的左右两边都是整式
1、哪些是二元一次方程(组)?为什么?
(1)x2 y20 (2)2x510 (3)2a3b1 (4)x22x10
(5)2xyz1
你猜(5)我们该称什么? 三元一次方程
做一做
、若方程 2x2m33y5n94
是关于x、y的二元一次方程, 求 m2 n2 的值。
练一练
1、方程2x+3y=8的解 ( )
A、只有一个
B、只有两个
C、只有三个
D、有无数个
2、下列4组数值中,哪些是二元一次方程
2xy10的解?( )
A
x y
6
2
B
x y
3 4
x 4
C
y
3
D
x y
6 2
练一练
3、下列属于二元一次方程组的是 ( )
A
x
3
y 5
4
3
B
x
5 y