邢台市沙河市2020-2021学年人教版七年级下期末数学试卷含答案解析

合集下载

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为()A.152×105米B.1.52×10﹣5米C.﹣1.52×105米D.1.52×10﹣4米解:0.0000152=1.52×10﹣5.故选:B.2.(3分)下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+1 x )C.(x+2)(x﹣2)=x2﹣4D.x2﹣6x+9=(x﹣3)2解:A、没把一个多项式转化成几个整式乘积的形式,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、整式的乘法,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.3.(3分)如图,∠B的内错角是()A.∠1B.∠2C.∠3D.∠4解:A、∠B的内错角是∠1,故此选项符合题意;B、∠B与∠2是同旁内角,故此选项不合题意;C、∠B与∠3是同位角,故此选项不合题意;D、∠B与∠4是不是内错角,故此选项不合题意;故选:A.4.(3分)不等式﹣2x+6<0的解集在数轴上表示,正确的是()A .B .C .D .解:﹣2x <﹣6, x >3, 故选:A .5.(3分)下列运算正确的是( ) A .(a 2)5=a 7 B .(x ﹣1)2=x 2﹣1 C .3a 2b ﹣3ab 2=3D .a 2•a 4=a 6解:A 、(a 2)5=a 10,故原题计算错误; B 、(x ﹣1)2=x 2﹣2x +1,故原题计算错误;C 、3a 2b 和3ab 2不是同类项,不能合并,故原题计算错误;D 、a 2•a 4=a 6,故原题计算正确; 故选:D .6.(3分)若a >b ,则下列结论正确的是( ) A .a ﹣5<b ﹣5 B .3a >3bC .2+a <2+bD .a3<b3解:∵a >b , ∴a ﹣5>b ﹣5, ∴选项A 不正确; ∵a >b , ∴3a >3b , ∴选项B 正确; ∵a >b , ∴2+a >2+b , ∴选项C 不正确; ∵a >b ,∴a 3>b3,∴选项D 不正确. 故选:B .7.(3分)下列命题中,假命题的是( ) A .三角形中至少有两个锐角B .如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形C .直角三角形一定是轴对称图形D .三角形的一个外角一定大于和它不相邻的任何一个内角 解:A 、三角形中至少有两个锐角,正确,是真命题;B 、如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形,正确,是真命题;C 、等腰直角三角形一定是轴对称图形,错误,是假命题;D 、三角形的一个外角大于和它不相邻的任何一个内角,故正确,是真命题, 故选:C .8.(3分)如图,五架轰炸机组成了一个三角形飞行编队,且每架飞机都在边长等于1正方形网格格点上,其中A 、B 两架轰炸机对应点的坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么轰炸机C 对应点的坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1),故选:A.9.(3分)已知点M(a,3)在第二象限,则a的取值范围是()A.a>0B.a<0C.a<3D.a>3解:∵点M(a,3)在第二象限,∴a<0,故选:B.10.(3分)在平面直角坐标系中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20,若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为15,则t的值为()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或6解:∵D(1,2)、E(﹣2,1)、F(0,t),∴“水平底”a=1﹣(﹣2)=3.“铅垂高“h=1或|2﹣t|或|1﹣t|①当h=1时,三点的“矩面积”S=1×3=3≠15,不合题意;②当h=|2﹣t|时,三点的“矩面积”S=3×|2﹣t|=15,解得:t=﹣3或t=7(舍去);③当h=|1﹣t|时,三点的“矩面积”S=3×|1﹣t|=15,解得:t=﹣4(舍去)或t=6;综上:t=﹣3或6.故选:D.二.填空题(共8小题,满分16分,每小题2分)11.(2分)一个长方形的面积为a 3﹣4a ,宽为a ﹣2,则长为 a (a +2) .解:根据题意得:(a 3﹣4a )÷(a ﹣2)=a (a +2)(a ﹣2)÷(a ﹣2)=a (a +2), 故答案为:a (a +2)12.(2分)√−273+(−12)﹣1+(3.14﹣π)0= ﹣4 .解:原式=﹣3﹣2+1 =﹣4. 故答案为:﹣4.13.(2分)如图所示,∠BAC =90°,AD ⊥BC ,则下列结论中,正确的为 ①② (填序号).①点A 到BC 的距离是线段AD 的长度; ②线段AB 的长度是点B 到AC 的距离; ③点C 到AB 的垂线段是线段AB .解:∵AD ⊥BC ,∴点A 到BC 的距离是线段AD 的长度,①正确; ∵∠BAC =90°, ∴AB ⊥AC ,∴线段AB 的长度是点B 到AC 的距离,②正确 ∵AB ⊥AC ,∴C 到AB 的垂线段是线段AC ,③不正确. 其中正确的为①②, 故答案是:①②.14.(2分)如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 同位角相等,两直线平行 .解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.15.(2分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF =34°,则∠BOD的大小为22°.解:∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠COE=56°,∴∠AOC=∠AOF﹣∠COF=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故答案为:22°.16.(2分)当前,“低头族”已成为热门话题之一,为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是D;A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查并说出你的理由样本具有代表性.解:为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是对在路边行走的路人随机发放问卷进行调查, 理由是抽取的样本具有代表性, 故答案为:D ;样本具有代表性.17.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =2a ﹣3b .如:1⊕5=2×1﹣3×5=﹣13,则不等式x ⊕4<2的解集为 x <7 . 解:根据题中的新定义化简得:2x ﹣12<2, 移项合并得:2x <14, 解得:x <7. 故答案为:x <7.18.(2分)已知△ABC 中,AB =AC ,求证:∠B <90°,若用反证法证这个结论,应首先假设 ∠B ≥90° .解:用反证法证明:第一步是:假设∠B ≥90°. 故答案是:∠B ≥90°.三.解答题(共9小题,满分54分,每小题6分) 19.(6分)解不等式组,并写出该不等式组的所有整数解. {5x +2≥3(x −1)1−x−26>12x解:解不等式5x +2≥3(x ﹣1),得:x ≥−52, 解不等式1−x−26>12x ,得:x <2, ∴不等式组的解集为−52≤x <2, 则不等式组的整数解为﹣2,﹣1,0,1. 20.(6分)化简求值.(1)[(x +y )(x ﹣y )﹣(x ﹣y )2+2y (x ﹣y )]÷(﹣2y ),其中x =−12,y =2. (2)已知x 2﹣2x ﹣2=0,求(x ﹣1)2+(x +3)(x ﹣3)+(x ﹣3)(x ﹣1)的值. 解:(1)原式=(x ﹣y )[(x +y )﹣(x ﹣y )+2y ]÷(﹣2y ) =2y ﹣2x ,当 x =−12,y =2时,原式=2×2﹣2×(−12)=5;(2)原式=x2﹣2x+1+x2﹣9+x2﹣4x+3=3x2﹣6x﹣5,原式=3(x2﹣2x)﹣5=3×2﹣5=1.21.(6分)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)解:(1)x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2;(2)m2(a﹣b)+n2(b﹣a),=m2(a﹣b)﹣n2(a﹣b),=(a﹣b)(m2﹣n2),=(a﹣b)(m+n)(m﹣n).22.(5分)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.解:(1)EF和AB的关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF ∥AB ;(2)∵EF ∥AB ,CD ∥AB , ∴EF ∥CD , ∵∠CEF =70°, ∴∠ECD =110°, ∵∠DCB =70°,∴∠ACB =∠ECD ﹣∠DCB , ∴∠ACB =40°.23.(6分)如图,在平面直角坐标系中:A (0,1),B (2,0),将点B 向上平移1.5个单位得到点C .(1)求△ABC 的面积.(2)如果在第二象限内有一点P (a ,1),使得四边形ABOP 的面积与△ABC 的面积相等?求出P 点的坐标.解:(1)∵将点B 向上平移1.5个单位得到点C , ∴点C 的坐标为(2,1.5), ∴△ABC 的面积=12×1.5×2=1.5; (2)∵四边形ABOP 的面积与△ABC 的面积相等, ∴12×2×1+12×1×|a|=12×2×1.5,解得:a =±1,∵在第二象限内有一点P (a ,1), ∴a =﹣1,所以点P 的坐标(﹣1,1).24.(7分)在一次社会调查活动中,小李收集到某“健步走运动”团队20名成员一天行走的步数,记录如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850对这20个数据按组距1000进行分组,并统计整理.(1)请完成下面频数分布统计表;组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)在上图中请画出频数分布直方图;(3)若该团队共有200人,请估计其中一天行走步数少于8500步的人数.解:(1)补全频数分布表如下:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)频数分布直方图如下:(3)根据题意得:200×2+4+1020=160(人),则估计一天行走的步数少于8500步的人数约为160人.25.(5分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套280元,430元,且每种型号健身器材必须整套购买.若购买A,B两种型号的健身器材共50套,且支出不超过16000元,求A 种型号健身器材至少要购买多少套?解:设购进x套A种型号健身器材,则购进(50﹣x)套B种型号健身器材,依题意,得:280x+430(50﹣x)≤16000,解得:x≥110 3.又∵x为正整数,∴x的最小值为37.答:A种型号健身器材至少要购买37套.26.(7分)根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=70°,则∠1+∠2+∠4+∠6+∠8=160度.解:(1)∵CD平分∠ECB,FG∥CD,∵∠ECD=∠DCF=∠GFB=12(180°﹣∠ECA),∵∠ECA=α,∴∠GFB=12(180°﹣a)=90°−12a,答:∠GFB的度数为90°−12α.(2)如图,过点B作BM∥AE,则BM∥AE∥CD,∴∠1+∠CBM=180°,∠MBA+∠BAE=180°,∵AB⊥AE,∴∠BAE=MBA=90°,∴∠1+∠2+∠BAE=180°×2,∴∠1+∠2=360°﹣∠BAE=360°﹣90°=270°,答:∠1+∠2的度数为270°.(3)分别以各个角的顶点,作∠2的长边的平行线,根据平行线的性质,两直线平行,内错角相等,可得,∠3+∠5+∠7=∠2+∠4+∠6+∠1+∠8=40°+50°+70°=160°.故答案为:160.27.(6分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的“关联方程”.如:方程x ﹣1=0就是不等式组{x +1>0x −2<0的“关联方程”. (1)试判断方程①3x +2=0,②x ﹣(3x ﹣1)=﹣4是否是不等式组{2x −7<04x −3>0的关联方程,并说明理由;(2)若关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程,求整数k 的值;(3)若方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程,求m 的取值范围.解:(1)解方程3x +2=0得:x =−23,解方程x ﹣(3x ﹣1)=﹣4得:x =52,解不等式组{2x −7<04x −3>0得:34<x <72, 所以不等式组{2x −7<04x −3>0的关联方程是②; (2)解方程2x +k =1(k 为整数)得:x =1−k 2解不等式组{x −1<12x −2≥−3x −1得:14≤x <32,∵关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程, ∴14≤1−k 2<32, 解得﹣2<k <12∴整数k =﹣1,0;(3)解方程9﹣x =2x 得:x =3,解方程9+x =2(x +52)得:x =4,解不等式组{x +m <2x x −m ≤2得:m <x ≤2+m , ∵方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程, ∴2≤m <3,即m 的取值范围是2≤m <3.。

邢台市2020年七年级第二学期期末调研数学试题含解析

邢台市2020年七年级第二学期期末调研数学试题含解析

邢台市2020年七年级第二学期期末调研数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题只有一个答案正确)1.若a >b ,那么下列各式中正确的是( )A .a ﹣1<b ﹣1B .﹣a >﹣bC .﹣2a <﹣2bD .2a <2b 【答案】C【解析】【分析】根据不等式的基本性质可知,【详解】解:A 、a-1>b-1,故A 错误;B 、-a <-b ,故B 错误;C 、-2a <-2b ,正确;D 、2a<2b,故D 错误.故选C .考点:不等式的性质.2.化简的结果是( )A .x +3B .x –9C .x -3D .x +9【答案】C【解析】【分析】把分子因式分解即可求解.【详解】=故选C.【点睛】此题主要考查分式的运算,解题的关键是熟知因式分解的运用.3.若不等式组的解集是,则的值为()A.-1 B.2 C.3 D.4【答案】B【解析】【分析】解关于x的不等式组求得x的范围,由-1<x<2得出关于a、b的方程组,从而求得a、b的值,继而得出a-b的值.【详解】解:解不等式3x-a<2,得:x<,解不等式x+2b>3,得:x>3-2b,∵不等式组的解集为-1<x<2,∴,解得:a=4,b=2,则a-b=2,故选:B.【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.4.下列事件中,是不可能事件的是()A.实心铁球投入水中会沉入水底B.三条线段可以组成三角形C.将油滴入水中,油会浮在水面上D.早上的太阳从西方升起【答案】D【解析】【分析】根据事件发生的几率即可判断.【详解】A. 实心铁球投入水中会沉入水底,为必然事件;B. 三条线段可以组成三角形,为随机事件;C. 将油滴入水中,油会浮在水面上,为必然事件;D. 早上的太阳从西方升起,为不可能事件故选D.【点睛】此题主要考查事件发生的几率,解题的关键是熟知不可能事件的定义.5.若关于的不等式组有解,则的取值范围是()A.B.C.D.【答案】A【解析】【分析】先求出不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a的取值范围即可.【详解】,由①得,x>a−1;由②得,x⩽2,∵此不等式组有解,∴a−1<2,解得a<3.故选:A.【点睛】此题考查解一元一次不等式组,解题关键在于掌握运算法则.6.点P(2-4m,m-4)不可能在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据象限的坐标特点进行解答即可【详解】若在第二象限解得,m>4,若在第一象限解得,无解,∴p点不可能再第一象限故选A【点睛】此题考查点的坐标,解题关键在于分析点在各象限的特征.7.人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A.6⨯D.55.110-5.110⨯0.5110-5.110-⨯B.5⨯C.5【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000051=5.1×10-6,故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.如图,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF等于()A.130B.100C.110D.120【答案】D【解析】【分析】先设出∠B OE=α,再表示出∠DOE=α∠AOD=4α,建立方程求出α,最用利用对顶角,角之间的和差即可.【详解】解:设∠BOE=α,∵∠AOD:∠BOE=4:1,∴∠AOD=4α,∵OE平分∠BOD,∴∠DOE=∠BOE=α∴∠AOD+∠DOE+∠BOE=180°,∴4α+α+α=180°,∴α=30°,∴∠AOD=4α=120°,∴∠BOC=∠AOD=120°,∵OF平分∠COB,∴∠COF=12∠BOC=60°,∵∠AOC=∠BOD=2α=60°,∴∠AOF=∠AOC+∠COF=120°,故选D.【点睛】此题是对顶角,邻补角题,还考查了角平分线的意义,解本题的关键是找到角与角之间的关系,用方程的思想解决几何问题9.鸡兔同笼问题是我国古代著名趣题之一,大约在1500 年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔同在一个笼子里,从上上面数,有35 个头;从下面数,有94 只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡20 只,兔15 只B.鸡12 只,兔23 只C.鸡15 只,兔20 只D.鸡23 只,兔12 只【答案】D【解析】【分析】设笼中有x只鸡,y只兔,根据上有35个头、下有94只脚,即可得出关于x、y的二元一次方程组,解之即可得出结论.设笼中有x只鸡,y只兔,根据题意得:解得:.故选D.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.等腰三角形中,有一个角是40°,它的一条腰上的高与底边的夹角是()A.20°B.50°C.25°或40°D.20°或50°【答案】D【解析】【分析】根据题意可知,可分为顶角等于40°与底角等于40°两种情况,分类求解即可得出结论.【详解】解:当顶角等于40°时,如图所示:∠=,A40∴∠=∠=,70B ACBBDC∠=,90∴∠=-=;BCD907020当底角等于40°时,如图所示:40BDC∠=,∠=∠=,90B ACB∴∠=-=904050BCD故答案为D.本题考查了等腰三角形的性质.本题关键在于不确定等腰三角形的腰与底边(顶角与底角)的情况下,要注意分类讨论.二、填空题11.有100个数据,其中最大值为76,最小值为28,若取组距为5,对数据进行分组,则应分为________________组.【答案】1【解析】【分析】据频数分布直方图的组数的确定方法,用极差除以组距,然后根据组数比商的整数部分大1确定组数.【详解】解:∵极差为76-28=48,∴由48÷5=9.6知可分1组,故答案为:1.【点睛】此题考查频数分布直方图,解题关键在于用极差除以组距12.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.【答案】8【解析】分析:通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形-4)宽的和,根据这两个等量关系,可列出方程组,再求解即可.详解:设矩形的长为x,矩形的宽为y,中间竖的矩形为(k−4)个,即(k−4)个矩形的宽正好等于2个矩形的长, ∵由图形可知:x+2y=2x ,2x=(k−4)y ,则可列方程组()2224x y x x k y +=⎧⎨=-⎩, 解得k=8.故答案为8.点睛:本题考查了二元一次方程组的应用.分析图形并得出对应的相等关系是解题的关键.13.将方程347x y -=变形为用含x 的代数式表示y 的形式,则y =________.【答案】374x - 【解析】【分析】 首先进行移项,左边保留y ,然后根据等式的性质得出答案.【详解】解:移项得:4y=3x -7;两边同除以3可得:y=374x -. 故答案为:374x -. 【点睛】本题主要考查的就是等式的性质的应用,属于基础题型.在移项得过程中要注意是否变号.14.如图,已知a b ∥,120BAD BCD ∠=∠=,BD 平分ABC ∠,若点E 在直线AD 上,且满足13EBD CBD ∠=∠,则AEB ∠的度数为______.【答案】40°或20°.【解析】【分析】根据平行线的性质和已知角可求出∠ABC 的度数,根据角平分线的性质可求∠ABD 和∠DBC 的度数,因此可求出∠EBD 的度数,E 点的位置有两种,分情况讨论,利用三角形内角和定理可求出AEB ∠的度数.【详解】解: ∵a b ∥,120BAD ∠=∴180ABC BAD ∠+∠=,即18060ABD BAD ∠=-∠=,∵BD 平分ABC ∠∴30ABD CBD ∠=∠=︒,∵13EBD CBD ∠=∠, ∴10EBD ∠=︒,当E 点在线段AD 上时,如图所示∴20ABE ABD EBD ∠=∠-∠=︒,∴1801802012040.AEB ABE BAE ∠=︒-∠-∠=︒-︒-︒=︒当E 点在AD 的延长线上时,如图所示∴40ABE ABD EBD ∠=∠+∠=︒,∴1801804012020.AEB ABE BAE ∠=︒-∠-∠=︒-︒-︒=︒故答案为40°或20°.【点睛】本题考查平行线的性质,角平分线的性质,三角形的内角和定理,需注意本题中E 点的位置有两处,需分情况讨论.15.三角形ABC 中,()4,2A --,()1,3B --,()2,1C --,将三角形ABC 向右平移m 个单位长度,使点A 恰好落在y 轴上,则B ,C 的对应点B '、C '的坐标分别为_______.【答案】()3,3-,()2,1-【解析】【分析】由点()4,2A --向右移动m 个单位,便落在y 轴上,得到图形的平移规律,利用规律直接得到答案.【详解】解:点()4,2A --向右移动m 个单位,便落在y 轴上,40m ∴-+=,4m =.()14,3B '-+-,即()3,3B '-;()24,1C '-+-,即()2,1C '-.故答案为:()3,3-,()2,1-【点睛】本题考查的是坐标系内图形移动与坐标的变化规律,掌握图形与坐标的变化规律是解题的关键. 16.若点(m ﹣4,1﹣2m )在第三象限内,则m 的取值范围是_____.【答案】142m << 【解析】【分析】 先根据第三象限的点的坐标的符号特征列出关于m 的不等式组,再求解即可.【详解】由题意得40120m m -<⎧⎨-<⎩,解得:142m <<. 【点睛】解题的关键是熟练掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.将点P (﹣2,0)向左平移2个单位得点P′,则点P′的坐标是___.【答案】 (-4,0)【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】将点P (﹣2,0)向左平移2个单位得点P′,则点P′的坐标是(﹣2-2,0)故答案为:(-4,0)【点睛】此题考查坐标与图形变化-平移,解题关键在于掌握平移性质.三、解答题18.如图,在ABC ∆中,AD 是高,AE ,BF 分别是BAC ∠,ABC ∠的角平分线,它们相交于点O ,50BAC ∠=,20C BAC ∠=∠+,求DAC ∠和BOA ∠的度数.【答案】20DAC ∠=,125BOA ∠=【解析】【分析】因为AD 是高,所以∠ADC=90°,又因为∠C=∠BAC+20°= 70°,所以∠DAC 度数可求;因为∠BAC=50°,∠C=70°,所以∠BAO=25°,∠ABC=60°,BF 是∠ABC 的角平分线,则∠ABO=30°,故∠BOA 的度数可求.【详解】解:∵50BAC ∠=,∴2070C BAC ∠=∠+=,∴180180507060ABC BAC C ∠=-∠-∠=--=,∵在ABC ∆中,AD 是高,∴在Rt ADC ∆中,90907020DAC C ∠=-∠=-=,∵AE ,BF 分别是BAC ∠,ABC ∠的角平分线, ∴1252BAE BAC ∠=∠=,1302ABF ABC ∠=∠=, ∴1801802530125BOA BAE ABF ∠=-∠-∠=--=︒,所以,20DAC ∠=,125BOA ∠=.故答案为:DAC=20∠︒ ;BOA=125∠︒ .【点睛】本题考查三角形的内角和定理,高线、角平分线的定义,熟记定义并准确识图,理清图中各角度之间的关系是解题的关键.19.已知42++a b b 2b +的算术平方根,1--a b a 1a -323-a b【答案】2【解析】【分析】利用平方根、立方根定义列出方程组,求出方程组的解得到a 与b 的值,确定出所求即可.【详解】解:由题意得423a b a b +=⎧⎨-=⎩, 解得12a b =⎧⎨=-⎩, ∴23213(2)8a b -=⨯-⨯-=,2==.【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.因式分解:(1)4(a ﹣2b )2﹣1(2)x 3+2x 2y+xy 2(3)(a ﹣b )x 2+(b ﹣a )(4)(x 2+4)2﹣16x 2【答案】(1)(1a ﹣4b+1)(1a ﹣4b ﹣1);(1)x (x+y )1;(3)(a ﹣b )(x+1)(x ﹣1);(4)(x+1)1(x ﹣1)1【解析】【分析】(1)原式利用平方差公式分解即可;(1)原式提取x ,再利用完全平方公式分解即可;(3)原式变形后,提取公因式,再利用平方差公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【详解】解:(1)原式=[1(a ﹣1b )+1][1(a ﹣1b )﹣1]=(1a ﹣4b+1)(1a ﹣4b ﹣1);(1)原式=x (x 1+1xy+y 1)=x (x+y )1;(3)原式=(a ﹣b )x 1﹣(a ﹣b )=(a ﹣b )(x 1﹣1)=(a ﹣b )(x+1)(x ﹣1);(4)原式=(x 1+4+4x )(x 1+4﹣4x )=(x+1)1(x ﹣1)1.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-.①在点(0,3),E (3,3),F -(2,5)G -中,为点A 的“等距点”的是________;②若点B 的坐标为(,6)m m +,且A ,B 两点为“等距点”,则点B 的坐标为________.(2)若1(1,3),T k ---2(4,43)T k -两点为“等距点”,求k 的值.【答案】(1)①E ,F. ②()3,3-;(2)1k =或2k =.【解析】【分析】(1)①找到E 、F 、G 中到x 、y 轴距离最大为3的点即可;②先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可;(2)先分析出直线上的点到x 、y 轴距离中有4的点,再根据“等距点”概念进行解答即可.【详解】解:(1)①点(3,1)A -到x ,y 轴的距离中的最大值为3,∴与点A 是“等距点”的点是E ,F.②点B 坐标中到x ,y 轴距离中,至少有一个为3的点有(3,9),(3,3),-(9,3)--,这些点中与点A 符合“等距点”的定义的是()3,3-.故答案为①E ,F ;②()3,3-.(2)1(1,3),T k ---2(4,43)T k -两点为“等距点”.若|43|4k -≤,则43k =--或43k -=--,解得7k =-(舍去)或1k =.若|43|4k ->时,则|43||3|k k -=--,解得0k =(舍去)或2k =.根据“等距点”的定义知1k =或2k =符合题意.即k 的值是1或2.【点睛】本题主要考查了坐标的性质,此题属于阅读理解类型题目,首先要读懂“等距点”的定义,而后根据概念解决问题,需要学生能很好的分析和解决问题.22.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的运货情况如下表:(1)分别求甲、乙两种货车每辆载重多少吨?(2)现租用该公司3辆甲种货车和5辆乙种货车刚好一次运完这批货物,如果按每吨付运费120元计算,货主应付运费多少元?【答案】(1)甲种货车每辆载重4吨,乙种货车载2吨;(2)2640元.【解析】【分析】(1)两个相等关系:第一次2辆甲种货车载重的吨数+3辆乙种货车载重的吨数=14;第二次5辆甲种货车载重的吨数+6辆乙种货车载重的吨数=32,根据以上两个相等关系,列方程组求解.(2)结合(1)的结果,求出3辆甲种货车和5辆乙种货车一次刚好运完的吨数,再乘以120即得货主应付运费.【详解】(1)设甲种货车每辆载重x 吨,乙种货车每辆载重y 吨,则23145632x y x y +⎧⎨+⎩== 解得:42x y ⎧⎨⎩==; 答:甲种货车每辆载重4吨,乙种货车载重2吨.(2)4×3+2×5=22(吨),22×120=2640(元).答:货主应付运费2640元.【点睛】利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍. (1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【答案】(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.【解析】【分析】(1)可设甲每天修路x 千米,则乙每天修路(x ﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a 天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【详解】(1)设甲每天修路x 千米,则乙每天修路(x ﹣0.5)千米, 根据题意,可列方程:15151.50.5x x ⨯=-,解得x=1.5, 经检验x=1.5是原方程的解,且x ﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a 天,则乙需要修(15﹣1.5a )千米,∴乙需要修路15 1.515 1.51a a -=-(天), 由题意可得0.5a+0.4(15﹣1.5a )≤5.2,解得a≥8,答:甲工程队至少修路8天.考点:1.分式方程的应用;2.一元一次不等式的应用.24.按要求解方程(组)(1)11132x x x +-+=- (2)325257x y x y +=⎧⎨+=⎩①② 【答案】(1)5x =;(2)11x y =⎧⎨=⎩. 【解析】【分析】(1)去分母、去括号、移项、合并同类项、系数化为1,据此求出一元一次方程的解即可;(2)应用加减消元法,求出方程组的解是多少即可.【详解】(1)去分母,可得:()()216631x x x ++=--,去括号,可得:226633x x x ++=-+,移项,可得:263326x x x -+=--,合并同类项,可得:5x -=-,系数化为1,可得:5x =;(2)52⨯-⨯①②,得:1111x =,解得:1x =,将1x =代入①,得:3125y ⨯+=,解得:1y =,∴则方程组的解为11x y =⎧⎨=⎩. 【点睛】此题主要考查了解一元一次方程的方法,以及解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.25.计算:(1)(﹣1)2+(﹣2019)0+(13)﹣2; (2)(m+2)(2m ﹣3).【答案】(1)11;(2)2m 2+m ﹣1【解析】【分析】(1)根据实数运算法则进行解答;(2)根据多项式乘多项式法则解答.【详解】解:(1)原式=1+1+9=11;(2)原式=2m 2﹣3m+4m ﹣1=2m 2+m ﹣1.【点睛】本题主要考查了多项式乘多项式的运算,实数的运算.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.。

最新人教版数学七年级下学期《期末考试题》含答案解析

最新人教版数学七年级下学期《期末考试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b --B . 22a b --C . 22a bD . 22a b ++ 2. 在实数4、3、13、0.3、π、2.1234567891011121314…(自然数依次排列)、38-中,无理数有( ) A . 2个 B . 3个 C . 4个 D . 5个3. 下列命题中,属于真命题的是 ( )A . 两个锐角的和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 4. 点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3) 5. 如图,直线A B ,C D 被直线EF 所截,交点分别为点E,F ,若A B ∥C D ,下列结论正确的是( )A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°6. 下列说法正确是( )A . 周长相等的锐角三角形都全等B . 周长相等的直角三角形都全等C . 周长相等钝角三角形都全等D . 周长相等的等边三角形都全等7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:节电量(度)1020 30 40 户数 2 15 10 3则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,208. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <9. 不等式组42103x x >⎧⎪⎨-+≥⎪⎩的整数解为( ) A . 0,1,2,3 B . 1,2,3C . 2,3D . 3 10. 要反映某市某一周每天的最高气温的变化趋势,宜采用( )A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可二、填空题(本共 18 分,每小题 3 分)11. 分解因式:﹣m 2+4m ﹣4═_____.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y 轴,且A B =3,则点B 的坐标是___13. 小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.14. 如图,A D 是△A B C 的中线,E 是A D 的中点,如果S △A B D =12,那么S △C D E =__. 15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P (m+2,2m ﹣1)在第四象限,则m 的值为_____.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.三、解答题17. 计算:3827﹣(π﹣1)0﹣(12)﹣1.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是 .25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0). (1)△A B C 的形状是 等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y 轴上找一点P ,如果△PA B 是等腰三角形,请直接写出点P 的坐标.答案与解析一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b -- B . 22a b -- C . 22a b D . 22a b ++【答案】B【解析】【分析】根据不等式的性质即可得出答案.在不等式的左右两边同时加上或减去一个数,不等式成立;在不等式的左右两边同时乘以或除以一个正数,不等式成立;在不等式的左右两边同时乘以或除以一个负数,不等符号需要改变.【详解】根据不等式的性质可知:-2A >-2B ,故选B .【点睛】本题主要考查的是不等式的基本性质,属于基础题型.记住不等式的性质是解决这个问题的关键.2.、13、0.3、π、2.1234567891011121314…(自然数依次排列),无理数有( ) A . 2个B . 3个C . 4个D . 5个 【答案】B【解析】π,2.1234567891011121314…(自然数依次排列),共3个,故选B .3. 下列命题中,属于真命题的是 ( )A . 两个锐角和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 【答案】D【解析】【分析】【详解】试题解析:A . 两个锐角的和是锐角,错误;B . 同一平面内,如果A ⊥B ,B ⊥C ,则A ∥C ,错误; C . 同位角相等,错误;D . 在同一平面内,如果A //B ,B //C ,则A //C ,正确.故选D .4. 点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3)【答案】C【解析】【分析】【详解】由点且到x轴的距离为3、到y轴的距离为4,得|y|=3,|x|=4.由P是第二象限的点,得x=-4,y=3.即点P的坐标是(-4,3),故选C .5. 如图,直线A B ,C D 被直线EF所截,交点分别为点E,F,若A B ∥C D ,下列结论正确的是()A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°【答案】D【解析】试题解析:∵A B ∥C D ,∴∠3+∠A EF=180°.所以D 选项正确,故选D .6. 下列说法正确的是()A . 周长相等的锐角三角形都全等B . 周长相等直角三角形都全等C . 周长相等的钝角三角形都全等D . 周长相等的等边三角形都全等【答案】D【解析】试题分析:根据全等三角形的判定方法依次分析各选项即可作出判断.A .周长相等的锐角三角形不一定全等,B .周长相等的直角三角形不一定全等,C .周长相等的钝角三角形不一定全等,故错误;D .周长相等的等腰直角三角形都全等,本选项正确.考点:全等三角形的判定点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,20【答案】A【解析】试题解析:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A .8. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <【答案】C【解析】【分析】分两种情况:①A 和B 构成一个直角三角形,且A 是斜边,B 是直角边,所以A >B ;②若B 是垂足时,A =B .【详解】如图,A 是斜边,B 是直角边,∴A >B ,若点A 、点B 所在直线垂直直线m,则A =B ,故选C .【点睛】本题考查了点到直线的距离,明确点到直线的距离是这点到直线的垂线段的长度,属于基础题.9. 不等式组42103xx>⎧⎪⎨-+≥⎪⎩的整数解为()A . 0,1,2,3B . 1,2,3C . 2,3D . 3 【答案】B【解析】试题分析:解不等式4x>2,可得x>12;解不等式103x-+≥,解得x≤3,因此不等式组的解集为12<x≤3,所以整数解为1,2,3.故选B .点睛:此题主要考查了不等式组的解法,根据不等式的解法分别解两个不等式,取其公共部分,然后确定其整数解即可.10. 要反映某市某一周每天的最高气温的变化趋势,宜采用()A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可【答案】C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.【详解】根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.故选C .【点睛】本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.二、填空题(本共18 分,每小题3 分)11. 分解因式:﹣m2+4m﹣4═_____.【答案】﹣(m﹣2)2【解析】试题解析:原式=-(m2-4m+4)=-(m-2)2.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y轴,且A B =3,则点B 的坐标是___【答案】(﹣2,2)或(﹣2,﹣4)【解析】试题解析:∵A (-2,-1),A B ∥y轴,∴点B 的横坐标为-2,∵A B =3,∴点B 的纵坐标为-1+3=2或-1-3=-4,∴B 点的坐标为(-2,2)或(-2,-4).13. 小华将直角坐标系中猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.【答案】(-1,3)、(1,3)【解析】【分析】利用坐标系中的移动法则右加左减,上加下减来确定向右平移后的各点的坐标即可【详解】∵向右平移三个单位长度,横坐标分别加3,纵坐标不变∴移动后猫眼的坐标为:(-1,3)、(1,3)【点睛】在坐标系中确定点的位置和平移是本题的考点,熟练掌握平移法则是解题的关键.14. 如图,A D 是△A B C 的中线,E是A D 的中点,如果S△A B D =12,那么S△C D E=__.【答案】6.【解析】试题解析:△A C D 的面积=△A B D 的面积=12,△C D E的面积=12△A C D 的面积=12×12=6.15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P(m+2,2m ﹣1)在第四象限,则m的值为_____.【答案】﹣1或0.【解析】试题分析:由点P(m+2,2m﹣1)在第四象限,可得m+2>0,2m-1<0,解得﹣2<m<12,又因点的横、纵坐标均为整数可得m是整数,所以m的值为﹣1或0.考点:点的坐标.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.【答案】17【解析】【分析】【详解】解∵等腰三角形的两条边长分别是3C m、7C m,∴当此三角形的腰长为3C m时,3+3<7,不能构成三角形,故排除,∴此三角形的腰长为7C m,底边长为3C m,∴此等腰三角形的周长=7+7+3=17C m,故答案为:17.三、解答题17. 3827π﹣1)0﹣(12)﹣1.【答案】3. 【解析】试题分析:原式利用零指数幂、负整数指数幂法则,以及分数指数幂法则计算即可得到结果.试题解析:原式=3827﹣1﹣2=6﹣1﹣2=3.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.【答案】2.【解析】试题分析:原式利用完全平方公式,单项式乘以多项式法则化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.试题解析:原式=A 2﹣2A +1﹣4A B +4B 2+2A =(A ﹣2B )2+1,当A ﹣2B =﹣1时,原式=2.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.【答案】(1)x(x+4)(x﹣4);(2)(x+2)2(x﹣3)2.【解析】试题分析:(1)原式提取x,再利用平方差公式分解即可;(2)原式利用完全平方公式及十字相乘法分解即可.试题解析:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=(x2﹣x﹣6)2=(x+2)2(x﹣3)2.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.【答案】x>3.【解析】试题分析:先去括号,再移项,合并同类项,把x的系数化为1并在数轴上表示出来即可.试题解析:去括号得,2x﹣11<4x﹣20+3,移项得,2x﹣4x<﹣20+3+11,合并同类项得,﹣2x<﹣6,x的系数化为1得,x>3.在数轴上表示为:.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .【答案】见解析.【解析】【分析】易证△A B D ≌△A C D ,则可得证.【详解】解:证明:∵∠1=∠2,∴B D =C D ,在△A B D 与△A C D 中,A B =A C ,B D =C D ,A D =A D ,∴△A B D ≌△A C D (SSS),∴∠B A D =∠C A D ,即A D 平分∠B A C .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .【答案】证明见解析.【解析】【分析】【详解】试题分析:先根据垂直的定义得出∠A PQ+∠2=90°,再由∠1+∠2=90°得出∠A PQ=∠1,进而可得出结论.试题解析:如图,∵PM ⊥PQ (已知),∴∠A PQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠A PQ=∠1(同角的余角相等),∴A B ∥C D (内错角相等,两直线平行).23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T 恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T 恤的数量分别是多少?【答案】生产帽子1900件,生产T 恤4100件.【解析】试题分析:设生产帽子x 件,生产T 恤y 件,根据“两种纪念品共生产6000件,且T 恤比帽子的2倍多300件”列方程组求解可得.试题解析::设生产帽子x 件,生产T 恤y 件.根据题意,得:6000{2300x y y x ++==, 解得:1900{4100x y == 答:生产帽子1900件,生产T 恤4100件.【点睛】此题主要考查了二元一次方程组的应用,弄清题意,找出合适的等量关系,据此列出方程组是解题关键.24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是.【答案】(1)详见解析;(2)100;(3)360.【解析】【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.【详解】(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50−10−16=24(人),如图所示:(2)本次抽样调查的样本容量是:30+6+14+50=100;(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×30100=360人.【点睛】此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0).(1)△A B C 的形状是等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y轴上找一点P,如果△PA B 是等腰三角形,请直接写出点P的坐标.【答案】(1)等腰直角三角形,(2)22(3)P(0,﹣2)或P(0,2﹣22或P(0,2+22或P(0,0).【解析】【分析】(1)根据点的坐标判断出OA =OB =OC ,从而得出结论;(2)根据点的坐标求出求出B C ,OA ,再用三角形面积公式即可;(3)设出点P坐标,根据平面坐标系中,两点间的距离公式表示出B P,A P,再分三种情况计算即可.【详解】∵A (0,2)、B (﹣2,0)、C (2,0).∴OB =OC =OA ,∴△A B C 是等腰三角形,∵A O⊥B C ,∴△A B C 是等腰直角三角形.故答案为等腰直角三角形,(2)∵A (0,2)、B (﹣2,0)、C (2,0).∴B C =4,OA =2,∴S△A B C =12B C ×A O=12×4×2=4,∵A (0,2)、B (﹣2,0), ∴4+4=22(3)设点P(0,m),∵A (0,2)、B (﹣2,0),∴,A P=|m﹣2|,∵△PA B 是等腰三角形,∴①当A B =B P时,∴,∴m=±2,∴P(0,2)(与点A 重合,舍去)或P(0,﹣2),②当A B =A P时,∴﹣2|,∴m=2﹣∴P(0,2﹣P(0,③当A P=B P时,∴|m﹣,∴m=0,∴P(0,0),∴P(0,﹣2)或P(0,2﹣P(0,P(0,0).【点睛】此题是等腰三角形性质,主要考查了等腰三角形的判定,两点间的距离公式,方程的解法,解本题的关键是分类讨论计算即可.。

【人教版】数学七年级下册《期末考试题》含答案解析

【人教版】数学七年级下册《期末考试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、精心选一选,相信自己的判断力!(每小题3分.共36分)1. 二元一次方程x-2y=1有无数多个解,下列四组值中是该方程的解的是()A .1xy=⎧⎨=⎩B .1xy=⎧⎨=⎩C .11xy=⎧⎨=⎩D .11xy=⎧⎨=-⎩2. 下列各数中无理数有().3.141,227-,327-, π,0,2.3 ,0.101001000……A . 2个B . 3 个C . 4个D . 5个3. 如图,直线A B 与直线C D 相交于点O,OE⊥A B ,垂足为O,∠EOD =30°,则∠B OC =()A . 150°B . 140°C . 130°D . 120°4. 下列条件不能判定A B //C D 的是( )A . ∠3=∠4B . ∠1=∠5C . ∠1+∠2=180°D . ∠3=∠55. 下列A 、B 、C 、D ;四幅图案中,能通过平移左图案得到的是()A .B .C .D .6. 如果点M(A +3,A +1)在直角坐标系的x轴上,那么点M的坐标为( ) A . (0,-2) B . (2,0) C . (4,0) D . (0,-4)7. 把不等式组{x10x10+≥-<的解集表示在数轴上正确的是()A .B .C .D .8. 为了了解某校初二年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析;在这个问题中,总体是指( )A . 400B . 被抽取的50名学生C . 初二年级400名学生的体重D . 被抽取50名学生的体重9. 下列说法正确的是( )A . 4的平方根是2B . ﹣4的平方根是﹣2C . (﹣2)2没有平方根D . 2是4的一个平方根10. 已知关于x的方程5x+3k=24与方程5x+3=0的解相同,则k的值是( )A . 7B . ﹣8C . ﹣10D . 911. 点P(1,-2)( )A .第一象限B . 第二象限C . 第三象限D . 第四象限12. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是( ) A . 301216400x y x y+=⎧⎨+=⎩ B . 301612400x y x y+=⎧⎨+=⎩ C . 121630400x y x y+=⎧⎨+=⎩ D . 161230400x y x y+=⎧⎨+=⎩二、认真填一填,试试自己的身手!填空题(每小题3分,共24分)13. 不等式2x+1>3x-2的非负整数解是______.14. 算术平方根等于本身的实数是__________. 15. 若点(m﹣4,1﹣2m)在第三象限内,则m的取值范围是_____.16. 实a、b在数轴上的位置如图所示,则化简()2a b b a++-=___________.17. 点()2,1M-关于y轴的对称点的坐标为______.18. 如图,已知A B ∥C D ,∠A =60°,∠C =25°,则∠E=_____度.19. 某校对1000名学生进行“个人爱好”调查,调查结果统计如图,则爱好音乐的学生共有_________人.20. 一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一分,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.三、计算题(每小题4分,共20分)21. 239(6)27--22. 解方程组:(1)1235 y xx y=-⎧⎨+=⎩(2)3(1)55(1)3(5)x yy x-=+⎧⎨-=+⎩23. 解不等式组3(2)4,1413x x x x --≥⎧⎪+⎨>-⎪⎩,并把解集在数轴上表示出来. 24. 已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++的值.四、解答题(共40 分)25. 已知△A B C 在平面直角坐标系中的位置如图所示.将△A B C 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积26. 如图,△A B C 中,D 在B C延长线上,过D 作D E ⊥A B 于E ,交A C 于F .∠A =30°,∠FC D =80°,求∠D .27. 一支部队第一天行军4h ,第二天行军5h ,两天共行军98KM ,且第一天比第二天少走2KM ,第一天和第二天行军的平均速度各是多少?28. 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4 120元.每台电脑机箱、液晶显示器的进价各是多少元?29. 某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?30. 为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名七年级男生中,估计有多少人体能达标?参考答案一、精心选一选,相信自己的判断力!( 每小题3分.共36分)1. 二元一次方程x-2y=1有无数多个解,下列四组值中是该方程的解的是( )A . 01x y =⎧⎨=⎩B . 10x y =⎧⎨=⎩C . 11x y =⎧⎨=⎩D . 11x y =⎧⎨=-⎩【答案】B【解析】【分析】 将各项中x 与y 的值代入方程检验即可得到结果.【详解】A 、x=0、y=1时,x-2y=0-2=-2≠1,不符合题意;B 、x=1、y=0时,x-2y=1,符合题意;C 、x=1、y=1时,x-2y=1-2=-1≠1,不符合题意;D 、x=1、y=-1时,x-2y=1+2=3≠1,不符合题意;故选B .【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 2. 下列各数中无理数有( ).3.141, 227-, , π ,0,2.3 ,0.101001000…… A . 2个B . 3 个C . 4个D . 5个【答案】A【解析】【分析】根据无理数的定义求解即可.【详解】解:π,0.1010010001…是无理数,故选A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.3. 如图,直线A B 与直线C D 相交于点O ,OE ⊥A B ,垂足为O ,∠EOD =30°,则∠B OC =( )A . 150°B . 140°C . 130°D . 120°【答案】D【解析】【分析】运用垂线,邻补角的定义计算.【详解】∵OE⊥A B ,∴∠EOB =90°,∵∠EOD =30°,∴∠D OB =90°-30°=60°,∴∠B OC =180°-∠D OB =180°-60°=120°,故选D【点睛】本题主要考查了垂线,邻补角,灵活运用垂线,邻补角的定义计算是解题的关键.4. 下列条件不能判定A B //C D 的是( )A . ∠3=∠4B . ∠1=∠5C . ∠1+∠2=180°D . ∠3=∠5 【答案】D【解析】【分析】根据平行线的判定逐个判断即可.【详解】A .∵∠3=∠4,∴A B ∥C D ,故本选项不符合题意;B .∵∠1=∠5,∴A B ∥CD ,故本选项不符合题意;C .∵∠1+∠2=180°,∠1+∠3=180°,∴∠3=∠2,∴A B ∥CD ,故本选项不符合题意;D .根据∠3=∠5,不能推出A B ∥C D ,故本选项符合题意.故选D .【点睛】本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解答此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.5. 下列A 、B 、C 、D ;四幅图案中,能通过平移左图案得到的是()A .B .C .D .【答案】A【解析】试题分析:依题意知,平移的概念是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,不改变图像大小与形状.故A 图笑脸为原图以一定方向平移所得,不改变形状与大小.选A .考点:平移点评:本题难度较低,主要考查学生对平移知识点的掌握.根据平移的性质判定即可.6. 如果点M(A +3,A +1)在直角坐标系的x轴上,那么点M的坐标为( )A . (0,-2)B . (2,0)C . (4,0)D . (0,-4)【答案】B【解析】∵点M(A +3,A +1)在直角坐标系的x轴上,∴A +1=0,解得A =−1,所以,A +3=−1+3=2,点M的坐标为(2,0).故选B .7. 把不等式组{x10x10+≥-<解集表示在数轴上正确的是()A .B .C .D .【答案】D【解析】【分析】先解不等式组,再把解集表示在数轴上.【详解】解:x+10x10≥⎧-<⎨⎩①②,解①得,x1≥-,解②得,x1<,把解集表示在数轴上,不等式组的解集为1x1-≤<.故选D .【点睛】本题考查了一元一次不等式组的解法以及在数轴上表示不等式的解集,是基础知识比较简单.8. 为了了解某校初二年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析;在这个问题中,总体是指( )A . 400B . 被抽取的50名学生C . 初二年级400名学生的体重D . 被抽取50名学生的体重【答案】C【解析】在这个问题中,总体是指400名学生的体重,故选C .9. 下列说法正确是( )A . 4的平方根是2B . ﹣4的平方根是﹣2C . (﹣2)2没有平方根D . 2是4的一个平方根【答案】D【解析】【分析】依据平方根的性质即可作出判断.【详解】A .4的平方根是±2,故A 错误;B .−4没有平方根,故B 错误;C .()224-=,有平方根,故C 错误;D .2是4的一个平方根,故D 正确.故选D .【点睛】此题主要考查平方根的相关知识,求一个数A 的平方根的运算,叫做开平方,其中A 叫做被开方数.A >0时,A 有两个平方根;A =0时,A 只有一个平方根;A <0时,没有平方根.10. 已知关于x的方程5x+3k=24与方程5x+3=0的解相同,则k的值是( )A . 7B . ﹣8C . ﹣10D . 9【答案】D【解析】【分析】可以分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.【详解】解第一个方程得x=2435k-,第二个方程得x=-35,∴243355k-=-,解得k=9.故选D .【点睛】本题解决的关键是能够求解关于x的方程,正确理解方程解的含义.11. 点P(1,-2)在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】D【解析】点P(1,-2)所在的象限是第四象限,故选D .12. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是( )A . 301216400x y x y +=⎧⎨+=⎩B . 301612400x y x y +=⎧⎨+=⎩C . 121630400x y x y +=⎧⎨+=⎩D . 161230400x y x y +=⎧⎨+=⎩【答案】B【解析】【分析】 设购买甲种奖品x 件,乙种奖品y 件,根据“花了400元钱购买甲、乙两种奖品共30件”列方程即可.【详解】若设购买甲种奖品x 件,乙种奖品y 件,根据题意得:301612400x y x y +=⎧⎨+=⎩. 故选:B .【点睛】本题考查了根据实际问题抽象出方程组:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.二、认真填一填,试试自己的身手!填空题(每小题3分,共24分)13. 不等式2x +1>3x -2的非负整数解是______.【答案】0,1,2【解析】【分析】先求出不等式2x+1>3x-2的解集,再求其非负整数解【详解】移项得,2+1>3x-2x ,合并同类项得,3>x ,故其非负整数解为:0,1,2【点睛】解答此题不仅要明确不等式的解法,还要知道非负整数的定义.14. 算术平方根等于本身的实数是__________.【答案】0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案. 解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.15. 若点(m ﹣4,1﹣2m )在第三象限内,则m 的取值范围是_____. 【答案】142m << 【解析】【分析】先根据第三象限的点的坐标的符号特征列出关于m 的不等式组,再求解即可.【详解】由题意得40120m m -<⎧⎨-<⎩,解得:142m <<. 【点睛】解题的关键是熟练掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16. 实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.【答案】2a -【解析】由数轴得,A +B <0,B -A >0,|A +B |+()2b a - A -B +B -A =-2A .故答案为-2A .点睛:根据,0,0a a a a a ≥⎧=⎨-<⎩,推广此时A 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.17. 点()2,1M -关于y 轴的对称点的坐标为______.【答案】()2,1【解析】【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.18. 如图,已知A B ∥C D ,∠A =60°,∠C =25°,则∠E=_____度.【答案】35【解析】【分析】设A E交C D 于点F,先根据平行线的性质求出∠D FE的度数,再由三角形外角的性质即可得出结论.【详解】设A E交C D 于点F,∵A B ∥ C D ,∠A =60°,∴∠D FE=∠A =60°,∵∠D FE是△C EF的外角,∴∠E=∠D FE-∠C =60°-25°=35°,故答案为35【点睛】本题考查的是平行线的性质及三角形外角的性质,用到的知识点为:(1)两直线平行,同位角相等;(2)三角形的一个外角等于不相邻的两个内角和.19. 某校对1000名学生进行“个人爱好”调查,调查结果统计如图,则爱好音乐学生共有_________人.【答案】190【解析】试题解析:根据扇形统计图的定义,各部分占总体的百分比之和为1,由图可知,爱好音乐的学生占总体的百分比为:1-32%-33%-16%=19%,所以爱好音乐的学生共有1000×19%=190人.故答案为190.20. 一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一分,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.【答案】24.【解析】试题分析:设小明答对了x题.故(30-x)×(-1)+4x≥90,解得:x≥24.考点:一元一次不等式的应用.三、计算题(每小题4分,共20分)21.【答案】0.【解析】【分析】根据算术平方根、立方根进行计算.【详解】原式33627=3630【点睛】本题考查的是算术平方根、立方根,需要注意开立方里面的负号要保留,出来后要变号.22. 解方程组:(1)1235 y xx y=-⎧⎨+=⎩(2)3(1)55(1)3(5)x yy x-=+⎧⎨-=+⎩【答案】(1)23xy=-⎧⎨=⎩; (2)57xy=⎧⎨=⎩.【解析】【分析】(1)直接用代入法求解即可,(2)解题时需要先化简,再用代入法或加减消元法求解.【详解】(1) 原方程组标记为1235y x x y =-⎧⎨+=⎩①②, 将①代入②得2315x x ,解得2x =- ,把2x =-代入1y x =-,解得3y =∴方程组的解为23x y =-⎧⎨=⎩; (2) 原方程组可化为383520x y x y -⎧⎨--⎩=③=④,③-④得,4y=28,即y=7,把y=7代入3x-y=8得,3x-7=8,即x=5.∴方程组的解为57x y =⎧⎨=⎩. 【点睛】本题考查的是计算能力,解题时要注意观察,选择适当的解题方法会达到事半功倍的效果.23. 解不等式组3(2)4,1413x x x x --≥⎧⎪+⎨>-⎪⎩,并把解集在数轴上表示出来. 【答案】x≤1,数轴详见解析.【解析】【分析】分别解两个不等式,再取两个解集的公共解集,并在数轴上表示出来.【详解】()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②, 解:由①得:x≤1,由②得:x <4,∴ 原不等式的解集为x≤1.24. 已知,a、b互为倒数,c、d互为相反数,求31ab c d-+++的值.【答案】0.【解析】试题分析:利用已知倒数,相反数关系代入求值.试题解析:由题意得A b=1,C +D =0,所以31ab c d-+++=-1+1=0.故答案为0.四、解答题(共40 分)25. 已知△A B C 在平面直角坐标系中的位置如图所示.将△A B C 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积【答案】(1)详见解析;(2)A 1(4,−2), B 1(1,−4), C 1(2,−1);(3)7 2【解析】【分析】(1)直接利用平移的性质得出A ,B ,C 平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A 1B 1C 1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:A 1(4,−2), B 1 (1,−4), C 1(2,−1);(3) △A 1B 1C 1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则26. 如图,△A B C 中,D 在B C 的延长线上,过D 作D E⊥A B 于E,交A C 于F.∠A =30°,∠FC D =80°,求∠D .【答案】40°【解析】【分析】由三角形内角和定理,可将求∠D 转化为求∠C FD ,即∠A FE,再在△A EF中求解即可.【详解】∵D E⊥A B (已知),∴∠FEA =90°(垂直定义),∵△A EF中,∠FEA =90°,∠A =30°(已知),∴∠A FE=180°−∠FEA −∠A (三角形内角和是180)=180°−90°−30°=60°,又∵∠C FD =∠A FE(对顶角相等),∴∠C FD =60°,∴在△C D F中,∠C FD =60°,∠FC D =80°(已知),∴∠D =180°−∠C FD −∠FC D =180°−60°−80°=40°27. 一支部队第一天行军4h,第二天行军5h,两天共行军98KM,且第一天比第二天少走2KM,第一天和第二天行军的平均速度各是多少?【答案】第一天行军速度为12km/h,第二天行军速度为10km/h.【解析】【分析】设:第一天行军的平均速度为xkm/h ,第二天行军的平均速度为ykm/h ,根据两天共行军98km ,第一天比第二天少走2km ,列出方程组求解.【详解】设:第一天行军平均速度为xkm/h,第二天行军平均速度为ykm/h可得方程组4598542x y y x +=⎧⎨-=⎩ 解得1210x y =⎧⎨=⎩答:第一天行军的平均速度为12km/h ,第二天行军的平均速度为10km/h .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.28. 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4 120元.每台电脑机箱、液晶显示器的进价各是多少元?【答案】每台电脑机箱的进价是60元,液晶显示器的进价是800元.【解析】 解:设每台电脑机箱的进价是元,液晶显示器的进价是元,得, 解得. 答:每台电脑机箱的进价是60元,液晶显示器的进价是800元. 29. 某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元. (1)符合公司要求的购买方案有几种?请说明理由; (2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【答案】(1)有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x的取值范围,最后根据x的值列出不同方案.【详解】(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金30. 为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名七年级男生中,估计有多少人体能达标?【答案】(1)50人;(2)见解析;(3)252人【解析】【分析】(1)由引体向上的次数为4次的人数除以所占的百分比即可求出抽测的男生数;(2)求出次数为5次的人数,补全统计图即可;(3)求出5次以上(含5次)人数占的百分比,乘以350即可得到结果【详解】(1)根据题意得:10÷20%=50(人),答:本次抽测的男生有50人;(2)5次的人数为50-(4+10+14+6)=16(人),补全条形统计图,如图所示:(3)根据题意得:16146350252()50人答:该校350名七年级男生中估计有252人体能达标.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.。

最新人教版数学七年级下册《期末测试卷》附答案

最新人教版数学七年级下册《期末测试卷》附答案

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.第I 卷(选择题 共30分)一、选择题:(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 4的平方根是( )A . ±16B . 2C . ﹣2D . ±2 2. 若点P (A ,B )是第二象限内的点,则点Q (B ,A )在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 3. 要调查下列问题,应采用全面调查的是( )A . 了解某班学生的身高情况B . 了解某校2000名学生对新闻、体育、科教三类电视节目的喜爱情况C . 调查某批次汽车的抗撞击能力D . 调查某池塘里面有多少条鱼4. 如图,点E 在B C 的延长线上,下列条件中能判断A D ∥B C 的是( )A . ∠1=∠3B . ∠2=∠4C . ∠B =∠D C ED . ∠B +∠B C D =180° 5. 在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A . (3,4)-B . (4,3)-C . (4,3)-D . ()3,4-6. 方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A . 1、2 B . 1、5 C . 5、1 D . 2、47. 若一个不等式的正整数解为1,2,则该不等式的解集在数轴上的表示可能是下列的( ) A . B . C . D .8. 某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑( )A . 3分钟B . 4分钟C . 4.5分钟D . 5分钟9. 不等式组523x x x m +>+⎧⎨<⎩的解集是2x <,则m 的取值范围是( ) A . m <2 B . m >2 C . m ≤2 D .m ≥2 10. 关于x ,y 的方程组,3453x y a x y a +=-⎧⎨-=⎩下列说法:①51x y =⎧⎨=-⎩是方程组的解;②不论a 取什么实数,x y +的值始终不变;③当2a =-时, x 与y 相等,正确的个数是( )A . 3B . 2C . 1D . 0第Ⅱ卷(非选择题 共70分)二、填空题(本题5个小题,每小题3分,共15分.)11. 如图,a //b ,c ,d 是截线,∠1=80°,则∠2+∠3-∠4=____°.12. 命题”对顶角相等”的题设是__________________________,结论是这两个角相等.13. 3 1.732≈30017.32≈0.03≈_________30000≈_________.从以上结果可以发现,被开方数的小数点向左成向右移动___位,它的算术平方根的小数点就相应地向左或向右移动1位.14. 已知点M (3,-2),它与点N (x ,y )在同一条平行于x 轴的直线上,且MN =4,那么点N 的坐标是______.15. 小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入______个小球时有水溢出.三、解答题:(本大题共7道题,共55分.) 16. (1)计算33223816+-(2)用适当的方法解方程组:25371x y x y +=⎧⎨-=-⎩①② (3)解一元一次不等式:54x +≥2316x --. 17. 《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.18. (1)如图,在平面直角坐标系中有一个三角形ABC ,请写出它三个顶点坐标:A 、B 、C .(2)在平面直角坐标系中描出以下3个点:A '(-2,1)、B '(1,-1)、C '(-3,-3),然后顺次连接,,A B C ''',得到三角形A B C '''.(3)观察所画的图形,判断三角形A B C '''能否由三角形ABC 平移得到,如果能,请说出三角形A B C '''是由三角形ABC 怎样平移得到的;如果不能,说明理由.19. 下面数据是20位同学的身高(单位:cm): 159157164161167153166163162158 162164160172166162168167161156 (1)这组数据中,最大值与最小值的差是; (2)将这组数据分为4组:153≤x<158,158≤x<163,163≤x<168,168≤x<173,则组距是;(3)完成下面频数分布表,并将频数分布直方图补充完整.身高分组划记频数≤< 3x153158≤<158163xx≤<正丅7163168≤<168173x20. 在等式2y ax bx c =++中,当1x =时,6y =;当2x =时,9y =;当3x =时,16y =.求a b c ,,的值.21. 一工厂要将300吨货物运往外地,计划租用某运输公司甲、乙两种型号的货车共16辆一次将货物全部运完,已知每辆甲型货车最多能装该种货物18吨,租金1200元,每辆乙型货车最多能装该种货物20吨,租金1600元,若此工厂计划此次租车费用不超过22400元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.22. 如图,点D 是三角形ABC 的边BC 所在直线上的一个动点.(1)填空:当点D 在线段BC 上时,过点D 作DE //AB ,DF //AC .求证:∠EDF =∠BAC . 证明:∵DE //AB (已知),∴∠EDF =____________________(__________ ________).∵ ( ),∴∠BFD =_____________(___________________________).∴∠EDF =∠BAC (____________________________).(2)当点D 移动到BC 延长线上时,如果过点D 画DE //AB 交AC 延长线于点E ,DF //CA 交BA 延长线于点F ,∠EDF 和∠BAC 又存在什么数量关系?请根据题意把下图补画完整,并直接写出∠EDF 和∠BAC存在的数量关系,不需证明.数量关系为: .参考答案1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.第I卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 4的平方根是()A . ±16B . 2C . ﹣2D . ±2【答案】D【解析】【分析】根据平方根的定义以及性质进行计算即可.【详解】4的平方根是±2,故选:D .【点睛】本题考查了平方根的问题,掌握平方根的定义以及性质是解题的关键.2. 若点P(A ,B )是第二象限内的点,则点Q(B ,A )在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】D【解析】【分析】应先判断出所求的点的横坐标的符号,进而判断其所在的象限.【详解】解:∵点P(A 、B )在第二象限,∴A <0,B >0,∴点Q(B ,A )在第四象限,故选D .【点睛】”点睛”本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点. 四个象限的符号特点分别是:第一象限(+,-);第二象限(-,+);第三象限(-,-)第四象限(+,-).3. 要调查下列问题,应采用全面调查的是()A . 了解某班学生的身高情况B . 了解某校2000名学生对新闻、体育、科教三类电视节目的喜爱情况C . 调查某批次汽车的抗撞击能力D . 调查某池塘里面有多少条鱼【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A 、了解某班学生的身高情况,适合全面调查,故本选项符合题意;B 、了解某校2000名学生对新闻、体育、科教三类电视节目的喜爱情况,适合抽样调查,故本选项不合题意;C 、调查某批次汽车的抗撞击能力,适合抽样调查,故本选项不合题意;D 、调查某池塘里面有多少条鱼,适合抽样调查,故本选项不合题意.故选:A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,点E在B C 的延长线上,下列条件中能判断A D ∥B C 的是()A . ∠1=∠3B . ∠2=∠4C . ∠B =∠D CE D . ∠B +∠B C D =180°【答案】B【解析】分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:由∠2=∠4,可得A D ∥C B ;由∠1=∠3或∠B =∠D C E 或∠B +∠B C D =180°,可得A B ∥D C ;故选B .【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5. 在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A . (3,4)-B . (4,3)-C . (4,3)-D . ()3,4-【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离. 6. 方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A . 1、2B . 1、5C . 5、1D . 2、4 【答案】C【解析】【分析】把x =2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解.【详解】根据 {x 2y ==,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C .【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键. 7. 若一个不等式的正整数解为1,2,则该不等式的解集在数轴上的表示可能是下列的( )A .B .C .D .【答案】C【解析】【分析】根据题意,逐一判断各个选项,即可得到答案【详解】A .表示x>1,正整数解有无数个,不符合题意;B .表示x>0,正整数解有无数个,不符合题意;C .表示x≤2,正整数解为1,2,符合题意;D .表示x≤3,正整数解为1,2,3,不符合题意;故选C【点睛】本题主要考查不等式在数轴上的表示,通过数轴得到未知数的取值范围,是解题的关键.8. 某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A . 3分钟B . 4分钟C . 4.5分钟D . 5分钟【答案】B【解析】【分析】设这人跑了x分钟,则走了(18-x)分钟,根据速度×时间=路程结合要在18分钟内到达,即可得出关于x 一元一次不等式,解之即可得出x的取值范围,取其中的最小值即可得出结论.【详解】解:设这人跑了x分钟,则走了(18-x)分钟,根据题意得:210x+90(18-x)≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.9. 不等式组523x x x m +>+⎧⎨<⎩的解集是2x <,则m 的取值范围是( ) A .m <2 B . m >2 C . m ≤2 D .m ≥2 【答案】D【解析】【分析】先求出每个不等式的解集,根据已知进行得出关于m 的不等式,即可得出选项.【详解】∵不等式523x x +>+的解集为2x <,又∵不等式组的解集为2x <,∴2m ≥,故选:D .【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能得出关于m 的不等式. 10. 关于x ,y 的方程组,3453x y a x y a +=-⎧⎨-=⎩下列说法:①51x y =⎧⎨=-⎩是方程组的解;②不论a 取什么实数,x y +的值始终不变;③当2a =-时, x 与y 相等,正确的个数是( )A . 3B . 2C . 1D . 0【答案】B【解析】【分析】①将51x y ==-,代入,判断A 的值是否相等即可;②将x 和y 分别用A 表示出来,然后求出x+y 的值即可判断;③将2a =-代入方程组求出方程组的解,代入方程中检验即可判断. 【详解】①将51x y =⎧⎨=-⎩代入方程组得: 534553a a -=-⎧⎨+=⎩①②,解得2103a a =⎧⎪⎨=⎪⎩①②两个方程A 的值不相等,所以①错误;②解方程组3453x y a x y a +=-⎧⎨-=⎩,得5 2 1 2axay+⎧=⎪⎪⎨-⎪=⎪⎩,51322a ax y+-+=+=,∴x+y的值和A 的取值无关,始终为3,所以②正确;③将2a=-代入方程组得,3232xy⎧=⎪⎪⎨⎪=⎪⎩,因此③正确;本题②③正确,故选B .【点睛】本题考察了含参二元一次方程组中参数的确定,二元一次方程组的解法,逢解必代入式解决本类题的关键,是本章的重要考点.第Ⅱ卷(非选择题共70分)二、填空题(本题5个小题,每小题3分,共15分.)11. 如图,a//b,c,d是截线,∠1=80°,则∠2+∠3-∠4=____°.【答案】80°【解析】【分析】根据邻补角定义得到∠4=100°,再根据平行线的性质得到∠2+∠3-∠4的值即可.【详解】解:如下图:∵∠1=80°,∴∠4=100°,∵a //b ,∴∠3=∠5,∴∠2+∠3=∠2+∠5=180°,∴∠2+∠3-∠4=180°-100°=80°.故答案为:80°.【点睛】本题考查平行线的性质及邻补角定义.熟练掌握平行线的性质,准确得到∠2+∠3的度数是解题的关键.12. 命题”对顶角相等”的题设是__________________________,结论是这两个角相等.【答案】两个角是对顶角【解析】【分析】先根据命题有两部分组成,即题设和结论,找到命题的题设和结论,再写成”如果…,那么…”的形式.【详解】命题”对顶角相等”可写成:如果两个角是对顶角,那么这两个角相等.故命题”对顶角相等”的题设是”两个角是对顶角”.故答案为:两个角是对顶角.【点睛】本题考查了命题的题设与结论,解答此题目只要把命题写成”如果…,那么…”的形式,便可解答.13. 1.732≈17.32≈≈_________≈_________.从以上结果可以发现,被开方数的小数点向左成向右移动___位,它的算术平方根的小数点就相应地向左或向右移动1位.【答案】 (1). 0.1732 (2). 173.2 (3). 两【解析】分析】本题根据题干所给的示例,总结被开方数与其算数平方根小数点移动位数的规律即可作答.【详解】 1.732≈17.32≈可知,其被开方数小数点向右移动两位,其算数平方根小数点向右移动一位,;同理可得被开方数小数点向左平移两位,其算数平方根小数点向左平移一位,0.1732≈;综上可得:被开方数小数点向左或向右平移两位,其算数平方根小数点向左或向右平移一位.故填:0.1732;173.2;两.【点睛】本题考查算数平方根,解题关键在于通过示例总结规律,其次本题规律可作为解题技巧,面对类似题目计算时可直接得出答案提升解题效率.14. 已知点M (3,-2),它与点N (x ,y )在同一条平行于x 轴的直线上,且MN =4,那么点N 的坐标是______.【答案】(1,2)--或(7,2)-【解析】【分析】本题根据两点在同一平行于x 轴的直线上确定点N 的纵坐标,继而根据两点距离确定点N 的横坐标.【详解】由已知得:点N 的纵坐标为2-,设点N 的横坐标为x ,则M 、N 的距离可表示为3x -,∵4MN =,∴34x -=,求解得:7x =或1x =-,故点N 坐标为(1,2)--或(7,2)-.故填:(1,2)--或(7,2)-.【点睛】本题考查点坐标的求法,解题关键在于理清两点之间的位置关系,其次此类型题目通常需要分类讨论,确保结果不重不漏.15. 小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入______个小球时有水溢出.【答案】11【解析】【分析】本题首先算出放入一个球水面上升多少厘米,继而求解量筒高度与原水面高度之差,最后用两者之比求解此题.【详解】由图已知:放入一个小球水面上升:(18.514)3 1.5cm -÷=,量筒与原水面高度差:301416cm -=,∵16 1.510.7÷≈,∴量筒中至少放入11个球,水会溢出.故填:11.【点睛】本题考查有理数的运算,难点在于从图中获取有效信息点,并理清题目中蕴含的数学关系,其次注意计算仔细即可.三、解答题:(本大题共7道题,共55分.)16. (1)计算2+(2)用适当的方法解方程组:25371x y x y +=⎧⎨-=-⎩①② (3)解一元一次不等式:5 4x +≥2316x --. 【答案】(14;(2)21x y =⎧⎨=⎩;(3)73x ≤ 【解析】【分析】 (1)先求绝对值,立方根,算术平方根,再进行加减法计算,即可求解;(2)利用代入消元法,即可求解;(3)通过去分母,移项,合并同类项,未知数系数化为1,即可求解详解】(1)原式=2(2)4-+4;(2)由①,得52y x =- ③把③代入②,得37(52)1x x --=-.解这个方程,得2x =.把2x =代入③,得1y =.∴这个方程组的解是21x y =⎧⎨=⎩; (3)解不等式:54x +≥2316x --. 去分母,得:()35x +≥()12223x --去括号,得:315x +≥1246x -+移项,得:36x x -≥12415--合并同类项,得:3x -≥7-.系数化为1,得:x ≤73. 【点睛】本题主要考查二次根式的加减法,二元一次方程的解法,一元一次方程的解法,熟练掌握解方程以及二次根式的运算方法,是解题的关键.17. 《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.【答案】甲有钱752,乙有钱25. 【解析】【分析】设甲有钱x ,乙有钱y ,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.【详解】解:设甲有钱x ,乙有钱y . 由题意得:15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 解方程组得:75225x y ⎧⎪⎪=⎨⎪⎪=⎩,答:甲有钱752,乙有钱25. 【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键. 18. (1)如图,在平面直角坐标系中有一个三角形ABC ,请写出它的三个顶点坐标:A 、B 、C .(2)在平面直角坐标系中描出以下3个点:A '(-2,1)、B '(1,-1)、C '(-3,-3),然后顺次连接,,A B C ''',得到三角形A B C '''.(3)观察所画的图形,判断三角形A B C '''能否由三角形ABC 平移得到,如果能,请说出三角形A B C '''是由三角形ABC 怎样平移得到的;如果不能,说明理由.【答案】(1)A (3,5)、B (6,3)、C (2,1);(2)见解析;(3)能,由三角形A B C 向左平移5个单位长度,向下平移4个单位长度得到的【解析】【分析】(1)根据A ,B ,C 三点的位置确定坐标.(2)根据点的坐标确定点的位置.(3)利用平移的性质解决问题即可.【详解】(1)A (3,5)、B (6,3)、C (2,1);(2)如图所示,三角形A ′B ′C ′即为所求,(3)三角形'''ABC 能由三角形A B C 平移得到,三角形'''ABC 是由三角形A B C 向左平移5个单位长度,向下平移4个单位长度得到的.【点睛】本题考查了平面直角坐标系以及坐标与图形变化-平移,解题的关键是熟练掌握平移的性质. 19. 下面数据是20位同学的身高(单位:cm ):159 157 164 161 167 153 166 163 162 158162 164 160 172 166 162 168 167 161 156(1)这组数据中,最大值与最小值的差是 ;(2)将这组数据分为4组:153≤x <158,158≤x <163, 163≤x <168,168≤x <173, 则组距是 ; (3)完成下面频数分布表,并将频数分布直方图补充完整. 身高分组 划记频数 153158x ≤<3 158163x ≤<163168x ≤< 正丅7 168173x ≤<【答案】(1)19;(2)5;(3)见解析【解析】【分析】(1)根据题目中给出的数据,可以找到最大数据是172,最小数据是153,然后作差即可解答本题;(2)根据题目中的分组,可以得到相应的组距;(3)根据题目中给出的数据,可以将频数分布表和频数分布直方图补充完整.【详解】(1)172-153=19,即这组数据中,最大值与最小值的差是19,故答案为:19;(2)组距是:158-153=5,故答案为:5;(3)补充完整的频数分布表如下表所示,身高分组划记频数153158≤< 3x≤<正8158163x≤<正丅7163168x≤<丅 2x168173补充完整的频数分布直方图如下图所示,【点睛】本题考查频数分布直方图、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答. 20. 在等式2y ax bx c =++中,当1x =时,6y =;当2x =时,9y =;当3x =时,16y =.求a b c ,,的值.【答案】A ,B ,C 的值分别为2,-3,7【解析】【分析】根据题意可以得到相应的三元一次方程组,从而可以解答本题.【详解】解:根据题意,得三元一次方程组a b c 64a 2b c 99a 3b c 16.++=⎧⎪++=⎨⎪++=⎩ ,①,②③②-①,得33a b +=; ④③-①,得 45a b +=.⑤④与⑤组成二元一次方程组334 5.a b a b +=⎧⎨+=⎩, 解这个方程组,得2,3.a b =⎧⎨=-⎩把2,3.a b =⎧⎨=-⎩代入①,得7c = 因此即A ,B ,C 的值分别为2,-3,7【点睛】本题考查解三元一次方程组应用,解答本题的关键是明确解三元一次方程组的方法.21. 一工厂要将300吨货物运往外地,计划租用某运输公司甲、乙两种型号的货车共16辆一次将货物全部运完,已知每辆甲型货车最多能装该种货物18吨,租金1200元,每辆乙型货车最多能装该种货物20吨,租金1600元,若此工厂计划此次租车费用不超过22400元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.【答案】共有三种租车方案;最低的租车费用案是租用甲型汽车10辆,租用乙型汽车6辆,费用为21600元.【解析】【分析】设租用甲型汽车x辆,则租用乙型汽车(16-x)辆,根据装货物的吨数是300吨,以及租车费用不超过22400元,列出不等式组,解出x的值,进一步即可求解.【详解】解:设租用甲型汽车x辆,则租用乙型汽车(16x-)辆,依题意,得182016-)300 12001600(16)22400x xx x+≥⎧⎨+-≤⎩(解得8≤x≤10.∵x的值是整数∴x的值是8,9,10∴该公司有三种租车方案:①租用甲型汽车8辆,租用乙型汽车16-8=8(辆),费用为1200⨯8+1600⨯8=22400(元);②租用甲型汽车9辆,租用乙型汽车16-9=7(辆),费用为1200⨯9+1600⨯7=22000(元);③租用甲型汽车10辆,租用乙型汽车16-10=6(辆),费用为1200⨯10+1600⨯6=21600(元).∴最低的租车费用为21600元.【点睛】本题考查了一元一次不等式组的应用,关键是要把实际问题转化为数学问题,通过数量关系列出不等式组.22. 如图,点D是三角形ABC的边BC所在直线上的一个动点.(1)填空:当点D在线段BC上时,过点D作DE//AB,DF//AC.求证:∠EDF=∠BAC.证明:∵DE//AB(已知),∴∠EDF =____________________(__________ ________).∵ ( ),∴∠BFD =_____________(___________________________).∴∠EDF =∠BAC (____________________________).(2)当点D 移动到BC 延长线上时,如果过点D 画DE //AB 交AC 延长线于点E ,DF //CA 交BA 延长线于点F ,∠EDF 和∠BAC 又存在什么数量关系?请根据题意把下图补画完整,并直接写出∠EDF 和∠BAC 存在的数量关系,不需证明.数量关系为: .【答案】(1)BFD ∠;两直线平行,内错角相等;//DF AC ;已知;BAC ∠;两直线平行,同位角相等;等量代换;(2)图见解析,∠ED F+∠B A C =180°.【解析】【分析】(1)根据平行线的判定与性质即可进行证明;(2)根据D E ∥A B ,D F ∥C A 即可求出∠ED F 和∠B A C 存在的数量关系.【详解】证明:∵DE ∥AB (已知),∴∠EDF = ∠BFD ( 两直线平行,内错角相等 ).∵ D F //A C ( 已知 ),∴∠BFD = ∠BAC ( 两直线平行,同位角相等 ).∴∠EDF =∠BAC ( 等量代换______).故答案为:BFD ∠;两直线平行,内错角相等;//DF AC ;已知;BAC ∠;两直线平行,同位角相等;等量代换; (2)∠ED F+∠B A C =180°,理由如下: ∵D E ∥A B ,∴∠ED F+∠F=180°,∵D F ∥C A ,∴∠B A C =∠F ,∴∠ED F+∠B A C =180°,补画图形如图所示;故答案为:∠ED F+∠B A C =180°.【点睛】本题考查了平行线的性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.。

2020-2021学年人教版七年级下期末考试数学试题及答案解析

2020-2021学年人教版七年级下期末考试数学试题及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共20小题)1.(3分)已知|a|=5,√b2=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【解答】解:∵|a|=5,∴a=±5,∵√b2=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.2.(3分)如图,直线AB、CD相交于点O,若∠1+∠2=120°,则∠BOC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠1+∠2=120°,∴∠1=60°.∵∠1与∠BOC互为邻补角,∴∠BOC=180°﹣∠1=180°﹣60°=120°.故选:B.3.(3分)若点P(a,b)在第三象限,则点Q(a﹣3,﹣b)一定在()A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:∵点P (a ,b )在第三象限,∴a <0,b <0,∴a ﹣3<0,﹣b >0,∴点Q (a ﹣3,﹣b )一定在第二象限.故选:B .4.(3分)已知{x =−1y =2是关于x 、y 的二元一次方程组{3x +ny =8mx −y =2的解,则m +2n 的值为( )A .−52B .1C .7D .11【解答】解:把x =﹣1,y =2代入方程组,得{−3+2n =8−m −2=2解得m =﹣4,n =112, ∴m +2n =﹣4+11=7.故选:C .5.(3分)把不等式2﹣x <1的解集在数轴上表示正确的是( )A .B .C .D .【解答】解:不等式移项合并得:﹣x <﹣1,解得:x >1,表示在数轴上,如图所示故选:A .6.(3分)为了解某校3000名学生的视力情况,从中抽取了350名学生的视力,就这个问题来说,说法正确的是( )A .3000名学生的视力是总体B .3000名学生是总体C .每个学生是个体D.350名学生是所抽取的一个样本【解答】解:为了了解3000名学生的视力情况,从中抽取了350名学生进行视力调查,这个问题中的总体是3000名学生的视力情况,个体是每一个学生的视力情况,样本是抽取的350名学生的视力情况;故选:A.7.(3分)设a为正整数,且a<√37<a+1,则a的值为()A.5B.6C.7D.8【解答】解:∵√36<√37<√49,∴6<√37<7,∵a为正整数,且a<√37<a+1,∴a=6.故选:B.8.(3分)实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是()A.﹣2B.0C.﹣2a D.2b【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴√(a+1)2+√(b−1)2−√(a−b)2=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.9.(3分)点P(2,﹣3)到x轴的距离等于()A.﹣2B.2C.﹣3D.3【解答】解:点P(﹣2,﹣3)到x轴的距离是:3.故选:D.10.(3分)下列选项中a ,b 的取值,可以说明“若a >b ,则|a |>|b |”是假命题的反例为( )A .a =﹣5 b =﹣6B .a =6 b =5C .a =﹣6 b =5D .a =6 b =﹣5【解答】解:当a =﹣5,b =﹣6时,a >b ,但|a |<|b |,∴“若a >b ,则|a |>|b |”是假命题,故选:A .11.(3分)已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣c |+√b −7=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a +b +c 的值为() A .12 B .15 C .17 D .20【解答】解:∵且|a ﹣c |+√b −7=0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7﹣3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a =5,∴c =5,∴a +b +c =5+7+5=17,故选:C .12.(3分)关于x ,y 的二元一次方程组{2x +3y =2ax −y =a −5的解满足x +y =5,则a 的值为()A .6B .5C .4D .3【解答】解:解方程组{2x +3y =2a x −y =a −5得{x =a −3y =2,又x +y =5,∴a ﹣3+2=5,解得a =6,故选:A .13.(3分)如图所示,直角坐标系中四边形的面积是( )A.15.5B.20.5C.26D.31【解答】解:图中四边形可以视为由两个直角三角形和一个梯形构成,则其面积为:1×2×3+12(3+4)×3+12×1×4=3+212+2=15.5.2故选:A.14.(3分)如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)【解答】解:∵将“卒”的位置记作(3,1),∴“相”的位置可记作(8,2).故选:C.15.(3分)如图,从C到B地有①②③条路线可以走,每条路线长分别为l,m,n()A.l>m>n B.l=m>n C.m<n=l D.l>n>m【解答】解:由题意可得:∵从C到B地有①②③条路线可以走,每条路线长分别为l,m,n,则AC+AB=l>BC∴l =n >m .故选:C .16.(2分)已知关于x 的不等式组{x −a >03−2x >0的整数解共有5个,则a 的取值范围是( ) A .﹣4<a <﹣3 B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <32 【解答】解:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.故选:B .17.(2分)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x 的取值范围是( )A .2<x ≤4B .2≤x <4C .2<x <4D .2≤x ≤4【解答】解:依题意,得:{3(3x −2)−2≤283[3(3x −2)−2]−2>28, 解得:2<x ≤4.故选:A .18.(2分)如图,若AB ∥DE ,∠B =130°,∠D =35°,则∠C 的度数为( )A .80°B .85°C .90°D .95°【解答】解:过C作CM∥AB,∵AB∥DE,∴AB∥CM∥DE,∴∠1+∠B=180°,∠2=∠D=35°,∵∠B=130°,∴∠1=50°,∴∠BCD=∠1+∠2=85°,故选:B.19.(2分)我们知道实数和数轴上的点一一对应,如图,正方形的边长为1,点P是半圆与数轴的交点,则点P对应的实数为()A.√2B.√2+1C.2.4D.2.5【解答】解:∵正方形的边长为1,∴根据图示,点P是以1为圆心,以√2(2+12=√2)为半径的圆与x的交点,∴点P表示的数是√2+1.故选:B.20.(2分)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(a,b),则点A2020的坐标为()A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)【解答】解:观察发现:A1(a,b),A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),A6(﹣b+1,a+1)…∴依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同,为(b ﹣1,﹣a +1),故选:D .二.填空题(共6小题,满分18分,每小题3分)21.(3分)已知方程2x +3y ﹣1=0,用含x 的代数式表示y ,则 y =−23x +13.【解答】解:方程2x +3y ﹣1=0,移项得:3y =1﹣2x ,解得:y =−23x +13.故答案为:y =−23x +13.22.(3分)一个正数a 的平方根分别是2m ﹣1和﹣3m +52,则这个正数a 为 4 .【解答】解:根据题意,得:2m ﹣1+(﹣3m +52)=0,解得:m =32,∴正数a =(2×32−1)2=4,故答案为:4.23.(3分)运算符号⊗的含义是a ⊗b ={a(a ≥b)b(a <b),则(1+x )⊗(1﹣2x )=5时x 的值为 4或﹣2 .【解答】解:当1+x ≥1﹣2x 时,即x ≥0,此时1+x =5,解得x =4;当1+x <1﹣2x 时,即x <0,此时1﹣2x =5,解得x =﹣2.故答案为:4或﹣2.24.(3分)如图,△DEF 是由△ABC 沿直线BC 向右平移得到,若BC =6,当点E 刚好移动到BC 的中点时,则CF = 3 .【解答】解:由平移的性质可得:BC=EF,BE=CF,∵BC=6,点E刚好移动到BC的中点,∴BE=EC=CF=3,故答案为:3.25.(3分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.则由统计图可知,在扇形统计图中,“乒乓球”部分所对应的圆心角的度数是100.8°.【解答】解:调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),则“乒乓球”部分所对应的圆心角的度数是:360°×1450=100.8°;故答案为:100.8°.26.(3分)已知点M在y轴上,纵坐标为4,点P(6,﹣4),则△OMP的面积是12.【解答】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=12OM•|x P|=12×4×6=12.故答案为12.三.解答题(共3小题,满分27分)27.(12分)(1)计算:|√3−2|+√−83+√(−2)2−|−2|(2)解方程组{x =2y −13x +y =4(3)解不等式组{4(x +1)<7x +13x −4<x−83,并写出它所有负整数解. 【解答】解:(1)原式=2−√3−2+2﹣2=−√3;(2){x =2y −1①3x +y =4②, 将①代入②,得:3(2y ﹣1)+y =4,解得y =1,将y =1代入①,得:x =1,则方程组的解为{x =1y =1; (3)解不等式4(x +1)<7x +13,得:x >﹣3,解不等式x ﹣4<x−83,得:x <2, 则不等式组的解集为﹣3<x <2,∴这个不等式组的负整数解为﹣2、﹣1.28.(6分)已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F .证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°( 垂直的定义 ).∴DB ∥EC ( 同位角相等,两直线平行 ).∴∠C = ∠DBA ( 两直线平行,同位角相等 ).∵∠C =∠D (已知),∴∠D = ∠DBA ( 等量代换 ).∴DF ∥AC ( 内错角相等,两直线平行 ).∴∠A =∠F ( 两直线平行,内错角相等 ).【解答】解:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°(垂直的定义),∴DB ∥EC (同位角相等,两直线平行),∴∠C =∠DBA (两直线平行,同位角相等),∵∠C =∠D (已知),∴∠D =∠DBA (等量代换),∴DF ∥AC (内错角相等,两直线平行),∴∠A =∠F (两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA ,两直线平行,同位角相等;∠DBA ,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.29.(9分)某商场计划用7.8万元从同一供应商处购进A ,B 两种商品,供应商负责运输.已知A 种商品的进价为120元/件,B 种商品的进价为100元/件.如果售价定为:A 种商品135元/件,B 种商品120元/件,那么销售完后可获得利润1.2万元.(1)该商场计划购进A ,B 两种商品各多少件?(2)供应商计划租用甲、乙两种货车共16辆,一次性将A ,B 两种商品运送到商场,已知甲种货车可装A 种商品30件和B 种商品12件,乙种货车可装A 种商品20件和B 种商品30件,试通过计算帮助供应商设计几种运输用车方案?【解答】解:(1)设购进A 种商品x 件,B 种商品y 件.根据题意得:{120x +100y =78000(135−120)x +(120−100)y =12000, 解得:{x =400y =300. 答:购进A 种商品400件,B 种商品300件.(2)设租用甲种货车a 辆,则租用乙种货车(16﹣a )辆,则{30a +20(16−a)≥40012a +30(16−a)≥300. 解得8≤a ≤10.∵a为整数,∴a=8,9,10.故有3种用车方案:①A种车8辆,B种车8辆;②A种车9辆,B种车7辆;③A种车10辆,B种车6辆.答:有3种用车方案:①A种车8辆,B种车8辆;②A种车9辆,B种车7辆;③A 种车10辆,B种车6辆.。

2020-2021学年七年级下期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中,对称轴最少的图形是()A.B.C.D.【解答】解:A.圆有无数条对称轴;B.正七边形有7条对称轴;C.五角星有5条对称轴;D.等腰梯形有1条对称轴.故选:D.2.(3分)下列事件属于确定事件的是()A.今天日本新冠肺炎新增零人B.明天太阳从西边升起C.数学老师长得最好看D.掷一枚质地均匀的硬币正面朝上【解答】解:A、今天日本新冠肺炎新增零人,是随机事件;B、明天太阳从西边升起,是不可能事件,是确定事件;C、数学老师长得最好看,是随机事件;D、掷一枚质地均匀的硬币正面朝上,是随机事件;故选:B.3.(3分)如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.4【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.4.(3分)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.π,r D.C,2π【解答】解:在圆周长的计算公式C=2πr中,变量有C和r,故选:B.5.(3分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°【解答】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.6.(3分)下列运算正确的是()A.a4•a2=a8B.a6÷a2=a3C.(2ab2)2=4a2b⁴D.(a3)2=a5【解答】解:A.a4•a2=a6,故本选项不合题意;B.a6÷a2=a4,故本选项不合题意;C.(2ab2)2=4a2b⁴,正确;D.(a3)2=a6,故本选项不合题意;故选:C.7.(3分)若三角形的三边长分别为3,1+2x,8,则x的取值范围是()A.2<x<5B.3<x<8C.4<x<7D.5<x<9【解答】解:根据三角形的三边关系可得:8﹣3<1+2x<3+8,解得:2<x<5.故选:A.8.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,AS=AR,则这四个结论:①P A平分∠RPS;②PR=PS;③QP ∥AR;④∠ABC=∠QPS中正确的有()A.4个B.3个C.2个D.1个【解答】解:(1)在Rt△APS和Rt△APR中,{AP=APAR=AS,∴Rt△APR≌Rt△APS(HL),∴∠P AR=∠P AS,AS=AR,∴P A平分∠BAC,故①②正确;∵AQ=PR,∴∠P AQ=∠APQ,∴∠PQS=∠P AQ+∠APQ=2∠P AQ,又∵P A平分∠BAC,∴∠BAC=2∠P AQ,∴∠PQS=∠BAC,∴PQ∥AR,故③正确;∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等),故④不正确.故选:B.9.(3分)如图,在△ABC中,∠C=90°,DE⊥AB于点E,CD=DE,∠CBD=26°,则∠A的度数为()A.40°B.34°C.36°D.38°【解答】解:∵DE⊥AB,DC⊥BC,DE=DC,∴BD平分∠ABC,∴∠EBD=∠CBD=26°,∴∠A=90°﹣∠ABC=90°﹣2×26°=38°.故选:D.10.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)102030405060708090100小车下滑的时间t(s) 4.233.002.452.131.891.711.59 1.50 1.411.35下列说法正确的是()A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快【解答】解;A、当h=70cm时,t=1.59s,故A错误;B、h每增加10cm,t减小的值不一定,故B错误;C、随着h逐渐升高,t逐渐变小,故C错误;D、随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:D.二.填空题(共4小题,满分12分,每小题3分)11.(3分)自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为 4.2×10﹣5.【解答】解:0.000042=4.2×10﹣5.故答案为:4.2×10﹣5.12.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【解答】解:当∠D=∠B时,在△ADF和△CBE中∵{AD=BC ∠D=∠B DF=BE,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)13.(3分)某学习小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,小智绘制了如图所示的折线图,该事件最有可能是③(填写一个你认为正确的序号).①掷一枚硬币,正面朝上;②掷一个质地均匀的正六面体骰子,向上一面的点数是5;③暗箱中有1个黑球和2个白球,这些球除颜色外无差别,从中任取一球是黑球.【解答】解:由折线统计图知,随着试验次数的增加,频率逐渐稳定在0.33,即13左右, ①中掷一枚硬币,正面朝上的概率为12,不符合题意; ②掷一个质地均匀的正六面体骰子,向上一面的点数是5的概率是16,不符合题意; ③中从中任取一球是黑球的概率为11+2=13,符合题意, 故答案为:③. 14.(3分)在△ABC 中MP ,NO 分别垂直平分AB ,AC .若∠BAC =106°,则∠P AO 的度数是 32° .【解答】解:∵∠BAC =106°,∴∠B +∠C =180°﹣106°=74°,∵MP 是线段AB 的垂直平分线,∴P A =PB ,∴∠P AB =∠B ,同理,∠OAC =∠C ,∴∠P AO =∠BAC ﹣(∠P AB +∠OAC )=∠BAC ﹣(∠B +∠C )=32°,故答案为:32°.三.解答题(共11小题,满分1分)15.计算:2﹣1+√16−(3−√3)0+|√2−12|. 【解答】解:2﹣1+√16−(3−√3)0+|√2−12| =12+4﹣1+√2−12=3+√2.16.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.17.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=−12.y=1.【解答】解:(2x+3y)2﹣(2x+y)(2x﹣y)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=−12,y=1时,原式=12×(−12)×1+10×12=﹣6+10=4.18.(1分)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P(尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是40°,160°,140°,80°.(3)等边三角形的巧妙点的个数有C.(A)2(B)6(C)10(D)12【解答】解:(1)∴点P为所求.(2)∴P1,P2,P3,P4,P5,P6所求.∠BPC的度数分别为:40°,160°,140°,80°,40°,40°.综上所述,∠BPC的度数为40°,160°,140°,80°.(3)利用(2)中结论,可知等边三角形有10个巧妙点,故选C.19.完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).【解答】证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).故答案为:AB,DE,内错角相等,两直线平行;BCE,两直线平行,内错角相等;BCE,同位角相等,两直线平行;两直线平行,同旁内角互补.20.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使P A+PC最小;(3)在DE上画出点M,使|MB﹣MC|最大.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求;(3)如图所示,点M即为所求.21.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,请你运用自己所学知识说明他们的做法是正确的.【解答】证明:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA),∴DE=BA.22.一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当m=4时,求小李摸到红球的概率是多少?(2)当m为何值时,游戏对双方是公平的?【解答】解:(1)当m=4时,红球有4个、白球有12个、黄球有14个,则小李摸到红球的概率是430=215;(2)若要是双方摸到红球和黄球的概率相等,则袋子中红球和黄球的数量相等,即m =30﹣m ﹣3m ,解得:m =6,即当m =6时,游戏对双方是公平的.23.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m 3时,水费按每立方米1.1元收费,超过6m 3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm 3,应缴水费为y 元.(1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【解答】解:(1)由题意可得,当0≤x ≤6时,y =1.1x ,当x >6时,y =1.1×6+(x ﹣6)×1.6=1.6x ﹣3,即y 与x 之间的函数表达式是y ={1.1x (0≤x ≤6)1.6x −3(x >6); (2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m 3,将y =5.5代入y =1.1x ,解得x =5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m 3,将y =9.8代入y =1.6x ﹣3,解得x =8;答:这两户家庭这个月的用水量分别是5m 3,8m 3.24.设a ,b ,c 为整数,且一切实数x 都有(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,求a +b +c 的值.【解答】解:∵(x ﹣a )(x ﹣8)+1=x 2﹣(a +8)x +8a +1,(x ﹣b )(x ﹣c )=x 2﹣(b +c )x +bc又∵(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,∴﹣(a +8)=﹣(b +c ),∴8a +1=bc ,bc﹣8(b+c)=﹣63,即(b﹣8)(c﹣8)=1,∵b,c都是整数,故b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,解得b=c=9或b=c=7,当b=c=9时,解得a=10,当b=c=7时,解得a=6,故a+b+c=9+9+10=28或7+7+6=20,故答案为:20或28.25.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC =90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.【解答】(1)证明:如图1,设BD与AC交于点F,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,{∠BAE =∠CAD AE =AD∴△ABE ≌△ACD (SAS ),∴∠ABE =∠ACD ,∵∠ABE +∠AFB =90°,∠AFB =∠CFD ,∴∠ACD +∠CFD =90°,∴∠BDC =90°;(2)如图2,过A 作AE ⊥AD 交BD 于E ,∵∠BAC =∠DAE =90°,∴∠BAE =∠CAD ,∵∠BAC =∠BDC =90°,∠AFB =∠CFD ,∴∠ABE =∠ACD ,在△ABE 和△ACD 中,{∠BAE =∠CAD AB =AC ∠ABE =∠ACD,∴△ABE ≌△ACD (ASA ),∴AE =AD ,∴∠ADE =∠AED =45°;(3)①如图3,在形内作∠DAE =60°,AE 交BD 于E 点,与(2)同理△ABE ≌△ACD ,∴AE=DA,∴△ADE是等边三角形,∴∠ADE=60°;②∵BE=DC,∴DB=BE+DE=DA+DC.。

2020-2021学年人教版七年级下期末考试数学试题及答案

2020-2021学年人教版七年级下期末考试数学试题及答案

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.(2分)点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(a,b)在第四象限,且|a|>|b|,∴a>0,b<0,a+b>0,a﹣b>0,∴点Q(a+b,a﹣b)在第一象限.故选:A.2.(2分)在下列考察中,是抽样调查的是()A.了解全校学生人数B.调查某厂生产的鱼罐头质量C.调查广州市出租车数量D.了解全班同学的家庭经济状况【解答】解:A.了解全校学生人数,适合普查,故本选项不合题意;B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C.调查广州市出租车数量,适合普查,故本选项不合题意;D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B.3.(2分)射箭时,新手的成绩往往不太稳定.小明和小华练习射箭,当一局12支箭全部射完以后两人的成绩如图所示,根据图中信息,判断两人成绩的方差较小的是()A.小明的方差B.小华的方差C.两人方差一样大D.无法判断两人方差大小【解答】解:由图可以看出,两人的成绩都在8的上下波动,小明波动幅度较小,小华波动幅度较大,故小明的方差较小,小华的方差较大. 故选:A .4.(2分)下列各式中,正确的是( ) A .√(−4)2=−4B .√83=2C .−√16=4D .±√16=4【解答】解:√(−4)2=4,因此选项A 不正确;√83=2,因此选项B 正确;−√16=−4,因此选项C 不正确; ±√16=±4,因此选项D 不正确; 故选:B .5.(2分)如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【解答】解: ∵AB ∥CD , ∴∠C =∠1=45°, ∵∠3是△CDE 的一个外角, ∴∠3=∠C +∠2=45°+35°=80°, 故选:D .6.(2分)已知a <b ,则下列四个不等式中,不正确的是( ) A .a +2<b +2 B .ac 2<bc 2C .12a <12bD .﹣2a ﹣1>﹣2b ﹣1【解答】解:A .∵a <b ,∴a +2<b +2,故本选项不符合题意; B .∵a <b ,∴ac 2≤bc 2,故本选项符合题意;C .∵a <b ,∴12a <12b ,故本选项不符合题意;D .∵a <b , ∴﹣2a >﹣2b ,∴﹣2a ﹣1>﹣2b ﹣1,故本选项不符合题意; 故选:B .7.(2分)已知x ,y 为正整数,且x <√8<y ,则y x 的最小值为( ) A .1B .3C .4D .9【解答】解:∵x ,y 为正整数,且x <√8<y , ∴x 最小为1,y 最小为3, ∴y x 的最小值为31=3, 故选:B .8.(2分)如图,三角形ABC 的顶点坐标分别是A (4,3),B (3,1),C (1,2)若将三角形ABC 向左移动3个单位,向下移动2个单位得三角形A 1B 1C 1,则A 1,B 1,C 1对应的坐标分别为( )A .(7,5)、(6,3)、(4,4)B .(7,1)、(6,﹣1)、(4,0)C .(1,1)、(0,﹣1)、(﹣2,0)D .(1,5)、(0,3)、(﹣2,4)【解答】解:如图,△A 1B 1C 1即为所求,则A 1,B 1,C 1对应的坐标分别为(1,1)、(0,﹣1)、(﹣2,0), 故选:C .9.(2分)下列命题为真命题的是()A.两个锐角之和一定是钝角B.两直线平行,同旁内角相等C.如果x2>0,那么x>0D.平行于同一条直线的两条直线平行【解答】解:A、20°和30°都是锐角,20°+30°=50°,50°是锐角,∴两个锐角之和一定是钝角,是假命题;B、两直线平行,同旁内角互补,不一定相等,∴两直线平行,同旁内角相等,是假命题;C、(﹣1)2>0,﹣1<0,∴如果x2>0,那么x>0,是假命题;D、平行于同一条直线的两条直线平行,是真命题;故选:D.10.(2分)如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25B.15C.12D.14【解答】解:如图,图中的鞋子为x只,小猪玩具为y只,字母玩具为z只,依题意得:{6x =302x +2y =20y +4z =13,解得{x =5y =5z =2,故x +yz =5+5×2=15. 故选:B .二.填空题(共6小题,满分12分,每小题2分)11.(2分)某次知识竞赛共有20道题,每答对一题得10分,答错或不答都扣5分,娜娜得分要不低于80分,设她答对了x 道题,则根据题意可列不等式为 10x ﹣5(20﹣x )≥80 .【解答】解:设她答对了x 道题,则答错或不答的有(20﹣x )道, 由题意得:10x ﹣5(20﹣x )≥80, 故答案为:10x ﹣5(20﹣x )≥80. 12.(2分)若关于x 的不等式组{x <4x <m的解集是x <4,则P (m +1,2﹣m )在第 四 象限.【解答】解:∵关于x 的不等式组{x <4x <m的解集是x <4,∴m ≥4.∴m +1>0,20m <0,∴P (m +1,2﹣m )在第四象限. 故答案为:四.13.(2分)如图:已知直线AB 、CD 交于点O ,EO ⊥CD ,∠DOB =35°,则∠EOA = 55 °.【解答】解:∵∠DOB =35°, ∴∠BOD =∠AOC =35°, ∵EO ⊥CD , ∴∠EOC =90°,∴∠AOE =∠EOC ﹣∠AOC =90°﹣35°=55°, 故答案为:55.14.(2分)如图,将小王某月手机费中各项费用的情况制成扇形统计图,表示短信费的扇形的圆心角等于 61.2 度.【解答】解:360°×(1﹣4%﹣45%﹣34%) =360°×17% =61.2°, 故答案为:61.2.15.(2分)若点P (a +1,2a +3)在平面直角坐标系的x 轴上,则a 的值为 ﹣1.5 . 【解答】解:∵点P (a +1,2a +3)在平面直角坐标系的x 轴上, ∴2a +3=0, 解得a =﹣1.5. 故答案为:﹣1.5. 16.(2分)√12+√13=7√33. 【解答】解:√12+√13=2√3+√33=7√33, 故答案为:7√33. 三.解答题(共8小题,满分68分)17.(8分)计算:(1)√−643−|2−√5|−√(−3)2+2√5; (2)3√5−|√6−√5|.【解答】解:(1)√−643−|2−√5|−√(−3)2+2√5 =﹣4−√5+2﹣3+2√5 =√5−5.(2)3√5−|√6−√5| =3√5−√6+√5 =4√5−√6. 18.(8分)解方程组(1){2x −5y =−3−4x +y =−3;(2){4(x −y −1)=3(1−y)−2x 2+y 3=2;【解答】解:(1){2x −5y =−3①−4x +y =−3②,①×2+②得:﹣9y =﹣9, 解得:y =1,把y =1代入②得:x =1, 则方程组的解为{x =1y =1;(2)方程组整理得:{4x −y =5①3x +2y =12②,①×2+②得:11x =22, 解得:x =2,把x =2代入①得:y =3, 则方程组的解为{x =2y =3.19.(8分)解不等式(组) (1)解不等式x +x+13≤1−x−146,并把解集在数轴上表示出来. (2)解不等式组{8−x >3x5x+13≥x −1,并写出它的所有整数解.【解答】解:(1)去分母,得:6x+2(x+1)≤6﹣(x﹣14),去括号,得:6x+2x+2≤6﹣x+14,移项,得:6x+2x+x≤6+14﹣2,合并同类项,得:9x≤18,系数化为1,得:x≤2,将解集表示在数轴上如下:;(2){8−x>3x①5x+13≥x−1②,解不等式①得:x<2,解不等式②得:x≥﹣2,则不等式组的解集为﹣2≤x<2,∴不等式组的整数解为﹣2、﹣1、0、1.20.(8分)某供电公司为了解2020年4月份某小区家庭月用电情况,随机调查了该小区部分家庭,并将调查数据进行整理,绘制了如下尚不完整的统计图表.调查结果统计表:月用电量x(千瓦时)频数(户)频率0<x≤2020.0420<x≤401240<x≤60a0.3660<x≤8080.1680<x≤1006b100<x≤1200.08合计c1根据以上信息解答下列问题:(1)统计表中,a=18b=0.12c=50;(2)请把频数分布直方图补充完整;(3)求该小区月用电量超过80千瓦时的家庭数占被调查家庭总数的百分比;(4)若该小区有1000户家庭,根据调查数据估计该小区月用电量不超过60千瓦时的家庭大约有多少户?【解答】解:(1)c=2÷0.04=50,b=6÷50=0.12,a=50×0.36=18,故答案为:18,0.12,50;(2)50×0.08=4,补全频数分布直方图如下:(3)(6+4)÷50×100%=20%,答:用电量超过80千瓦时的家庭数占被调查家庭总数的20%;(4)1000×2+12+1850=640(户),答:该小区月用电量不超过60千瓦时的家庭大约有640户.21.(8分)如图,直线AD∥BC,AB∥DC,∠1=120°,求∠2的度数.【解答】解:∵直线AD∥BC,AB∥DC,∴∠1﹣∠3,∠3+∠2=180°,∵∠1=120°,∴∠3=120°,∠2=60°,即∠2的度数是60°.22.(8分)如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.【解答】解:(1)建立直角坐标系如图所示:图书馆(B )位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C 如图所示,观察可得,△ABC 中BC 边长为5,BC 边上的高为4,所以△ABC 的面积为=12×5×4=10.23.(10分)某电器超市销售每台进价分别为2000元、1700元的A 、B 两种型号的空调,如表是近两周的销售情况:销售时段销售数量 销售款 A 种型号B 种型号 第一周4台 5台 20500元 第二周 5台 10台 33500元 (1)求A 、B 两种型号的空调的销售单价;(2)求近两周的销售利润.【解答】解:(1)设A 型号空调的销售单价为x 元,B 型号空调的销售单价为y 元,依题意可得:{4x +5y =205005x +10y =33500, 解得:{x =2500y =2100, 答:A 型号空调的销售单价为2500元,B 型号空调的销售单价为2100元.(2)由(1)题知A 型号空调的销售单价为2500元,B 型号空调的销售单价为2100元, 则销售总利润为:(2500﹣2000)(4+5)+(2100﹣1700)(5+10)=10500(元); 答:近两周的销售利润为10500元.24.(10分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB =∠EHF ,∠C =∠D .试说明:∠A =∠F .请同学们补充下面的解答过程,并填空(理由或数学式).解:∵∠AGB =∠DGF ( 对顶角相等 )∠AGB =∠EHF (已知)∴∠DGF =∠EHF ( 等量代换 )∴ BD ∥ CE ( 同位角相等,两直线平行 )∴∠D = ∠CEF ( 两直线平行,同位角相等 )∵∠D =∠C (已知)∴ ∠CEF =∠C ( 等量代换 )∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)【解答】解:∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠D=∠CEF(两直线平行,同位角相等)∵∠D=∠C(已知)∴∠CEF=∠C(等量代换)∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)故答案为:对顶角相等;等量代换;BD;CE;同位角相等,两直线平行;∠CEF;两直线平行,同位角相等;∠CEF;等量代换;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年河北省邢台市沙河市七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.方程组的解是()A.B.C.D.2.∠1与∠2是内错角,∠1=40°,则()A.∠2=40°B.∠2=140°C.∠2=40°或∠2=140°D.∠2的大小不确定3.下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1) D.x2﹣16+6x=(x+4)(x﹣4)+6x4.下面四个图形中,能判断∠1>∠2的是()A.B.C.D.5.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y26.不一定在三角形内部的线段是()A.三角形的角平分线 B.三角形的中线C.三角形的高D.以上皆不对7.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b8.下列说法中,正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.三角形的外角等于两个内角的和D.若三条直线两两相交,则共有6对对顶角9.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题(共8小题,每小题3分,满分24分)11.分解因式:ab2﹣a=.12.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.13.有一种原子的直径约为0.00000053米,用科学记数法表示为.14.三角形的两边长分别为3和5,那么第三边a的取值范围是.15.若a2﹣b2=,a﹣b=﹣,则a+b的值为.16.如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=度.17.若关于x的不等式(1﹣a)x>3可化为,则a的取值范围是.18.如果a,b,c是整数,且a c=b,那么我们规定一种记号(a,b)=c,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣2,1)=.三、解答题(共8小题,满分66分)19.用合适的方法解方程组:.2021图,已知EF∥AD,∠1=∠2,∠BAC=68°,求∠AGD的度数.21.化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.22.在△ABC中,如果∠A、∠B、∠C的外角的度数之比是4:3:2,求∠A的度数.23.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.24.(1)实验与观察:(用“>”、“=”或“<”填空)当x=﹣5时,代数式x2﹣2x+21;当x=1时,代数式x2﹣2x+21;…(2)归纳与证明:换几个数再试试,根据前面的实验观察你能发现怎样的规律?请写出来,并说明它是正确的;(3)拓展与应用:求代数式a2+b2﹣6a﹣8b+30的最小值.25.如图,已知∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,点E在BC的延长线上.(1)试说明CD∥AB的理由;(2)CD是∠ACE的角平分线吗?为什么?26.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少2021购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.2020-2021学年河北省邢台市沙河市七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.方程组的解是()A.B.C.D.【考点】解二元一次方程组.【分析】根据x、y的系数互为相反数,利用加减消元法求解即可.【解答】解:,①+②得,3x=6,解得x=2,把x=2代入②得,2+y=3,解得y=1,所以,方程组的解是.故选A.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.2.∠1与∠2是内错角,∠1=40°,则()A.∠2=40°B.∠2=140°C.∠2=40°或∠2=140°D.∠2的大小不确定【考点】同位角、内错角、同旁内角.【分析】两直线平行时内错角相等,不平行时无法确定内错角的大小关系.【解答】解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等.故选D.【点评】特别注意,内错角相等的条件是两直线平行.3.下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1) D.x2﹣16+6x=(x+4)(x﹣4)+6x【考点】因式分解的意义.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【解答】解:A、是多项式乘法,故选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故选项错误;C、提公因式法,故选项正确;D、右边不是积的形式,故选项错误.故选:C.【点评】此题考查了因式分解的意义;这类问题的关键在于能否正确应用分解因式的定义来判断.4.下面四个图形中,能判断∠1>∠2的是()A.B.C.D.【考点】三角形的外角性质.【分析】根据图象,利用排除法求解.【解答】解:A、∠1与∠2是对顶角,相等,故本选项错误;B、根据图象,∠1<∠2,故本选项错误;C、∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D、∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D.【点评】本题主要考查学生识图能力和三角形的外角性质.5.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y2【考点】幂的乘方与积的乘方.【分析】根据积的乘方的知识求解即可求得答案.【解答】解:(2x3y)2=4x6y2.故选:A.【点评】本题考查了积的乘方,一定要记准法则才能做题.6.不一定在三角形内部的线段是()A.三角形的角平分线 B.三角形的中线C.三角形的高D.以上皆不对【考点】三角形的角平分线、中线和高.【分析】根据三角形的角平分线、中线、高线的定义解答即可.【解答】解:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,不一定在三角形内部的线段是三角形的高.故选C.【点评】本题考查了三角形的角平分线、中线和高,是基础题,熟记概念是解题的关键.7.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【考点】实数与数轴.【分析】根据数轴判断出a、b、c的正负情况,然后根据不等式的性质解答.【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.【点评】本题考查了实数与数轴,不等式的基本性质,根据数轴判断出a、b、c的正负情况是解题的关键.8.下列说法中,正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.三角形的外角等于两个内角的和D.若三条直线两两相交,则共有6对对顶角【考点】命题与定理.【分析】利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、若两条直线被第三条直线所截,则同旁内角互补,错误;B、相等的角是对顶角,错误;C、三角形的外角等于不相邻的两个内角的和,故错误;D、若三条直线两两相交,则共有6对对顶角,故正确;故选D.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平行线的性质、对顶角的性质、三角形的外角的性质,属于基础知识,难度较小.9.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据x,y之和是10可得x+y=10,x比y的3倍还大2可得x=3y+2,联立两个方程即可.【解答】解:由题意得:,故选:A.【点评】此题主要考查了有实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.4个B.3个C.2个D.1个【考点】平行线的判定;三角形内角和定理;三角形的外角性质.【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.【解答】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠EAC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)=180°﹣(180°﹣∠ABC)=90°﹣∠ABC,∴③正确;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴④正确;即正确的有4个,故选A.【点评】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.二、填空题(共8小题,每小题3分,满分24分)11.分解因式:ab2﹣a=a(b+1)(b﹣1).【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为140m.【考点】生活中的平移现象.【分析】利用平移的性质直接得出答案即可.【解答】解:根据题意得出:小桥可以平移到矩形的边上,得出小桥的长等于矩形的长与宽的和,故小桥总长为:280÷2=140(m).故答案为:140.【点评】此题主要考查了生活中的平移,根据已知正确平移小桥是解题关键.13.有一种原子的直径约为0.00000053米,用科学记数法表示为 5.3×10﹣7.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为5.3,10的指数为﹣7.【解答】解:0.000 000 53=5.3×10﹣7.故答案为:5.3×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.三角形的两边长分别为3和5,那么第三边a的取值范围是2<a<8.【考点】三角形三边关系.【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【解答】解:根据三角形的三边关系:5﹣3<a<3+5,解得:2<a<8.故答案为:2<a<8.【点评】此题主要考查了三角形的三边关系,题目比较基础,只要掌握三角形的三边关系定理即可.15.若a2﹣b2=,a﹣b=﹣,则a+b的值为.【考点】平方差公式.【分析】根据平方差公式分解因式,再代入求出即可.【解答】解:∵a2﹣b2=,a﹣b=﹣,∴(a+b)(a﹣b)=,∴a+b=÷(﹣)=﹣,故答案为:﹣.【点评】本题考查了平方差公式的应用,主要考查学生对平方差公式的理解能力和计算能力,难度适中.16.如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=30度.【考点】平行线的性质;角平分线的定义.【分析】根据平行线的性质得到∠EFD=∠1,再由FG平分∠EFD即可得到.【解答】解:∵AB∥CD∴∠EFD=∠1=60°又∵FG平分∠EFD.∴∠2=∠EFD=30°.【点评】本题主要考查了两直线平行,同位角相等.17.若关于x的不等式(1﹣a)x>3可化为,则a的取值范围是a>1.【考点】不等式的性质.【分析】根据不等式的性质3,可得答案.【解答】解:关于x的不等式(1﹣a)x>3可化为,1﹣a<0,a>1,故答案为:a>1.【点评】本题考查了不等式的性质,不等式的两边都乘或都除以同一个负数,不等号的方向改变.18.如果a,b,c是整数,且a c=b,那么我们规定一种记号(a,b)=c,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣2,1)=0.【考点】零指数幂.【专题】新定义.【分析】根据题中所给的定义进行计算即可.【解答】解:∵32=9,记作(3,9)=2,(﹣2)0=1,∴(﹣2,1)=0.故答案为:0.【点评】本题考查的是0指数幂,属新定义型题目,比较新颖.三、解答题(共8小题,满分66分)19.用合适的方法解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①﹣②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2021图,已知EF∥AD,∠1=∠2,∠BAC=68°,求∠AGD的度数.【考点】平行线的判定与性质.【分析】由EF与AD平行,利用两直线平行同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与AB平行,利用两直线平行同旁内角互补即可求出所求角的度数.【解答】解:∵EF∥AD,∴∠1=∠3,又∵∠1=∠2,∴∠2=∠3,∴AB∥DG,∴∠BAC+∠AGD=180°,∵∠BAC=68°,∴∠AGD=112°.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.21.化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.【考点】整式的混合运算—化简求值.【专题】压轴题.【分析】根据完全平方公式,多项式乘多项式的法则,多项式除单项式的法则化简,然后再代入数据计算求解.【解答】解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=y﹣x,当x=﹣2,y=时,原式=﹣(﹣2)=.【点评】本题考查了完全平方公式,多项式乘多项式,多项式除单项式,去括号要注意符号的正确处理.22.在△ABC中,如果∠A、∠B、∠C的外角的度数之比是4:3:2,求∠A的度数.【考点】多边形内角与外角.【专题】计算题.【分析】因为三角形的外角和为360°,可首先求出与∠A,∠B,∠C相邻的三个外角的度数,则可求出∠A的度数.【解答】解:设∠A、∠B、∠C的外角分别为∠1=4x度、∠2=3x度、∠3=2x度.因为∠1、∠2、∠3是△ABC的三个外角,所以4x+3x+2x=360,解得x=40.所以∠1=160°、∠2=12021∠3=80°.因为∠A+∠1=180°,所以∠A=2021【点评】本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理,即三角形的一个外角等于与它不相邻的两个内角之和.23.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【考点】解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.【点评】此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.24.(1)实验与观察:(用“>”、“=”或“<”填空)当x=﹣5时,代数式x2﹣2x+2>1;当x=1时,代数式x2﹣2x+2=1;…(2)归纳与证明:换几个数再试试,根据前面的实验观察你能发现怎样的规律?请写出来,并说明它是正确的;(3)拓展与应用:求代数式a2+b2﹣6a﹣8b+30的最小值.【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)利用代入法把x的值代入代数式可得答案;(2)首先把代数式变形为(x﹣1)2+1,根据非负数的性质可得,(x﹣1)2≥0,进而得到(x﹣1)2+1≥1;(3)首先把代数式化为(a﹣3)2+(b﹣4)2+5,根据偶次幂具有非负性可得(a﹣3)2≥0,(b﹣4)2≥0,进而得到(a﹣3)2+(b﹣4)2+5≥5.【解答】解:(1)把x=﹣5代入x2﹣2x+2中得:25+10﹣2=33>1;把x=1代入x2﹣2x+2中得:1﹣2+1=1;(2)∵x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,X为任何实数时,(x﹣1)2≥0,∴(x﹣1)2+1≥1;(3)a2+b2﹣6a﹣8b+30=(a﹣3)2+(b﹣4)2+5.∵(a﹣3)2≥0,(b﹣4)2≥0,∴(a﹣3)2+(b﹣4)2+5≥5,∴代数式a2+b2﹣6a﹣8b+30的最小值是5.【点评】此题主要考查了配方法的运用,非负数的性质,关键是掌握偶次幂具有非负性.25.如图,已知∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,点E在BC的延长线上.(1)试说明CD∥AB的理由;(2)CD是∠ACE的角平分线吗?为什么?【考点】平行线的判定与性质.【分析】(1)由角平分线的性质得出∠ABD=∠DBC,由已知条件∠DBC=∠D,得出∠ABD=∠D,由平行线的判定方法即可得出CD∥AB;(2)由平行线的性质得出∠DCE=∠ABC,∠ACD=∠A,由已知条件∠A=∠ABC,得出∠ACD=∠DCE 即可.【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠DBC=∠D,∴∠ABD=∠D,∴CD∥AB;(2)解:CD是∠ACE的角平分线;理由如下:∵CD∥AB,∴∠DCE=∠ABC,∠ACD=∠A,∵∠A=∠ABC,∴∠ACD=∠DCE,∴CD是∠ACE的角平分线.【点评】本题考查了平行线的判定与性质、角平分线的定义;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.26.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少2021购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】压轴题.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.【点评】本题考查了二元一次方程组的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.。

相关文档
最新文档