平行线的性质练习题(含答案)

合集下载

七年级下册数学第五章第3节《平行线的性质》提高训练题 (25)(含答案解析)

七年级下册数学第五章第3节《平行线的性质》提高训练题 (25)(含答案解析)
9.见解析
【解析】
由平行线的性质可得∠A=∠3,由∠1=∠2可得AC∥DE,进而可得∠3=∠E,进一步即可得出结论.
解:∵AD∥BE(已知),
∴∠A=∠3(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴AC∥DE(内错角相等,两直线平行),
∴∠3=∠E(两直线平行,内错角相等),
∴∠A=∠E(等量代换).
七年级下册数学第五章第3节《平行线的性质》提高训练题 (25)
一、单选题
1.如图,将三角板的直角顶点放在直尺的一边上,若∠1=25°,则∠2的度数为()
A.55°B.60°C.65°D.75°
2.如图,已知CB∥DF,则下列结论成立的是()
A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠1+∠2=180º
2.B
【解析】
根据两条直线平行,同位角相等,即可判断.
解:∵CB∥DF,
∴∠2=∠3(两条直线平行,同位角相等).
故选:B.
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
3.C
【解析】
根据两条直线平行,同位角相等得∠1的同位角是40°,再根据平角的定义和垂直定义即可求得∠2.
解:∵a∥b,
26.如图 ∥ , ____________
27.如图,若a//b,则图中x的度数是______________度.
28.一副直角三角尺按如图1所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,当两块三角尺至少有一组边互相平行,则∠BAD(0°<∠BAD<90°)所有符合条件的度数为_____.
∵FG⊥AB,CD⊥AB(已知).
∴∠GFB=90°,∠CDB=90°(垂直的定义).

2014-2015学年度《平行线的性质》练习题(含答案)

2014-2015学年度《平行线的性质》练习题(含答案)

4 .如图,AB// DE / B+/ C+/ »( )2014-2015学年度《平行线的性质》练习题仁40°,则/ 2的度数为()。

.130 ° D . 140°,则/ 3等于( ).70°C =/ » 120°,那么,/ CBF 是/ EAD 的A 、5 倍B 、4 倍C 、1 D5A . 120 °B • 125° C1 •把一块直尺与一块三角板如图放置,若/2 •如图,直线 11 〃|2,/ 1=40°,/ 2=75A、180°B、360°C、540°D、270°5. 如图all b,点P在直线a上,点A B、C都在直线b上,且PA= 2cm, =4cm,则a、b间的距离A、等于2cmB、大于2cmC、小于2cmD、不大于2cm6. 如图,已知h〃l2〃l3,相邻两条平行直线间的距离相等,若等腰直角△A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线8 .如图所示,/ 1与/ 2互补,/ 3= 135 °,则/ 4的度数是(PB=3cm PCABC的三个sin 的值是A. 1B. 617C. D.10107•命题垂直于同一条直线的两条直线互相平行的题设是()顶点分别在这三条平行直线上,则B. 55C. 65 °D. 75°9.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1) / 1 = 7 / 3=7 4; (3)7 2+7 4 = 90°; (4)7 4 +7 5 = 180°.其中正确的个数为(B. 2C. 3D. 410 .下列命题不正确的是 ( )A. 两直线平行,同位角相等B. 两点之间直线最短C. 对顶角相等D. 垂线段最短11.如图,把一块含有45。

角的直角三角板的两个顶点放在直尺的对边上, 如果7 那么7 2的度数是()2 ;(2))1 = 20 °, A . 45A. 15B. 20°C. 25 °D. 30°B. 45°C. 60 °D. 7513 •对假命题 任何一个角的补角都不小于这个角 ”举反例,正确的反例是( )A.Z a= 60 °, / a 的补角/ 3= 120 °, / aB .Z a= 90 ° / a 的补角/ 3= 90 ° / B=/ a C. Z a= 100 °, Z a 的补角 Z 3= 80 °, Z 3<Z a D. 两个角互为邻补角 14 .下列说法不正确的是 ( )A. 定理是命题,而且是真命题B. 对顶角相等”是命题,但不是定理C. 同角(或等角)的余角相等”是定理D. 同角(或等角)的补角相等 堤定理15 .如图,直线 a // b // c ,直角三角板的直角顶点落在直线 b 上,若Z 1 = 36°则Z 2等于()/ CAE = 30 °, / DBE = 45 °,则/ AEB 等于(A. 36B. 44C. 54D. 6416 .如图,AE 平分/ BAC, CE平分/ ACD,且AB// CD,则/ AEC等于()17 .下列图形中,由AB / CD,能使得/ 1 =Z 2成立的是()A.B.BB. 80 °C. 100 °D. 90 °18 .如图,小明在操场上从 A 点出发,先沿南偏东 30。

平行线练习题答案

平行线练习题答案

平行线练习题答案平行线练习题答案在几何学中,平行线是指在同一平面内永不相交的两条直线。

平行线的性质和关系在数学中具有重要的意义,因此在学习几何学的过程中,经常会遇到与平行线相关的练习题。

本文将为大家提供一些常见的平行线练习题,并给出详细的答案解析。

练习题1:已知直线AB与直线CD平行,角A的度数为60°,求角D的度数。

解析:由于直线AB与直线CD平行,根据平行线性质可知,角A和角D是同位角。

同位角是指两条平行线被一条截线所切割所形成的对应角,它们的度数相等。

因此,角D的度数也为60°。

练习题2:已知直线EF与直线GH平行,角E的度数为120°,求角H的度数。

解析:同样地,由于直线EF与直线GH平行,角E和角H也是同位角。

根据平行线性质,同位角的度数相等。

因此,角H的度数也为120°。

练习题3:已知直线IJ与直线KL平行,角J的度数为80°,求角K的度数。

解析:根据题目中的信息,我们可以得知角J和角K是同位角。

根据平行线性质,同位角的度数相等。

因此,角K的度数也为80°。

练习题4:已知直线MN与直线OP平行,角M的度数为50°,求角O的度数。

解析:根据题目中的信息,我们可以得知角M和角O是同位角。

根据平行线性质,同位角的度数相等。

因此,角O的度数也为50°。

练习题5:已知直线QR与直线ST平行,角Q的度数为70°,求角S的度数。

解析:根据题目中的信息,我们可以得知角Q和角S是同位角。

根据平行线性质,同位角的度数相等。

因此,角S的度数也为70°。

通过以上练习题的解析,我们可以发现平行线的性质和关系是解决这类问题的关键。

在解答平行线练习题时,我们需要注意观察题目中给出的线段和角度信息,利用平行线的性质进行推理和计算。

除了以上的练习题,还有很多关于平行线的问题可以练习。

通过反复的练习和思考,我们可以更好地理解平行线的性质和应用,提高解题的能力。

5.3.1 平行线的性质 人教版七年级数学下册重难点专项练习(含答案)

5.3.1 平行线的性质 人教版七年级数学下册重难点专项练习(含答案)

5.3.1《平行线的性质》重难点题型专项练习考查题型一两直线平行同位角相等的应用典例1.(2022秋·重庆铜梁·七年级校考阶段练习)如图,直线,被直线所截,若,,则的度数为()A.B.C.D.【答案】A【分析】由,根据两直线平行,同位角相等,即可求得的度数,又由邻补角的定义即可求得的度数.【详解】解:如图:∵,,∴,∵,∴.故选:A.【点睛】此题考查了平行线的性质与邻补角的定义.解题的关键是熟练掌握平行线的性质,正确运用数形结合思想.变式1-1.(2022·四川德阳·模拟预测)如图,直线,将三角尺的直角顶点放在直线上,如果,那么的度数为( )A.B.C.D.【答案】A【分析】根据平行线的性质求出,由平角性质可知即可得出结论.【详解】如图:,,,故选:.【点睛】本题考查了平行线的性质,熟练运用平行线的性质推理是解题的关键.变式1-2.(2022·宁夏固原·校考模拟预测)如图,把一个三角尺的直角顶点放在直尺的一边上,如果,那么的大小为()A.B.C.D.【答案】D【分析】根据余角的定义求出,再根据两直线平行,同位角相等可得.【详解】解:∵,∴,∵直尺的两边互相平行,∴.故选:D.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式1-3.(2022秋·陕西西安·七年级校考期中)如图,将直尺与角的三角尺叠放在一起,若,则的大小是()A.B.C.D.【答案】B【分析】由三角尺可知,由平角可求,再根据平行线的性质可知.【详解】解:如图:由三角尺可知,∵,∴,由平行线的性质可知.故选:B.【点睛】本题考查了平行线的性质及直角三角形的性质,充分运用三角板和直尺的几何特征是解题的关键.考查题型二两直线平行内错角相等的应用典例2.(2021·新疆乌鲁木齐·校考一模)如图,直线,直角三角板的直角顶点C在直线上,一锐角顶点B在直线上,若,则的度数是()A.B.C.D.【答案】B【分析】先根据角的和差求出的度数,然后根据平行线的性质求解即可.【详解】解:如图,,,,又,.故选:B.【点睛】本题考查了平行线的性质,掌握两直线平行,内错角相等是解题的关键.变式2-1.如图,,,则的度数为()A.160B.140C.50D.40【答案】B【分析】利用平行线的性质先求解,再利用邻补角的性质求解即可.【详解】解:∵,,∴,∴,故选B.【点睛】本题考查的是平行线的性质,邻补角的性质,熟知两直线平行,内错角相等是解题的关键.变式2-2.(2022·河南洛阳·统考一模)如图,是的外角,,,,则的度数为( )A.B.C.D.【答案】B【分析】由可得进而即可求;【详解】∵,∴∵∴.故选:B.【点睛】本题主要考查平行线的性质,掌握“两直线平行,内错角相等”定理是解题的关键.变式2-3.如图,直线,被直线所截,,,则的度数为()A.20°B.40°C.50°D.140°【答案】B【分析】根据两直线平行内错角相等可得出答案.【详解】解:∵,,∴,故选:B.【点睛】本题考查了平行线的性质,熟知两直线平行,内错角相等是解本题的关键.考查题型三两直线平行同旁内角互补的应用典例3.(2022春·黑龙江哈尔滨·七年级校考阶段练习)如图,已知直线,,,则的度数为()A.B.C.D.【答案】D【分析】由,可得,由得,进而可求出的度数.【详解】解:如下图所示,∵,∴,∵,∴,∴∵,∴,∴,故选:D.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.变式3-1.如图,已知直线,把三角板的直角顶点放在直线b上.若,则的度数为()A.140°B.130°C.120°D.110°【答案】B【分析】根据互余计算出,再根据平行线的性质由得到.【详解】解:∵,∴,∵,∴.∴.故选:B.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式3-2.(2022秋·福建福州·七年级校考期中)如图,,,则( )A.B.C.D.【答案】C【分析】先利用对顶角相等,再利用两直线平行,同旁内角互补得出答案.【详解】解:,,,.故选:.【点睛】此题主要考查了平行线的性质,对顶角相等,熟练掌握性质是解答题的关键.变式3-3.如图,,平分交于点E,若,则( )A.B.C.D.【答案】A【分析】如图:根据平角的定义及角平分线的性质求得的度数,再根据平行线的性质求解即可.【详解】解:如图:∵,∴,∵平分∴,∵,∴,∴.故选:A.【点睛】本题主要考查了平行线的性质、角平分线的定义等知识点,灵活运用平行线的性质是解答本题的关键.考查题型四根据平行线的性质探究角的关系典例4.(2022秋·重庆铜梁·七年级校考期中)如图,已知,且∠C=110°,则∠1与∠2的数量关系为__________________ .【答案】【分析】过点C作,则,根据平行线的性质可得角之间的关系,从而∠1与∠2的数量关系即可求解.【详解】解:过点C作,如图:则,∴,,∵,∴,∴,∴.故答案为:.【点睛】本题考查了平行线的性质,解题的关键是作出平行线,利用平行线的性质得出角之间的关系.变式4-1.(2022·浙江杭州·杭州绿城育华学校校考模拟预测)如图,已知,,则______ .【答案】##180度【分析】根据两直线平行,同位角相等与两直线平行,同旁内角互补,得到,,等量代换即可求得的值.【详解】解:如图,设与交于点H,∵,,∴,,∴.故答案为:.【点睛】此题考查了平行线的性质.解题的关键是注意两直线平行,同位角相等与两直线平行,同旁内角互补定理的应用,注意数形结合思想的应用.变式4-2.(2022秋·内蒙古乌海·七年级校考期中)如图,AB∥EF,则∠A,∠C,∠E满足的数量关系是______.【答案】【分析】根据两直线平行,同旁内角互补可直接得到答案.【详解】如下图所示,过点C作,∵,∴(两直线平行,同旁内角互补),∵,,∴,∴(两直线平行,同旁内角互补),∴,∴,∴在原图中,故答案为:.【点睛】本题考查平行直线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.变式4-3.(2022秋·山东青岛·七年级统考期末)如图,直线AB//CD,∠AEM=2∠MEN,∠CFM=2∠MFN,则∠M和∠N的数量关系是________.【答案】∠EMF=∠ENF【分析】利用平行线的性质以及已知条件解决问题即可.【详解】解:过点M作MJ∥AB,过点N作NK∥AB.∵AB∥CD,∴MJ∥AB∥CD,NK∥AB∥CD,∴∠EMJ=∠AEM,∠FMJ=∠CFM,∠ENK=∠AEN,∠FNK=∠CFN,∴∠EMF=∠AEM+∠CFM,∠ENF=∠AEN+∠CFN,∵∠AEM=2∠MEN,∠CFM=2∠MFN,∴∠AEM+∠CFM=(∠AEN+∠CFN),即∠EMF=∠ENF.故答案为:∠EMF=∠ENF.【点睛】本题考查平行线的性质,解题的关键是学会探究规律的方法,属于中考常考题型.考查题型五利用平行线的性质求角的度数典例5.(2022秋·北京西城·七年级期中)如图,若,EF与AB,CD分别相交于点E,F,,平分线与EP相交于点P,,则__________°.【答案】【分析】由题可求出,然后根据两直线平行,同旁内角互补可知,根据角平分线的定义可得到结果.【详解】∵,∴,∵,∴,∵,∴,∵平分,∴.【点睛】本题考查了平行线的性质与角平分线的定义,以及三角形的内角和定理,注意数形结合思想是解题关键.变式5-1.(2022春·黑龙江哈尔滨·七年级哈尔滨市第四十九中学校校考阶段练习)如图,已知,,若,则________.【答案】【分析】先根据“两直线平行,内错角相等”得出,再根据“两直线平行,同旁内角互补”得出答案.【详解】如图所示.∵,∴.∵,∴,∴.故答案为:.【点睛】本题主要考查了平行线的性质,灵活选择平行线的性质是解题的关键.变式5-2.如图,,若,,则∠E=______.【答案】##66度【分析】如图所示,过点E作,则,根据两直线平行内错角相等分别求出,则.【详解】解:如图所示,过点E作,∵,∴,∴,∴,故答案为:.【点睛】本题主要考查了平行线的性质,正确作出辅助线求出是解题的关键.变式5-3.将一块长方形纸折成如图的形状,若已知,则____.【答案】【分析】根据平行线的性质以及折叠的性质,即可得到的度数.【详解】解:如图所示:∵,∴,∵由折叠可知,∴,故答案为:.【点睛】本题主要考查了平行线的性质和折叠的性质,根据题意正确作出辅助线是解答本题的关键.考查题型六平行线的判定与性质的综合应用典例6.(2022秋·陕西渭南·七年级统考期中)如图,已知点B、C在线段的异侧,连接,点E、F分别是线段上的点,连接,分别与交于点G,H,且,.(1)求证:;(2)若,求证:;(3)在(2)的条件下,若,求的度数.【答案】(1)证明见解析(2)证明见解析(3)【分析】(1)只需要证明即可证明;(2)先证明得到则,再由即可证明;(3)根据平行线的性质得到,,再结合已知条件求出的度数即可得到答案.【详解】(1)证明:∵,,,∴,∴;(2)证明:∵,∴,∴,∴,又∵,∴;(3)解:由(2)得,∴,,又∵,∴,∴,∴.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.变式6-1.(2022秋·广东东莞·七年级统考期中)如图,点,在线段的异侧,点,分别是线段,上的点,已知,.(1)求证:;(2)若,求证:;(3)在(2)的条件下,若,求的度数.【答案】(1)见解析(2)见解析(3)【分析】(1)已知,所以,又因为,可以得出即可判定;(2)已知,,可以得出,即可得出;(3)由(1)(2)可知,,可以得出,;可以得出,可以得出,又因为,即可求出的度数.【详解】(1)证明:,,,,;(2)证明:,,,,;(3),,,,,,,,.【点睛】本题考查了对顶角相等,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.变式6-2.如图,已知.(1)求证:;(2)若平分,交于点,交于点,且,求的度数.【答案】(1)见解析(2)【分析】(1)根据平行线的性质及等量代换得出,即可判定;(2)过点作,根据平行公理得出,根据平行线的性质及角平分线定义得到,根据三角形外角性质求解即可.【详解】(1)证明:∵,∴,∵,∴,∴;(2)解:如图,过点作,∵,∴,∴,∴,∵平分,∴,∴.【点睛】此题考查了平行线的判定与性质,角平分线的定义,熟记平行线的判定与性质是解题的关键.变式6-3.(2022秋·福建福州·七年级校考期中)如图,在中,,.(1)求证:;(2)若,,求的度数.【答案】(1)见解析(2)【分析】(1)由于,可判断,则,由得出判断出;(2)由,得到,由得出,得出的度数.【详解】(1)解:,理由如下:,,,,,;(2)解:,,,,,,.【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.。

平行线的证明100道经典习题练习(含答案)

平行线的证明100道经典习题练习(含答案)

平行线的证明100道经典习题练习(含答案在卷尾)一、选择题(本大题共64小题,共192.0分)1.一个三角形三个内角的度数之比是1:2:3,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形2.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘3.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠44.如图,直线a//b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A. 4个B. 3个C. 2个D. 1个5.如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A. 33°B. 23°C. 27°D. 37°6.命题“垂直于同一条直线的两条直线互相平行”的条件是().A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线7.如图,BC//DE,若∠A=35°,∠C=24°,则∠E等于()A. 24°B. 59°C. 60°D. 69°8.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A. 如图1,展开后测得∠1=∠2B. 如图2,展开后测得∠1=∠2且∠3=∠4C. 如图3,测得∠1=∠2D. 在图④中,展开后测得∠1+∠2=180°9.一次数学活动中,检验两条纸带 ①、 ②的边线是否平行,小明和小丽采用两种不同的方法:如图,小明对纸带 ①沿AB折叠,量得∠1=∠2=50∘;小丽对纸带 ②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A. 纸带 ①的边线平行,纸带 ②的边线不平行B. 纸带 ①的边线不平行,纸带 ②的边线平行C. 纸带 ① ②的边线都平行D. 纸带 ① ②的边线都不平行10.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=2B. a=−3,b=2C. a=3,b=−1D. a=−1,b=311.将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A. 40°B. 50°C. 60°D. 70°12.通过观察你能肯定的是()A. 图形中线段是否相等B. 图形中线段是否平行C. 图形中线段是否相交D. 图形中线段是否垂直13.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图:从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。

(完整版)平行线习题(含答案)(2)

(完整版)平行线习题(含答案)(2)

2019年4月16日初中数学作业学校: ______________ 姓名: _____________ 班级:_______________ 考号:______________一、单选题1. 如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A. 4条B. 3条C. 2条D. 1条【答案】B【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线a平行的,只能是一条,即与直线a相交的直线至少有3条,故选:B.【点睛】本题考查了平行线和相交线的应用,注意:经过直线外一点有且只有一条直线和已知直线平行.2. 下列说法中,正确的个数有()①在同一平面内不相交的两条线段必平行;②在同一平面内不相交的两条直线必平行;③在同一平面内不平行的两条线段必相交;④在同一平面内不平行的两条直线必相交.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据平面内直线和线段的位置关系判断.详解】解:(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选:B.【点睛】本题主要考查在同一平面内两直线的位置关系,需要注意(1)和(3)说的是线段.3.下列表示平行线的方法正确的是()A. ab// cdB. A // BC. a// BD. a// b【答案】D【解析】【分析】根据平行线的表达方法来判断即可得出结论.【详解】解:直线可以用两个大写字母表示,也可以用一个小写字母表示,故正确的表示方法是D.故答案为:D【点睛】本题主要考查了学生对平行线的表达方法的掌握情况,掌握平行线的表达方法是解题的关键.4 .在同一平面内,下列说法正确的是()A .没有公共点的两条线段平行B .没有公共点的两条射线平行C.不垂直的两条直线一定互相平行D .不相交的两条直线一定互相平行【答案】D【解析】【分析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.详解】A. 在同一平面内,没有公共点的两条线段不一定平行,故本选项错误;B. 在同一平面内,没有公共点的两条射线不一定平行,故本选项错误;C. 在同一平面内,不垂直的两条直线不一定互相平行,故本选项错误;D. 在同一个平面内,不相交的两条直线一定互相平行,故本选项正确;【点睛】此题考查了平行线的判定.解题的关键是熟记平行线的定义.5.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B. 同一平面内两条不相交的直线是平行线C. 在同一平面内,过一点只能画一条直线与已知直线垂直D. 在同一平面内,经过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据平行线的定义及平行公理进行判断.【详解】A 中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误B. C. D 是公理,正确.故选A.【点睛】本题考查了平行线的定义和公理,熟练掌握定义和公理是解题的关键.6.在同一平面内,无公共顶点的两个直角,如果它们有一条边共线,那么另一边互相( )A •平行B.垂直C.共线 D.平行或共线【答案】A【解析】【分析】结合图形,由平行线的判断定理进行分析.【详解】如图所示:n n无公共顶点的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行•故选A.【点睛】本题考查了平行线的判定,熟练掌握判定定理是解题的关键7 .下列结论正确的是()A .过一点有且只有一条直线与已知直线垂直B. 过一点有且只有一条直线与已知直线平行C. 在同一平面内,不相交的两条射线是平行线D. 如果两条直线都与第三条直线平行,那么这两条直线互相平行【答案】D【解析】【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【详解】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选D.【点睛】本题主要考查了平行线的定义,垂线的性质和平行公理.熟练掌握公理和概念是解决本题的关键.8 .在同一平面内,直线AB与CD相交,AB与EF平行,则CD与EF()A •平行B.相交C. 重合D.三种情况都有可能【答案】B【解析】【分析】先根据题意画出图形,即可得出答案.【详解】如图,•••在同一平面内,直线AB与CD相交于点O, AB // EF,••• CD与EF的位置关系是相交,故选B.【点睛】本题考查了平行线的性质的应用,能根据题意画出图形是解此题的关键,注意:数形结合思想的应用.9 .下列语句不正确的是()A .在同一平面内,过直线外一点有且只有一条直线与已知直线平行B. 两直线被第三条直线所截,如果同位角相等,那么两直线平行C. 两点确定一条直线D. 内错角相等【答案】D【解析】【分析】根据平行线的公理、推论及平行线的判定,可得答案.【详解】A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故A正确;B、两直线被第三直线所截,如果同位角相等,那么两直线平行,故B正确;C、两点确定一条直线,故C正确;D、两直线平行,内错角相等,故D错误;故选D.【点睛】本题考查了平行公理及推论,熟记公理、推论是解题关键.10 .下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】依据线段的性质、平行公理、两点间的距离以及垂线的定义,即可得到正确结论.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,错误;③过直线外一点有且仅有一条直线与已知直线平行,正确;④两点之间的距离是两点间的线段的长度,错误;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等或互补,错误. 故选:B.【点睛】本题考查线段的性质、平行公理、两点间的距离以及垂线的定义,解题时注意:平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.11 .下列说法中正确的是()A .两条相交的直线叫做平行线B. 在直线外一点,只能画出一条直线与已知直线平行C. 如果a // b, b // c,贝U a不与b平行D. 两条不平行的射线,在同一平面内一定相交【答案】B【解析】【分析】根据平行线的性质进行解题即可,见详解.详解】解:两条不相交的直线叫做平行线,故A 错误,在直线外一点,只能画出一条直线与已知直线平行如果a// b , b // c ,则a // b,平行线的传递性,故C 错误, 射线一端固定,另一端无限延伸,故D 错误, 综上选B. 【点睛】,属于简单题,熟悉平行线的性质是解题关键【解析】【分析】 根据平行线的传递性即可解题 【详解】解:••• AB // CD ,CD // EF ,••• AB // EF ,(平行线的传递性)故选A. 【点睛】本题考查了平行线的传递性 ,属于简单题,熟悉平行线的性质是解题关键13 •一条直线与另两条平行直线的关系是 ( )A .一定与两条平行线平行B .可能与两条平行线的一条平行,一条相交C . 一定与两条平行线相交D .与两条平行线都平行或都相交【答案】D 【解析】 【分析】根据在同一平面内,两条直线的位置关系有两种:平行和相交,可知如果一条直线与另 两条平行线中的一条相交,则它与另一条平行线也相交;如果一条直线与另两条平行线中的一条平行,则它与另一条平行线也平行即可求出本题答案【详解】,正确,// EF ,那么AB 和EF 的位置关系是本题考查了平行线的性质C.垂直D.不能确定【答案】A•••在同一平面内,两条直线的位置关系有两种:平行和相交,•••如果一条直线与另两条平行线中的一条相交,则它与另一条平行线也相交,否则与平行公理相矛盾;如果一条直线与另两条平行线中的一条平行,根据平行于同一直线的两条直线平行,则它与另一条平行线也平行.故答案为:D.【点睛】本题考查了平行线的相关知识,熟练掌握平行线的有关性质是本题解题的关键.14.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②如果a// b, a // c,那么b // c;③如果两线段不相交,那么它们就平行;④如果两直线不相交,那么它们就平行.A.1 个B.2 个C.3 个D.4 个【答案】A【解析】【分析】根据平行线的定义、公理及推论判断即可求出本题答案.【详解】(1) 过直线外一点有且只有一条直线与已知直线平行,故错误;(2) 根据平行公理的推论,正确;(3) 线段的长度是有限的,不相交也不一定平行,故错误;(4) 应该是“在同一平面内”,故错误.正确的只有一个,故选A.故答案为:A.【点睛】本题考查了平行公理及推论,平行线,熟练掌握该知识点是本题解题的关键.15 •已知在同一平面内有一直线AB和一点P,过点P画AB的平行线,可画()A • 1条B. 0条 C. 1条或0条D.无数条【答案】C【解析】【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可得答案.【详解】如果点P在直线上,过点P画直线与AB的平行线可画0条,如果点P在直线外,过点P画直线与AB的平行线可画1条•故答案为:C.【点睛】本题考查了平行公理及推论,熟练掌握该知识点是本题解题的关键16 .下列说法中,正确的是()A •平面内,没有公共点的两条线段平行B. 平面内,没有公共点的两条射线平行C. 没有公共点的两条直线互相平行D. 互相平行的两条直线没有公共点【答案】D【解析】【分析】回忆线段之间、射线之间与直线之间的位置关系;对于A,可在纸上画出两条没有公共点的线段,观察两条线段的位置关系;对于B,可在纸上画出两条没有公共点的射线,观察两条线段的位置关系;对于C,思考若两条直线不在一个平面内,是否能够得到两条直线不平行也不相交,对于D,根据平行线的定义可作出判断•【详解】对于A,如图所示,A错误;对于C,如果两条直线不在同一个平面内,不相交也可能不平行,则C错误;对于D,根据平行线的定义可知D正确•故答案为:D.【点睛】本题考查了两条直线的位置关系,直线、射线、线段的定义,熟练掌握直线的位置关系及相关定义是本题解题的关键•17 .下面说法正确的是( )A .过两点有且只有一条直线B.平角是一条直线C.两条直线不相交就一定平行D.过一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据直线公理:经过两点有且只有一条直线;角的概念;平行线的定义和平行公理及推论进行判断.【详解】A、由直线公理可知,过两点有且只有一条直线,故本选项正确;B、平角是有公共端点是两条射线组成的图形,故本选项错误;C、同一平面内两条直线不相交就一定平行,故本选项错误;D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.故选:A .【点睛】本题属于综合题,考查了直线的性质:两点确定一条直线;角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边;同一平面内,两条直线的位置关系:平行或相交;平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18 .下列说法错误的是( )A .对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行【答案】D【解析】【分析】A .根据对顶角的性质判定即可;B. 根据线段的性质判定即可;C. 根据补角的性质判定即可;D .根据平行公理判定即可 .【详解】A .对顶角相等,故选项正确;B. 两点之间连线中,线段最短,故选项正确;C•等角的补角相等,故选项正确;D .过直线外一点P,能画一条直线与已知直线平行,故选项错误•故选D.【点睛】本题分别考查了对顶角、邻补角的性质、线段的性质、余角、补角的关系及平行公理,都是基础知识,熟练掌握这些知识即可解决问题 .二、填空题19 . L i, 12, 13为同一平面内的三条直线,如果11与12不平行,12与13不平行,则11与13的位置关系是_______________ .【答案】相交或平行【解析】【分析】根据关键语句“若?有?不平行,??与?不平行,”画出图形,图形有两种情况,根据图形可得答案.【详解】根据题意可得图形:根据图形可知:若?不平行,??与?3不平行,则?3可能相交或平行,故答案为:相交或平行•【点睛】本题主要考查了直线的位置关系,在同一平面内,两条直线的位置关系:平行或相交20 •小明列举生活中几个例子,你认为是平行线的是_________________ (填序号).①马路上斑马线;②火车铁轨;③直跑道线;④长方形门框上下边.【答案】①②③④【解析】【分析】根据平行线的判定进行判断即可•【详解】解:是平行线的是①②③④.故答案为:①②③④【点睛】本题考查了平行线的含义,应结合生活实际进行解答21.如图,用符号表示下列两棱的位置关系.AB ___ A ' B AA ' __________ AB ; AD _____ B ' C【答案】// 丄 //【解析】【分析】根据题意,可由立体图形中的平行线的判定条件,以及垂直的判定条件进行分析,然后填空即可.【详解】解:由图可知,AB// A B', AA丄AB AD// B' C'【点睛】本题主要考查的是直线的位置关系•22 .如图,在正方体中,与线段AB平行的线段有________ 条.【答案】3【解析】【分析】与线段AB平行的线段的种类为:①直接与AB平行,②与平行于AB的线段平行. 【详解】解:与AB平行的线段是:DC EF;与CD平行的线段是:HG所以与AB线段平行的线段有:EF、HG DC.故答案是:EF、HG DC【点睛】本题考查了平行线•平行线的定义:在同一平面内,不相交的两条直线叫平行线.23 .如图所示,用直尺和三角尺作直线AB , CD,从图中可知,直线AB与直线CD的位置关系为 ________ .【答案】平行【解析】【分析】根据同位角相等,两直线平行判断.【详解】如图,C 亠丘D根据题意,/ 1与/ 2是三角尺的同一个角,所以/仁/2,所以,AB // CD (同位角相等,两直线平行)故答案为:平行.【点睛】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.24 .在如图的长方体中,与棱AB平行的棱有 ________________________________________;与棱AA'平行的棱有DD , BB , CC解析】【分析】根据平行的定义,结合图形直接找出和棱AB平行的棱,与棱AA平行的棱即可.【详解】由图可知,和棱AB平行的棱有CD , AB', CD;与棱AA 平行的棱有DD ,BB ,CC .故答案为:CD , A B , C D ;DD , BB , CC .【点睛】本题考查了认识立体图形的知识点,熟练掌握平行的定义是本题解题的关键.25.在同一平面内,直线AB 与直线CD 满足下列条件,则其对应的位置关系是(1)___________________________________________________________________ 若直线AB与直线CD没有公共点,则直线AB与直线CD的位置关系为______________________________ ;(2)直线AB 与直线CD 有且只有一个公共点,则直线AB 与直线CD 的位置关系为_______________ 【答案】平行;相交.【解析】【分析】根据“在同一平面内,两条直线的位置关系是:平行或相交.平行没有公共点,相交只有一个公共点”即可推出本题答案.【详解】在同一平面内,直线AB与CD满足下列条件,则其对应的位置关系是:(1)若AB与CD没有公共点,则AB与CD的位置关系是平行;(2 )若AB与CD有且只有一个公共点,则AB与CD 的位置关系为相交• 故答案为:(1)平行;(2)相交.【点睛】本题考查了直线的位置关系,熟练掌握判定方法是本题解题的关键.三、解答题26 .把图中的互相平行的线段用符号“//”写出来,互相垂直的线段用符号“丄”写出来:【解析】【分析】根据平行线和垂直的定义即可解答.【详解】解:如图所示,在长方体中:互相平行的线段:AB// CD EF// GH MN PQ互相垂直的线段:AB丄EF, AB丄GH CDL EF, CDL GH【点睛】本题考查了平行线和垂直的定义,理解定义是解题的关键•27 .如图,过点0 '分别画AB , CD的平行线.【答案】详见解析•【解析】【分析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和O点重合,过O点沿三角板的直角边画直线即可.【详解】解:如图,本题考查了学生利用直尺和三角板作平行线的能力28 •如图,按要求完成作图⑴过点P作AB的平行线EF;(2) 过点P作CD的平行线MN ;(3) 过点P作AB的垂线段,垂足为G.【点睛】【答案】作图见解析【解析】【分析】利用题中几何语言画出对应的几何图形.【详解】如图,本题考查了平行线的作法和作垂线的步骤.29 •我们知道相交的两条直线的交点个数是 1 ;两条平行线的交点个数是0;平面内三条平行线的交点个数是0,经过同一点的三条直线的交点个数是 1 ;依此类推(1) 请你画图说明平面内五条直线最多有几个交点.(2) 平面内五条直线可以有4个交点吗?如果可以,请你画出符合条件的所有图形;如果不可以,请说明理由.(3) 在平面内画出10条直线,使交点个数恰好是31.【答案】(1)平面内五条直线的交点最多有10个,⑵五条直线可以有4个交点,⑶答案不唯一•【解析】【分析】(1)直接让五条直线中的任意两条互相相交即可;(2)不妨先让其中的四条直线相交得到3个交点,然后再使最后一条直线,与其中任意一条相交且与之前的交点不重合即可,接下来自己试着想想还有哪些画法;(3)结合已知,禾U用平行线的性质画出图形即可【详解】解:(1)平面内五条直线的交点最多有 10个,如图①.(2)五条直线可以有4个交点,如图②(a // b// c // d),图③(AD // BC , AB // DC),图④(a // b).團② 関③(3) 答案不唯一,如图, a / b / c / d / e , f // g // h , l // m.【点睛】此题考查平面内不重合直线的位置关系, 解答时要分各种情况解答, 的所有情形,不要遗漏,否则讨论的结果就不全面.30 •如图,在方格纸上:(1)已有的四条线段中,哪些是互相平行的?⑵过点M 画AB 的平行线.⑶过点N 画GH 的平行线.37T~/ 、A7 D 、M / 7~■【答案】(1)AB // CD ; (2)画图见解析;⑶画图见解析【解析】【分析】(1) 根据图形可观察出互相平行的线段.(2) 过点M 画AB 的平行线.(3)过点N 画GH 的平行线.要考虑到可能出现【详解】(1)由图形可得:AB // CD .⑵(3)所画图形如下:本题考查了平行线的判定方法及过一点作平行线的知识, 的判定方法及作图的基本步骤.【点睛】 属于基础题, 主要掌握平行线。

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)

亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档平行线的判定练习题(有答案),这篇文档是由我们精心收集整理的新文档。

相信您通过阅读这篇文档,一定会有所收获。

假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。

平行线的判定练习题(有答案)篇一:(913)平行线的判定专项练习60题(有答案)ok平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定---第1页共1页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第2页共2页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB 与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第3页共3页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF 吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第4页共4页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第5页共5页篇二:七年级平行线的判定与性质练习题带答案平行线测试题姓名:一、选择题1.下列命题中,不正确的是____[]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______[](2题)(5题)(3题)(7题)(8题)A.∠ACB=∠BACB.∠ABC+∠BAE=180°C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180°(4)∠5+∠8=180°,其中能判定a∥b的条件是_________[]A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4) 4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[]A.第一次向右拐40°,第二次向左拐40°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[] A.AD∥BCB.AB∥CDC.∠3=∠4D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直B.互相平行C.相交D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°二、填空题9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。

平行线及其判定练习题(含答案)

平行线及其判定练习题(含答案)

平⾏线及其判定练习题(含答案)第五章相交线与平⾏线5.2 平⾏线及其判定1.下列图形中,由∠1=∠2能得到AB∥CD的是A.B.C.D.2.同⼀个平⾯内,若a⊥b,c⊥b,则a与c的关系是A.平⾏B.垂直C.相交D.以上都不对3.如图,直线a,b被直线c所截,∠1=55°,下列条件能推出a∥b的是A.∠3=55°B.∠2=55°C.∠4=55°D.∠5=55°4.如图为平⾯上五条直线L1,L2,L3,L4,L5相交的情形,根据图中标⽰的⾓度,判断下列叙述何者正确A.L1和L3平⾏,L2和L3平⾏B.L1和L3平⾏,L2和L3不平⾏C.L1和L3不平⾏,L2和L3平⾏D.L1和L3不平⾏,L2和L3不平⾏5.如图,要使AB∥CD∥EF,则需∠BAC+∠ACE+∠CEF等于A.360°B.270°C.200°D.180°6.如图是⼀个风车,当风车的⼀⽚叶⼦AB旋转到与地⾯MN平⾏时,叶⼦CD与地⾯MN__________(填“平⾏”或“不平⾏”),理由是__________.7.如图,AB∥CD,过点E画EF∥AB,则EF与CD的位置关系是__________,理由是__________.8.如图,已知∠1=50°,∠2=130°,且BD∥CE,AC与DF平⾏吗?为什么?9.如图,46⊥.问CD AB∥吗?为什么?∠=?,CE CDACE∠=?,136BAF10.如图,MN、EF分别表⽰两⾯镜⼦,⼀束光线AB照到镜⾯MN上,反射光线为BC;光线BC经过镜⾯EF反射后的反射光线为CD,此时有∠1=∠2=∠3=∠4.试判断AB与CD的位置关系,你是如何思考的?11.如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么,GM 与HN平⾏吗?为什么?12.某⼈在⼴场上练习驾驶汽车,两次拐弯后,⾏驶⽅向与原来相同,这两次拐弯的⾓度可能是A.第⼀次左拐30°,第⼆次右拐30°B.第⼀次右拐50°,第⼆次左拐130°C.第⼀次右拐50°,第⼆次右拐130°D.第⼀次向左拐50°,第⼆次向左拐120°13.学习了平⾏线后,⼩龙同学想出了“过已知直线m外⼀点P画这条直线的平⾏线的新⽅法”,他是通过折⼀张半透明的正⽅形纸得到的.观察图(1)~(4),经两次折叠展开后折痕CD所在的直线即为过点P的已知直线m的平⾏线.从图中可知,⼩明画平⾏线的依据有①两直线平⾏,同位⾓相等;②两直线平⾏,内错⾓相等;③同位⾓相等,两直线平⾏;④内错⾓相等,两直线平⾏.A.①②B.②③C.③④D.①④14.(2018郴州)如图,直线a,b被直线c所截,下列条件中,不能判定a∥bA.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠315.(2018湘潭)如图,点E是AD延长线上⼀点,如果添加⼀个条件,使BC∥AD,则可添加的条件为__________.(任意添加⼀个符合题意的条件即可)1.【答案】B【解析】A、∠1、∠2是同旁内⾓,由∠1=∠2不能判定AB∥CD;B、∠1、∠2是内错⾓,由∠1=∠2能判定AB∥CD;C、∠1、∠2是内错⾓,由∠1=∠2能判定AD∥BC,不能判定AB∥CD;D 、∠1、∠2是同旁内⾓,由∠1=∠2不能判定AB ∥CD ;故选B . 2.【答案】A【解析】如图,∵a ⊥b ,c ⊥b ,∴∠1=∠2=90°,∴a ∥c ,故选A.【点睛】本题考查了垂直的定义以及平⾏线的判定,熟练掌握平⾏线的判定⽅法是解此题的关键. 3.【答案】A【解析】∵∠1=55°,∠3=55°,∴∠1=∠3,∴a ∥b ,故选A .【点睛】本题考查的是平⾏线的判定,熟知平⾏线的判定定理是解答此题的关键. 4.【答案】C【解析】∵9292180?+?≠?,∴L 1和L 3不平⾏,∵8888?=?,∴L 2和L 3平⾏,故选C . 5.【答案】A【解析】当∠BAC +∠ACD =180°时,AB ∥CD ;当∠DCE +∠CEF =180°时,CD ∥EF ,⽽∠ACD +∠DCE =∠ACE ,所以当∠BAC +∠ACD +∠DCE +∠CEF =360°,即∠BAC +∠ACE +∠CEF =360°时,AB ∥CD ∥EF ,故选A .6.【答案】不平⾏;经过直线外⼀点,有且只有⼀条直线与这条直线平⾏【解析】AB 与CD 有夹⾓,根据过直线外⼀点,有且只有⼀条直线与已知直线平⾏,可得CD 不能同时与地⾯MN 平⾏.故答案为:不平⾏;经过直线外⼀点,有且只有⼀条直线与这条直线平⾏. 【点睛】考查的是平⾏线的判定与性质,熟知平⾏公理是解答此题的关键. 7.【答案】EF ∥CD ;平⾏于同⼀直线的两直线互相平⾏.【解析】平⾏线的性质:平⾏于同⼀条直线的两直线互相平⾏,AB ∥CD ,EF ∥AB ,则EF 与CD 的位置关系是EF ∥CD .故答案为:EF ∥CD ;平⾏于同⼀直线的两直线互相平⾏【点睛】此题重点考查学⽣对平⾏线的性质的理解,熟练掌握平⾏线的性质是解题的关键.9.【解析】平⾏,理由如下:∵∠ACD=360°–90°–136°=134°,∠BAC=180°–46°=134°,∴∠ACD=∠BAC,∴CD AB∥(内错⾓相等,两直线平⾏).【点睛】本题考查平⾏线的判定,垂线的定义,周⾓、补⾓的定义,⽐较简单.10.【解析】因为∠ABC=180°–∠1–∠2,∠BCD=180°–∠3–∠4,⼜因∠1=∠2=∠3=∠4,所以∠ABC=∠BCD,所以AB∥CD.【点睛】本题考查平⾏线的判定与性质.本题利⽤了“两直线平⾏,内错⾓相等”的性质,“内错⾓相等,两直线平⾏”的判定定理.11.【解析】GM∥HN,理由如下:∵AB∥CD,∴∠BGH=∠CHG,∵GM平分∠BGF,HN平分∠CHE,∴∠NHG=12∠CHG,∠MGH=12∠BGH,∴∠NHG=∠MGH,∴GM∥HN.12.【答案】A【解析】如图所⽰(实线为⾏驶路线):A符合“同位⾓相等,两直线平⾏”的判定,其余均不符合平⾏线的判定.故选A.【点睛】本题考查平⾏线的判定,熟记定理是解决问题的关键.【点睛】此题主要考查了平⾏线的判定,以及翻折变换,关键是掌握平⾏线的判定定理.14.【解析】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;故选D.【点评】本题主要考查了平⾏线的判定,解题时注意:同位⾓相等,两直线平⾏;同旁内⾓互补,两直线平⾏.15.【解析】若∠A+∠ABC=180°,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为:∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯⼀)【点评】本题主要考查了平⾏线的判定,同位⾓相等,两直线平⾏;内错⾓相等,两直线平⾏;同旁内⾓互补,两直线平⾏.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 相交线与平行线5.3 平行线的性质1.如图,若13∠=∠,则下列结论一定成立的是A .14∠=∠B .34∠=∠C .24180∠+∠=︒D .12180∠+∠=︒2.如图,将三角板的直角顶点放在直尺的一边上,若165∠=︒,则2∠的度数为A .10︒B .15︒C .25︒D .35︒3.下列语句不是命题的是 A .明天有可能下雨 B .同位角相等C .∠A 是锐角D .中国是世界上人口最多的国家4.如图所示,AB ⊥EF ,CD ⊥EF ,∠1=∠F =40°,且A ,C ,F 三点共线,那么与∠FCD 相等的角有A .1个B .2个C .3个D .4个5.如图,BE 平分∠ABC ,DE ∥BC ,图中相等的角共有A .3对B .4对C .5对D .6对6.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是A .144°B .135°C .126°D .108°7.如图,AB ∥CD ,直线l 分别交AB 、CD 于E ,F ,∠1=56°,则∠2的度数是________°.8.如图,a ∥b ,AC 分别交直线a 、b 于点B 、C ,AC CD ⊥,若125∠=︒,则2∠=__________度.9.如图,AB ∥CD ,∠B =115°,∠C =45°,则∠BEC =__________.10.分别把下列命题写成“如果……,那么……”的形式.(1)两点确定一条直线; (2)等角的补角相等; (3)内错角相等.11.如图,MF NF ⊥于F ,MF 交AB 于点E ,NF 交CD 于点G ,1140∠=︒,250∠=︒,试判断AB和CD 的位置关系,并说明理由.12.如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是A .180x y z ∠+∠+∠=︒B .180x y z ∠+∠-∠=︒C .360x y z ∠+∠+∠=︒D .x z y ∠+∠=∠13.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE∥CD),若∠A=120°,∠B=150°,则∠C的度数是__________.14.如图,一条公路两次转弯后又回到原来的方向.若第一次转弯时∠B=140°,则∠C的度数是______________.15.如图,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.16.(2018·甘孜州)如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为A.70°B.100°C.110°D.120°17.(2018·赤峰市)已知AB CD∥,直线EF分别交AB、CD于点G、H,∠EGB=25°,将一个60°角的直角三角尺如图放置(60°角的顶点与H 重合),则∠PHG 等于A .30°B .35°C .40°D .45°18.(2018·绵阳市)如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是A .14°B .15°C .16°D .17°19.(2018·海南)将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE =40°,那么∠BAF 的大小为A .10°B .15°C .20°D .25°20.(2018·韶关市)如图,AB CD ∥,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是A.30︒B.40︒C.50︒D.60︒21.(2018·泸州市)如图,直线a∥b,直线分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是A.50°B.70°C.80°D.110°22.(2018·枣庄市)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为A.20°B.30°C.45°D.50°23.(2018·齐齐哈尔市)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为A.10°B.15°C .18°D .30°24.(2018·南通市)如图,∠AOB =40°,OP 平分∠AOB ,点C 为射线OP 上一点,作CD ⊥OA 于点D ,在∠POB 的内部作CE ∥OB ,则∠DCE =___________度.25.(2018·柳州市)如图,a b ∥,若146∠=︒,则2∠=___________︒.1.【答案】D【解析】因为∠1=∠3,所以AD ∥BC ,所以∠1+∠2=180°,故选D . 2.【答案】C【解析】如图,因为AD ∥BC ,所以∠1=∠3=65°,因为∠2+∠3+90°=180°,所以∠2=90°-∠3=90°-65°=25°,故选C .3.【答案】A【解析】A 、明天有可能下雨,不是判断语句,故不是命题,符合题意; B 、同位角相等是命题,故不符合题意; C 、∠A 是锐角是命题,故不符合题意;D、中国是世界上人口最多的国家是命题,故不符合题意,故选A.5.【答案】C【解析】∵DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB,又∵BE平分∠ABC,∴∠ABE=∠EBC,即∠ABE=∠DEB,所以图中相等的角共有5对,故选C.6.【答案】A【解析】如图,∵AB∥CD,∴∠1+∠3=180°,∵∠2=∠3=4∠1,∴∠1+4∠1=180°,即∠1=36°,则∠2= 4∠1=144°,故选A.7.【答案】124【解析】∵∠1=56°,∴∠3=180°−∠1=124°,∵AB∥CD,∴∠2=∠3=124°.故答案为:124.8.【答案】65【解析】∵AC ⊥DC ,∴∠1+∠3=90°,∵∠1=25°,∴∠3=90°-∠1=90°-25°=65°,∵a ∥b ,∴∠2=∠1=65°,故答案为:65. 9.【答案】110°【解析】如图,过点E 作EF ∥AB .因为AB ∥CD ,所以EF ∥CD ,所以∠B +∠BEF =180°,∠C =∠CEF . 因为∠B =115°,∠C =45°,所以∠BEF =180°-115°=65°,∠CEF =45°,所以∠BEC =∠BEF +∠CEF =65°+45°= 110°,故答案为:110°.10.【解析】(1)如果有两个定点,那么过这两点有且只有一条直线.(2)如果两个角分别是两个等角的补角,那么这两个角相等. (3)如果两个角是内错角,那么这两个角相等. 11.【解析】如图,过点F 作HF AB ∥.∵FH AB ∥,∴23∠=∠(两直线平行,同位角相等). ∵250∠=︒(已知),∴350∠=︒(等量代换). ∵MF NF ⊥(已知),∴90EFG ∠=︒(垂直的定义), ∴490340∠=︒-∠=︒.∵1140∠=︒,∴14180∠+∠=︒,∥(同旁内角互补,两直线平行),∴FH CD∥(平行于同一条直线的两条直线互相平行).∴AB CD14.【答案】140°【解析】∵AB∥CD,∠B=140°,∴∠C=∠B=140°.故答案是:140°.15.【答案】105°【解析】∵∠1+∠2=90°,CE,DE分别平分∠BCD,∠ADC,∴∠ADC+∠BCD=2(∠1+∠2)=180°,∴AD∥BC,∴∠A+∠B=180°,∵∠B=75°,∴∠A=180°﹣75°=105°.16.【答案】C【解析】如图,∵DE∥BC,∴∠2+∠B=180°,∵∠2=∠1=70°,∴∠B=180°−70°=110°,故选C.17.【答案】B【解析】∵AB∥CD,∴∠EHD=∠EGB=25°.又∵∠PHD=60°,∴∠PHG=60°﹣25°=35°.故选B.18.【答案】C【解析】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.20.【答案】B【解析】∵∠DEC=100°,∠C=40°,∴∠D=180°−∠DEC−∠C=40°,又∵AB∥CD,∴∠B=∠D=40°,故选B.21.【答案】C【解析】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°−∠BAC=180°−100°=80°.故选C.22.【答案】D【解析】因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D. 23.【答案】B【解析】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.。

相关文档
最新文档