车牌识别系统介绍
电子车牌识别系统工作原理

电子车牌识别系统工作原理电子车牌识别系统是一种基于计算机视觉技术的智能交通管理系统,它通过摄像机对车辆的车牌进行拍摄,并通过图像处理和模式识别算法来识别出车牌上的字符信息。
本文将详细介绍电子车牌识别系统的工作原理。
一、摄像机采集车牌图像电子车牌识别系统通常安装在交通路口、停车场入口等位置,在车辆经过时使用摄像机对车牌图像进行采集。
摄像机应选择具有较高分辨率和较好的图像质量,以确保得到清晰的车牌图像。
二、图像预处理车牌图像采集之后,需要进行预处理以提高车牌识别的准确性和鲁棒性。
图像预处理包括以下几个主要步骤:1. 去除噪声:利用数字图像处理技术,对采集到的车牌图像进行滤波和降噪处理,以减少噪声对车牌号码识别的干扰。
2. 图像增强:对图像进行对比度增强和直方图均衡化等处理,以提高图像的清晰度和图像特征的差异性。
3. 车牌定位:在预处理之后,需要通过图像处理算法来准确定位车牌区域。
车牌通常具有一定的颜色、形状和尺寸特征,可以利用这些特征对车牌进行定位。
三、字符分割与识别字符分割是车牌识别系统中的关键步骤,其目的是将车牌区域分割成若干个字符,并将字符提取出来。
字符分割主要包括以下几个步骤:1. 字符定位:通过车牌中字符的间距、宽度等特征,利用图像处理算法准确定位字符的位置。
2. 字符分割:将定位到的字符进行分割,通常可以采用基于投影法和基于模板匹配的方法进行字符分割。
3. 字符识别:对分割后的每个字符图像进行特征提取和模式识别,利用字符识别算法对每个字符进行识别,将字符转化为对应的字符编码。
四、车牌号码识别与存储经过字符分割和识别之后,就可以得到完整的车牌号码信息。
车牌号码识别阶段主要包括以下几个步骤:1. 字符识别校验:对识别出的字符进行校验,通过字符校验算法判断识别的字符是否正确。
2. 车牌号码识别:将校验通过的字符按顺序组合成车牌号码,并存储或输出识别结果。
3. 数据处理与存储:对识别得到的车牌号码进行数据处理,可以选择将识别结果存储到数据库中,以便后续的车牌查询和管理。
车牌识别系统

一、车牌识别出入口管理系统设计1.1系统简介停车场基于车牌识别管理模式的系统,设备一般包括车牌识别专用摄像机、车牌识别器、信息显示屏、自助缴费终端、电动道闸、图像对比和车牌识别系统、计算机等。
为了满足客户不同管理需求,各个设备可以灵活组合。
在本项目中,系统需要对临时用户、固定用户进行实时管理,对其出入的时间、车牌号、图像进行严格记录、识别和登记,并按照停车时间和计费规则对各种车辆进行收费,并防止车辆丢失。
智能车牌识别收费管理系统系统图主要功能:●车牌识别比对功能,防止车辆被盗●语音提示,人性化操作提示●支持灵活费率设定,不限时段,多种设定。
●支持车牌识别缴费功能,免除临租卡的发放,提高通行速度●多进多出联网系统管理,支持出入口嵌套管理功能●异常情况处理,满足消费报警、应急手动等●支持51park网站的车位查询和预定功能,利于数据集中、管理集中其他子系统介绍●一卡通支付、手机支付:用一卡通、手机支付缴停车费,替代临租卡,刷卡付费一次完成,还可自助缴费。
●ETC缴费利用ETC有源卡,读卡距离6-10米,可不停车通过,提高通行效率,减少出入口数量。
●车牌识别,集中收费利用车牌识别技术,获取车牌号码,替代临租卡的发放,驾车者在收费处输入车牌号就可缴费,提高了效率。
●无人职守自助缴费驾车者自己在终端上输入车牌号码,调取入场记录,用一卡通、手机、信用卡等方式自助付费,提高了服务水准。
●折扣机,积分扣缴对在商场酒店消费的客户,通过折扣机减免停车费,可用消费积分抵车费,吸引有效用户,提高商场收入。
●车位查询和预定(配合51park网站)通过无线网络,自动上报停车场的空车位、收费价格等信息,供51park网站的客户查询和预定,预定信息从51park网站下传到收费系统,并自动处理。
停车管理系统出入口设置在停车场入口处设置车牌识别摄像机、LED显示屏(带语音)、自动道闸、地感线圈等。
设备位置如图所示:车辆入口管理设备示意图在停车场的出口处设置摄像机、LED显示屏(带语音)、自动道闸、地感线圈、岗亭、计算机等。
车牌识别系统功能和参数

车牌识别系统功能和参数车牌识别系统是一种用于自动识别和识别出车辆号牌的技术。
它利用计算机视觉和模式识别的原理和技术,通过图像处理和特征提取等方法,从输入的图像中提取车牌号码并进行识别。
车牌识别系统主要可以分为图像采集、车牌定位、字符分割、字符识别和车牌识别五大模块。
首先,车牌识别系统的功能包括图像采集、车牌定位、字符分割、字符识别和车牌识别等。
通过图像采集模块,可以采集到来自摄像头或其他图像输入设备的车辆图像。
车牌定位模块可以对车辆图像进行处理,找出图像中的车牌位置。
字符分割模块可以将车牌图像中的字符进行分割,从而得到单个字符图像。
字符识别模块使用OCR(光学字符识别)技术,对字符进行识别,并将字符的识别结果输出。
最后,车牌识别模块通过将字符的识别结果进行组合,得到完整的车牌号码,并输出识别结果。
1.图像采集参数:包括图像分辨率、拍摄角度、曝光度、对比度等。
合理的图像采集参数可以保证车牌在图像中的清晰可见性,减少图像中的噪声和干扰。
2.车牌定位参数:包括车牌的位置、大小、高度、宽度等。
通过调整车牌定位参数,可以准确地找到车牌在图像中的位置,排除其他干扰因素。
3.字符分割参数:包括字符之间的间距、字符的大小、字符的高度、宽度等。
合适的字符分割参数可以确保字符之间的距离和大小符合标准,并准确地划分字符。
4.字符识别参数:包括字符模板库、字符识别算法、识别率等。
良好的字符识别参数可以提高字符识别的准确度和速度。
5.车牌识别参数:包括车牌识别算法、车牌号码格式、识别结果输出等。
优化的车牌识别参数可以保证系统对各种车牌号码的识别正确率,快速地输出识别结果。
除了以上几个参数之外,还有一些额外的参数可以用于进一步优化系统的性能,如图像预处理参数、特征提取参数、分类器参数等。
这些参数的选择和调整可以根据实际应用需求和系统性能要求进行调整。
总之,车牌识别系统的功能和参数都是为了实现车牌号码的自动识别和识别而设计的。
车牌识别系统设计

车牌识别系统设计车牌识别系统是一种运用计算机视觉技术和模式识别技术,对车辆的车牌进行自动识别的系统。
它可以用于交通管理、停车场管理、车辆追踪等领域。
下面将从硬件设备、图像处理、车牌识别算法、车牌信息检索等方面进行车牌识别系统的设计。
(一)硬件设备:摄像头:通常使用彩色CCD摄像头进行车牌图像的采集。
摄像头的安装位置要考虑拍摄角度、光照条件等因素,以确保图像质量。
计算机:计算机负责进行图像处理和车牌识别算法的运行。
一般应选用配置较高的计算机来满足实时处理的需求。
显示器:用于显示摄像头拍摄到的车辆图像和识别结果。
(二)图像处理:图像增强:通过对图像进行增强,可以提高车牌区域的对比度和清晰度,有利于后续的图像分割和字符识别。
图像分割:车牌需要从整个车辆图像中分离出来,图像分割是将车牌和其他区域进行分割的过程。
常用的图像分割方法有基于颜色、形状、纹理等特征的方法。
图像去噪:在图像分割之前,应先对图像进行去噪处理,以降低噪声对车牌区域分割的干扰。
(三)车牌识别算法:车牌识别的核心是对分割后的车牌图像进行字符识别。
常用的车牌识别算法有基于模式匹配、神经网络、支持向量机等。
模式匹配:通过建立字符模板库,并将输入的车牌图像与模板进行匹配,从而识别每个字符。
神经网络:通过训练一个具有多层隐藏层的神经网络,使其能够自动从输入的图像中学习到每个字符的特征,并进行识别。
支持向量机:通过构建一个具有最大分类间隔的超平面,使得输入的车牌图像能够更容易被正确分类。
(四)车牌信息检索:数据库查询:在识别到车牌号码之后,通过数据库查询的方式获取对应的车辆信息,并将其与车牌识别结果进行关联。
综上所述,车牌识别系统设计需要考虑硬件设备的选择和设置,图像处理的方法和技术,车牌识别算法的选择和实现,以及车牌信息的检索方式和数据库设计。
通过合理的设计和实现,可以实现对车牌的准确快速识别,提高交通管理的效率和准确性。
车牌识别系统设计与实现

车牌识别系统设计与实现车牌识别系统是一种基于计算机视觉技术的智能交通系统,它可以通过图像识别技术快速识别车辆的车牌号码,实现自动化的车辆管理和监控。
在交通管理、智慧城市等方面有广泛的应用。
本文将从车牌识别系统的设计和实现两个方面来介绍该系统的基本原理和实际应用。
一、车牌识别系统的设计原理车牌识别系统主要由图像采集、图像处理、车牌检测、字符分割、字符识别等几个模块组成,下面我们将根据这几个模块分别介绍车牌识别系统的设计原理。
1. 图像采集图像采集是车牌识别系统的第一步,它是指通过摄像头等设备采集原始的车辆图像,并进行一定的预处理,使得后续的图像处理步骤能够更加准确地识别车牌信息。
在图像采集过程中,需要考虑光线、角度、分辨率等因素对图像质量的影响,并针对不同的场景设置不同的参数。
2. 图像处理图像处理是车牌识别系统中最重要的环节之一,它包括图像增强、图像去噪、车辆检测等多个步骤。
在图像增强方面,可以采用灰度化、直方图均衡化、滤波等方法对图像进行处理,提高图像质量。
在去噪方面,可以采用中值滤波、高斯滤波等方法去除图像中的噪声。
在车辆检测方面,可以通过背景建模、二值化等方法区分车辆和背景,减少误检率。
3. 车牌检测车牌检测是车牌识别系统中最核心的一个步骤,它是指通过图像处理技术识别车辆图像中的车牌区域,并剥离出车牌的图片。
在车牌检测过程中,需要考虑车牌的大小、形状、位置等因素,并采用多阶段的检测策略,提高车牌检测的准确率。
4. 字符分割字符分割是指将车牌图片中的字符部分分割出来,为后续的字符识别做准备。
在字符分割过程中,需要考虑字符之间的间隔、大小等因素,并采用基于形态学等算法对字符进行分割。
5. 字符识别字符识别是车牌识别系统中最后的一个步骤,它是指识别分割出来的字符,将其转化为能够被计算机识别的数字或者字母。
在字符识别过程中,可以采用基于分类器、神经网络等算法,同时考虑字符的形状、颜色等特征,提高识别精度。
车牌识别方案5篇

车牌识别方案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、实施方案、应急预案、活动方案、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, implementation plans, emergency plans, activity plans, rules and regulations, document documents, teaching materials, essay compilations, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!车牌识别方案5篇车牌识别方案篇1车牌识别系统方案随着社会的发展和技术的进步,车辆管理日益成为现代城市交通管理中的重要环节。
车牌识别研究内容

车牌识别研究内容车牌识别是一种自动化技术,可以自动识别车牌上的文字、数字和符号,并提取相关信息。
车牌识别技术在交通、安防、监控等领域有广泛的应用,可以提高交通效率、减少交通事故、保障公共安全。
本文将介绍车牌识别的研究内容,包括车牌识别的基本原理、车牌识别技术的分类、车牌识别系统的组成和车牌识别技术的应用。
一、车牌识别的基本原理车牌识别的基本原理是利用计算机视觉和图像处理技术,对车牌图像进行自动识别。
车牌识别系统通常包括图像采集设备、图像预处理设备、特征提取设备、字符识别设备等组成。
图像采集设备用于采集车牌图像,通常采用摄像机或相机。
图像预处理设备用于对车牌图像进行预处理,包括亮度调整、对比度调整、色彩平衡等操作,以提高车牌识别的准确率。
特征提取设备用于提取车牌图像的特征信息,包括车牌的颜色、形状、字符大小等特征。
字符识别设备用于对车牌图像中的文字进行字符识别,将识别结果输出到计算机中。
二、车牌识别技术的分类车牌识别技术可以根据车牌的形状、颜色、字符大小等因素进行分类。
常见的车牌识别技术包括:1. 文字识别型车牌识别技术:这种技术可以识别车牌上的文字,如英文、中文等。
文字识别型车牌识别技术通常采用深度学习算法进行字符识别。
2. 数字识别型车牌识别技术:这种技术可以识别车牌上的数字,如1、2、3等数字。
数字识别型车牌识别技术通常采用深度学习算法进行数字识别。
3. 字符识别型车牌识别技术:这种技术可以识别车牌上的各种字符,如字母、汉字、符号等。
字符识别型车牌识别技术通常采用深度学习算法进行字符识别。
三、车牌识别系统组成车牌识别系统通常由以下几个部分组成:1. 图像采集设备:用于采集车牌图像。
2. 图像预处理设备:用于对车牌图像进行预处理,包括亮度调整、对比度调整、色彩平衡等操作。
3. 特征提取设备:用于提取车牌图像的特征信息,包括车牌的颜色、形状、字符大小等特征。
4. 字符识别设备:用于对车牌图像中的文字进行字符识别,将识别结果输出到计算机中。
基于图像处理的车辆牌照识别与车牌追踪系统

基于图像处理的车辆牌照识别与车牌追踪系统车辆牌照识别和车牌追踪系统是一种基于图像处理的技术,用于自动识别和追踪车辆牌照。
它的应用范围广泛,涵盖了交通管理、安防监控、智能停车、智能交通等领域。
本文将对基于图像处理的车辆牌照识别与车牌追踪系统进行详细介绍。
一、背景介绍随着车辆数量的快速增长,传统的人工识别车牌的方式已经无法满足实际需求。
因此,车辆牌照识别和车牌追踪系统应运而生。
该系统利用计算机视觉和图像处理技术,将车牌中的字母和数字识别出来,并将识别结果用于后续的车牌追踪任务。
二、车辆牌照识别系统车辆牌照识别系统主要包括图像采集、车牌定位、车牌识别和字符识别等步骤。
首先,需要进行图像采集。
通过摄像头或者视频设备,获取车辆的图像数据。
图像采集过程中需要注意图像质量,以保证后续的车牌识别准确性。
接下来,进行车牌定位。
车牌定位是指从采集的图像中确定车牌的位置。
通常,车牌具有固定的形状和大小,可以通过图像处理算法来提取出车牌的特征并确定其位置。
然后,进行车牌识别。
车牌识别是指从定位的车牌图像中识别出车牌中的字母和数字。
车牌识别算法主要利用图像分割、特征提取和模式识别等技术,对车牌图像进行处理并识别出其中的字符信息。
最后,进行字符识别。
字符识别是指将车牌中的字母和数字转化为文本信息。
通常,字符识别算法采用模式匹配和机器学习等技术,通过训练模型来实现。
三、车牌追踪系统车牌追踪系统主要是基于车辆牌照识别系统的结果,对车辆进行跟踪追踪。
首先,需要建立一个车牌数据库。
将车辆牌照识别系统识别出的车牌信息存储在数据库中,包括车牌号码、车辆类型、颜色等信息。
接下来,进行车辆跟踪。
车辆跟踪是指在连续的图像帧中,根据识别出的车牌信息来追踪车辆的运动轨迹。
车辆跟踪算法通常采用目标检测和运动分析等技术,通过比对连续帧之间的差异来确定车辆的位置和运动信息。
最后,进行车辆识别和属性提取。
根据车牌数据库中存储的信息,对追踪到的车辆进行识别和属性提取,包括车辆品牌、型号、所有人等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车牌识别系统简介
近几年来,随着计算机科技的发展,硬件水平的不断提高,模式识别技术的发展以及人工智能理论在图形图像处理中的成功运用,智能车牌识别技术不断发展,所谓智能车牌识别系统以及其工作原理,实际上就是通过引入数字摄像技术和计算机信息管理技术,采用先进的图像处理,模式识别和人工智能技术,通过对图像的采集和处理,获得更多的图像信息,从而达到对车牌字符进行自动识别的系统,这个系统是模式识别技术在实践中的一个运用。
目前主要的车牌识别系统主要由以下几个具体步骤构成图像采集、图像处理、车牌定位、车牌识别。
其具体流程图如图所示。
其中核心部分,也就是需要在PC机上处理的过程主要有图像处理,车牌定位,车牌识别,这些步骤是我们研究车牌识别技术的重点所在。
一、车牌识别系统的应用前景
近几年来,车牌识别技术成为了一个热门。
车牌识别系统集中了先进的光电、计算机、图像处理、模式识别、远程数据访问等技术,实现对监控路面过往的每一辆机动车的特征图像和车辆全景图像进行连续全天候实时记录,计算机根据所拍摄的图像进行牌照自动识别。
该系统可以应用于路桥关口,实现对过往车辆的不停车收费,还可以置于交通要塞,实现对进出车辆的不间断适时监控,除此之外,车牌识别系统还可以应用在以下几个领域:
(1)交通适时监控。
利用车牌识别系统的摄像设备,可以直接监视相应路段的交通状况,获得车辆密度、队长、排队规律等交通信息,防范和观察交通事故。
这种适时监控系统一旦成功运用,将极大的方便交通管理,节约大量的人力物力。
同时也提高管理效率。
(2)流控制指标参数的测量。
该系统能够测量和统计很多交通流指标参数,如总的服务
流率,总行程时间,总的流入量和流出量,车型及车流组成,日车流量,小时,分钟车流量,车流高峰时间段,平均车速,车辆密度等,这为交通诱导系统提供必要的交通流信息。
(3)路费交纳、安全检查、运营管理实行不停车检查。
根据识别出的车牌号码从数据库中调出该车档案材料,可发现没有及时交纳养路费的车辆。
另外,该系统还能发现无车牌的车辆。
若同车型检测器联用,还可迅速发现所挂车牌与车型不符的车辆,对车辆管理实现真正的智能化,相比较于目前的人工管理这种管理方式极大的提高了效率。
(4)车辆定位。
由于能自动识别车牌号码,因而极易发现被盗车辆,以及定位出车辆在道路上的行驶位置,这为防范、发现和追踪涉及车辆的犯罪,保护重要车辆的安全有重大作用,从而对城市治安及交通安全有重要的保障作用。
(5)军事应用。
在一些军事要塞的出入口处,车辆流量较大,由于其特殊性,对过往车辆的管理就显的特别严格,如果人工管理,必然极大的消耗人力物力,同时由于人的主观性,有时候又不免会出现一些错误,而这些错误有的时候是致命的。
如果采用智能车牌识别系统,就可能避免这些错误,极大的提高了这些部门的安全性。
二、车牌识别技术中的难点
车牌识别系统在实验室里已经取得了令人满意的效果,但很难应用于实际工程中,这是因为实验室的环境是处于理想状态的,而在自然环境里,由于受到人工拍摄条件,天气等因素的影响,识别率很难达到要求。
我们大致的把这些因素归纳为“三类”
1.汽车牌照本身的特征
(1)牌照的图像质量本身无法保证。
有些牌照被污损,而有些牌照的字符模糊不清,对光线的散射性不好,这些不确定性极大得影响了识别的准确率。
(2)牌照缺乏统一的标准。
根据中华人民共和国公共安全行业标准对机动车辆牌照的有关规定,车牌的规格、颜色和适用范围各有不同。
就目前我国的各种车牌中,有蓝底白字的,黄底黑字的,还有一些特殊的如军车,警车,国外驻华机构的工作的车辆,由于缺乏统一的标准,使得车牌识别过程中字符的分割难度较大,缺乏统一的模式规则的指导。
(3)车牌附近环境恶劣。
车牌附近往往有复杂的外形或挡车器等,不利于车牌的定位和分割。
有的车辆在车牌处有广告的文字,这些图像对车牌定位有很大干扰,不利于车牌定位与字符识别。
2、外部环境的特征
(1)外界光照条件的不相同白天和晚上光照强度不同。
光照对图像质量影响很大。
不同的光照角度,对车牌影响也较大。
不同时间,不同气候条件,以及背景光、车牌反光程度决定了车牌区域的亮度特征。
(2)外界背景的复杂程度也影响着车牌的定位准确率。
背景中与车牌区域特征相似区域的大小反映了背景的噪声程度。
例如与车牌字符相似的背景远处的广告语就很容易影响车牌的粗定位。
3、车牌识别系统应用方案的特征
(1)不同实际工程其摄像方位和角度不一样。
实际工程中摄像方位相对于车辆行驶的方向一般是正上方、左侧和右侧,摄像角度一般在。
一之间。
相对来说,摄像角度越小,车牌在平面图像中变形越小,识别效果越好。
摄像方位和角度对车牌字符分割影响较大,对车牌校正的方法的校正能力要求也更高了。
(2)光线较暗时,不同的人工光照角度、方位和亮度对车牌识别系统影响也不一样。
尽管规范车牌对光的散射能力较强,但人工光照的方位角度不同时,也会影响车牌的亮度。
亮度不均匀对车牌二值化算法提出了更高的要求。
(3)不同的实际工程,图像的分辨率要求也不同。
分辨率大小影响车牌识别系统的识别速度和字符的识别率。
中字符的象素分辨率一般为,而车牌识别系统字符的分辨率一般在和之间。
分辨率过高时,整个识别系统的处理时间会明显增多,特别是在车牌分割,车牌二值化的处理中所要求的时间会显著增加。
分辨率过低,字符识别率就会下降,字符中的汉字二值化效果较差,车牌识别系统的识别率也会下降。
总之,车牌识别系统的研究由于受到多方面的限制,其技术还存在着一些不足。
但现代智能交通的发展,使其具有巨大的应用潜力。
相信随着研究的不断深入,车牌识别技术肯定会逐步走向成熟。
三、车牌识别技术国内外发展现状
智能车牌识别技术的研究,国外的起步要比国内早的多,从世纪年代初,国外的研究人员就已经开始了对汽车牌照识别的研究以色列一公司的系列,新加坡公司的系列都是比较成熟的产品。
其中产品主要适合新加坡的车牌,一公司的有多种变形的产品来分别适应某一个国家的车牌。
系统可以对中国大陆的车牌进行识别,但都存在很大的缺陷,而且不能识别车牌中的汉字,另外日本、加拿大、德国、意大利、英国等各个西方发达国家都有适合本国车牌的识别系统。
国内在年代末也开始了车牌识别的研究。
目前比较成熟的产品有中科院自动化研究所汉王公司的“汉王眼”,亚洲视觉科技有限公司、中国信息产业部下属的中智交通电子有限公司等也有自己的产品,另外西安交通大学的图像处理和识别研究室、上海交通大学的计算机科学和工程系、清华大学人工智能国家重点实验室、浙江大学的自动化系等也做过类似的研究。
字符识别是车牌识别系统的一个重要组成部分,车牌字符识别可以认为属于印刷体文字识别的范畴。
早在五十年代人们就已经认识到印刷体字符识别的意义,开始了相应的研究,在以后的三十年中不断有一些不是很成熟的软件出现。
到了八十
年代后期。
计算机硬件资源获得飞速的提高,使得印刷体文字的快速识别成为可能。
九十年代,出现了大量的方面的论文和系统,,工在这一方面也曾举行过多次会议,大大推动了该方向的研究,所有这些研究为国内车牌字符的识别提供了理论上的指导。
但目前的科学技术还
不能揭示人的文字识别的机制,脑机能研究的进展会不断地揭示人的这种机制,一旦这一机制被我们所认识,建立在这个基础上的文字识别理论和技术将会产生质的飞跃。
由于目前我国国内汽车牌照种类还比较繁多,没有统一的标准,这些使得我们不能把国外现成的车牌识别系统直接拿来使用,同时,由于我国过内的汽车牌照自动识别系统的研究起步晚,技术和方法目前还落后于国外,目前国内的车牌识别的研究,多基于车辆的灰度图像,方法比较单一,也就在最近几年, 车牌识别这方面的研究高潮。