平行线练习题提高
人教版四年级数学上册提高练习题《平行与垂直》

《平行与垂直》提高练习1.选择题。
(1)两条直线相交成直角,就说这两条直线()。
A. 相互平行B. 互相垂直C. 相互交叉(2)在长方形中,每组对边()。
A. 相互平行B. 互相垂直C. 相互交叉(3)两条直线互相垂直,这两条直线相交所成的角一定是()。
A. 锐角B. 钝角C. 直角(4)在同一平面内不重合的两条直线()。
A.相交 B. 平行 C. 不相交就平行(5)已知直线a与直线c互相平行,直线b与直线c互相平行。
那么,直线a与直线b ()。
A.互相平行B.互相垂直C.无法确定2.E H L Z K(1)只存在线段互相平行的字母有:。
(2)只存在线段互相垂直的字母有:。
(3)既存在线段互相平行,又存在互相平行的的字母有: 。
3.下面的图形中,有几组互相平行的线段,有几组互相垂直的线段?( )组平行线( )组平行线( )组垂线 ( )组垂线( )组平行线 ( )组平行线( )组垂线 ( )组垂线《垂线、平行线的画法(1)》提高练习1.判一判。
(1)在同一平面内,能画出无数条已知直线的垂线。
( )(2)数学课本的上边与右边是互相平行的。
( )(3)两条直线互相垂直时,相交成的四个角都是直角。
( )(4)互相平行的两条线段经过无限延长后,终究会相交的。
( )2.过三角形的三个顶点分别向对边画垂线,你发现了什么?我发现:《垂线、平行线的画法(2)》提高练习1.判一判。
(1)在同一平面内,过一点可以画无数条直线与已知直线平行。
( )A(2)我们可以利用学过的画垂线与平行线的方法来画长方形。
()(3)正方形的邻边是互相垂直的。
()(4)与一条直线平行的直线只有1条。
()2.想一想,画一画。
(1)画一个周长是20厘米的正方形。
(2)一线段AB为长方形的一条边画一个长方形,并且这个长方形的一条边经过点C。
A.CB3.一个长方形的周长是16厘米,长是5厘米。
(1)这个长方形的宽是多少厘米?(2)请画出这个长方形。
平行线的判定练习题(有答案)

平行线的判定练习题(有答案)平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定--- 第 1 页共 1 页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第 2 页共 2 页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第 3 页共 3 页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第 4 页共 4 页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第 5 页共 5 页平行线测姓名:一、选择题1.下列命题中,不正确的是____ [ ]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______ [ ](2题)(5题)(3题)(7题) (8题)A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件: (1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180° (4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3) B.(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直 B.互相平行 C.相交 D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30° B.60° C.90° D.120°二、填空题 9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。
初二平行线的判定经典练习题

初二平行线的判定经典练习题平行线是初中数学中的重要概念之一,它在几何学中有着广泛的应用。
平行线的判定方法有很多种,下面将介绍一些经典的练习题,帮助大家掌握平行线的判定方法。
1. 判断下列直线是否平行:(1)直线l1:y = 2x + 1,直线l2:3x - 4y = 7(2)直线l1:2x - y + 3 = 0,直线l2:4x - 2y + 6 = 0(3)直线l1:x - 2y - 3 = 0,直线l2:2x - 4y - 6 = 0解答:(1)两直线斜率相等,l1的斜率为2,l2的斜率为3/4,不相等,因此两直线不平行。
(2)两直线斜率相等,l1的斜率为2/1,l2的斜率为4/2,相等,因此两直线平行。
(3)两直线斜率相等,l1的斜率为1/2,l2的斜率为2/4,相等,因此两直线平行。
2. 已知线段AB且CD平行于AB,点E是线段CD上的点,若DE = 2cm,DC = 5cm,BC = 10cm,求AE的长度。
解答:由线段比例定理可知:AE/EC = AB/BC代入已知条件,得到:AE/5 = 10/10解方程得到:AE = 5cm3. 如图,AB // DE,CB是三角形ACD的角平分线,若∠ACD = 60°,求∠CAB和∠ECB。
解答:由平行线性质可知,∠CAB = ∠ACD = 60°由角平分线性质可知,∠ECB = 1/2 * ∠ACD = 1/2 * 60° = 30°4. 在平面直角坐标系中,有四点A(1, 2),B(3, -1),C(4, 5),D(6, 2),判断线段AB和线段CD是否平行。
解答:利用斜率公式计算:线段AB的斜率为:(2 - (-1))/(1 - 3) = 3/(-2) = -3/2线段CD的斜率为:(2 - 5)/(6 - 4) = -3/2两斜率相等,因此线段AB与线段CD平行。
5. 如图,已知AB // EF,且∠BCD = 90°,AC = 6cm,BC = 8cm,DE = 4cm,求EF的长度。
平行线判定大题30道

平行线判定大题1. 什么是平行线?平行线是在同一个平面上,永远不会相交的直线。
如果两条直线在平面上没有任何交点,那么它们就是平行线。
2. 平行线的判定方法判定两条直线是否平行有多种方法,下面介绍常用的几种方法:2.1 利用角度关系判定如果两条直线的斜率相等,并且它们不重合,则这两条直线是平行的。
步骤:1.计算两条直线的斜率。
2.如果斜率相等,则这两条直线是平行的;否则,它们不是平行的。
2.2 利用向量关系判定如果两条直线上的向量方向相同,则这两条直线是平行的。
步骤:1.将两条直线表示为一般式方程。
2.提取出方程中的系数作为向量。
3.如果两个向量方向相同或反向,则这两条直线是平行的;否则,它们不是平行的。
2.3 利用距离关系判定如果一条直线与另一条直线上任意一点之间的距离都相等,则这两条直线是平行的。
步骤:1.计算两条直线上任意一点到另一条直线的距离。
2.如果距离相等,则这两条直线是平行的;否则,它们不是平行的。
3. 平行线判定大题练习下面是30道平行线判定大题,供你练习和巩固所学知识。
1.判断直线y = 2x + 3和y = -3x + 5是否平行。
2.判断直线3x - 4y = 6和6x - 8y = 12是否平行。
3.判断直线2x + y - 3 = 0和4x + 2y - 6 = 0是否平行。
4.判断直线2x - y + 1 = 0和4x - 2y + 2 = 0是否平行。
5.判断直线y = x + 1和y = x - 1是否平行。
6.判断直线2x + y + 5 = 0和4x + y + k = 0是否平行,k为常数。
7.判断直线3x - ky - k^2 = k和6x - ky - k^2 = k是否平行,k为常数。
8.判断过点A(1,2)且斜率为-3的直线和过点B(5,8)且斜率为-3的直线是否平行。
9.判断过点A(2,3)且斜率为2的直线和过点B(4,7)且斜率为-0.5的直线是否平行。
平行线的判定专项练习题有答案

平行线的判定专项练习题有答案Last revised by LE LE in 20211.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗为什么14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行为什么19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗为什么22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF 平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,D E⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗为什么45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN 平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC 上,EF⊥AB,垂足为F.(1)CD与EF平行吗为什么(2)如果∠1=∠2,DG∥BC吗为什么51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗(2)AB∥CD吗为什么56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗AB与CD呢若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行。
几何平行练习题

几何平行练习题练习一:平行线与平面1. 在平面P上,画一条直线AB,并以点C为中心、画一条与AB 平行的直线CD。
a) 证明直线CD和直线AB平行。
b) 若直线AB与另一条直线EF相交于点G,证明直线CD与直线EF平行。
2. 平面P上有一条直线AB和另一条直线CD,且这两条直线不在同一平面内。
a) 证明直线AB与直线CD平行。
b) 若直线CD与另一条直线EF相交于点G,证明直线AB与直线EF平行。
练习二:判断平行线1. 已知直线AB和直线CD平面上不重合且不相交,且它们的方向相同。
a) 证明直线AB与直线CD平行。
b) 若直线AB与另一条直线EF相交于点G,证明直线CD与直线EF平行。
2. 已知直线AB和直线CD平面上不重合且不相交,且它们的方向相反。
a) 证明直线AB与直线CD平行。
b) 若直线AB与另一条直线EF相交于点G,证明直线CD与直线EF平行。
练习三:平行线之间的性质1. 在△ABC中,直线DE与直线AB和直线AC平行,分别交边AB于点D、边AC于点E。
a) 证明直线DE与边BC平行。
b) 若直线FG与直线BC平行,交边AB于点F、边AC于点G,证明直线FG与直线DE平行。
2. 在△ABC中,直线DE和直线FG分别平行于边BC,分别交边AB于点D和F、边AC于点E和G。
a) 证明直线DE和直线FG平行。
b) 若直线HI与直线BC平行,交边AB于点H、边AC于点I,证明直线HI与直线DE、直线FG都平行。
练习四:平行线的证明1. 在平面P上,已知三条平行线l1,l2,l3。
a) 若直线m与l1平行且交直线l2于点A,证明直线m与直线l3平行。
b) 若直线n与直线l1平行且交直线l3于点B,证明直线n与直线l2平行。
2. 已知四条平行线l1,l2,l3,l4。
a) 若直线m通过直线l1,l2之间的交点且与直线l3平行,证明直线m与直线l4平行。
b) 若直线n通过直线l1,l2之间的交点且与直线l4平行,证明直线n与直线l3平行。
平行线的练习题

平行线的练习题一、选择题1. 在同一平面内,不相交的两条直线叫做平行线。
这种说法正确吗?A. 正确B. 错误2. 如果直线a平行于直线b,直线b平行于直线c,那么直线a与直线c的关系是什么?A. 平行B. 垂直C. 相交D. 不确定3. 根据平行线的性质,下列说法错误的是:A. 平行线之间的距离处处相等B. 平行线永远不会相交C. 平行线可以是曲线D. 平行线具有相同的斜率二、填空题4. 如果直线l1与直线l2平行,那么它们的斜率k1和k2的关系是______。
5. 在平面直角坐标系中,若直线l1的方程为y=2x+3,直线l2的方程为y=2x+b,那么直线l1与直线l2的关系是______。
6. 两条平行线之间的距离是指它们之间的最短距离,这个距离是______。
三、判断题7. 平行线之间的夹角总是90度。
()8. 在平面几何中,两条平行线可以确定一个平面。
()9. 如果两条直线的斜率相等,那么这两条直线一定是平行的。
()四、简答题10. 请简述平行线的性质有哪些。
11. 请解释为什么在平面直角坐标系中,两条直线的斜率相等是它们平行的必要条件。
五、计算题12. 在平面直角坐标系中,已知直线l1的方程为y=3x-1,直线l2的方程为y=3x+c。
求直线l1与直线l2平行时,c的值。
13. 若直线l1与直线l2平行,且直线l1经过点A(2,5)和点B(4,11),求直线l2的方程,它经过点C(-1,2)。
六、证明题14. 已知三角形ABC中,AB平行于CD,证明AC与BD的交点E是三角形ABC的中心。
15. 已知直线l1和直线l2平行,且直线l1与x轴交于点P,直线l2与x轴交于点Q,证明PQ的长度等于l1和l2之间的距离。
七、应用题16. 一个长方形的长是10米,宽是5米,求这个长方形的对角线的长度。
17. 在一个平面直角坐标系中,有两条平行线l1和l2,它们之间的距离是4厘米。
如果直线l1的方程是y=2x+6,求直线l2的方程,它与直线l1的距离保持不变。
平行线练习题 → 垂直线练习题

平行线练习题→ 垂直线练习题
平行线和垂直线是几何学中的基本概念。
熟练掌握这些概念对于解决几何问题非常重要。
下面是一些练题,帮助你巩固对平行线和垂直线的理解。
平行线练题
1. 画出可以与给定线段平行的线段。
(提示:使用直尺)
2. 在下图中,找出所有与线段 $AB$ 平行的线段。

3. 如果两条直线平行,则它们的斜率之间有什么关系?给出一个例子来解释。
4. 判断下列陈述是否正确,并给出理由:
1) 如果两组平行线经过同一个点,那么这两组平行线之间也是平行的。
2) 如果两组平行线之间有一条平行线,那么这两组平行线之间也是平行的。
垂直线练题
1. 选出与给定线段垂直的线段。
(提示:使用直尺和量角器)
2. 在下图中,找出所有与线段 $CD$ 垂直的线段。

3. 如果两条直线垂直,则它们的斜率之间有什么关系?给出一个例子来解释。
4. 判断下列陈述是否正确,并给出理由:
1) 如果两组垂直线经过同一个点,那么这两组垂直线之间也是垂直的。
2) 如果两组垂直线之间有一条垂直线,那么这两组垂直线之间也是垂直的。
以上题目可以帮助您加深对平行线和垂直线的理解。
为了进一步巩固这些概念,您可以多做一些相关的练习题,并尝试应用它们解决几何问题。
祝您练习愉快!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线判定与性质提高题
姓名
1、如图1,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ) A 、10° B 、15° C 、20° D 、30°
2、如图2,CD AB //,且
25=∠A ,
45=∠C ,则E ∠的度数是( )
A 、
60 B 、
70 C 、 110 D 、
80
3、如图3,已知AB ∥CD ,则角α、β、γ之间的关系为( )
(A )α+β+γ=1800 (B )α—β+γ=1800 (C )α+β—γ=1800 (D )α+β+γ=3600 4、如图4,已知AB //DE ,∠ABC =80°,∠CDE =140°,则∠BCD = 5、如图所示,AB ∥ED ,∠B =48°,∠D =42°, 证明:BC ⊥CD 。
(选择一种辅助线)
6、如图,若AB ∥CD ,猜想∠A 、∠E 、∠D 之间的关系,并证明之。
7、如图,AB ∥CD ,∠BEF =85°,求∠ABE +∠EFC+∠FCD 的度数。
8、如图,∠ABC +∠ACB =110°,BO 、CO 分别平分∠ABC 和∠ACB,EF 过点O 与BC 平行,求∠BOC 。
9、如图,已知AB ∥CD ,∠1=100°,∠2=120°,求∠α。
E D C B A
F E D
A
B C
F E A
O
B
C
α21
F E D
C
B
A
A
B P
C D 图1 E D C B A 图2
A B C D
E α β γ 图3 图4
E
D
C
B A
10、已知AB ∥CD ,∠B=65°,CM 平分∠BCE ,∠MCN=90°,求∠DCN 的度数.
11、.如图,CD ∥AB ,∠DCB=70°,∠CBF=20°,∠EFB=130°, 问直线EF 与AB 有怎样的位置关系,为什么?
12、如图,DB ∥FG ∥EC ,A 是FG 上的一点,∠ABD =60°,∠ACE =36°,
AP 平分∠BAC ,求∠PAG 的度数。
13、如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°,求∠AGD 的度数。
14、如右图,光线a 照射到平面镜CD 上,然后在平面镜AB 和CD 之间
来回反射,这时光线的入射角等于反射角,即∠1=∠6,∠5=∠3,∠2=∠4。
若已知∠1=55°,∠3=75°,求∠2的度数。
15、已知:如图,直线AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,∠BEF 的平分线与∠DFE 的平分线相交于点P ;试求∠P 的大小.
N M E D C B A
F E D C
B
A _G _F _E _P
_D _C _B _A 123456a A
B
C D
A B
E
P
F C D。