平行线的判定和性质

合集下载

平行线的判定与性质

平行线的判定与性质

第2节 平行线的判定与性质∙知识点聚焦1.三线八角(1)同位角:两条直线被第三条直线所截,截线的同旁,被截两直线的同一侧的角,我们把这 样的两个角称为同位角. 如图1∠和5∠,2∠和6∠3∠和7∠,4∠和8∠.(2)内错角:两条平行直线被第三条直线所截, 两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.如图3∠和5∠,4∠和6∠ (3)同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角.如图4∠和5∠,3∠和6∠.2.平行线的判定方法(1)平行线的定义:在同一平面内不相交的两直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(3)同位角相等,两直线平行. (4)内错角相等,两直线平行. (5)同旁内角互补,两直线平行. (6)垂直于同一条直线的两直线平行. 3.平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等. (3)两直线平行,同旁内角互补.典型例题 41 2 3 5 876 DCBEAF∙例1.如图,已知直线a ,b 被直线c ,d 所截,直线a ,c ,d 相交于点O ,按要求完成下列各小题.(1)在图中的∠1~∠9这9个角中,同位角共有多少对?请你全部写出来; (2)∠4和∠5是什么位置关系的角?∠6和∠8之间的位置关系与∠4和∠5的相同吗?分析:(1)直接利用两条直线被第三条直线所截成的角中,若两个角都在两直线的同侧,并且在第三条直线的同旁,则这样一对角叫做同位角,进而得出答案. 直接利用两条直线被第三条直线所截成的角中,若两个角都在两直线之间,并且在第三条直线的同旁,则这样一对角叫做同旁内角,进而得出答案.例2.如图,直线a ,b ,c 被直线l 所截,︒=∠︒=∠︒=∠723,1082,721,说明ba //的理由.分析:由条件可知31∠=∠,c a //;o 18032=∠+∠,c b //,从而有b a //.例3.(1)如图,CD 平分∠ACB,DE ∥BC,∠AED=80∘,求∠EDC 的度数.分析:由角平分线的定义,结合平行线的性质, 易求∠EDC 的度数.labc213(2)已知:如图,1∠=∠C ,2∠和D ∠互余,FD BE ⊥于点G .求证:CD AB //.分析:首先由FD BE ⊥,得1∠和D ∠互余, 再由已知,1∠=∠C ,2∠和D ∠互余, 所以得2∠=∠C ,从而证得CD AB //.例4.探究:(1)如图a ,若CD AB //,则E D B ∠=∠+∠,你能说明为什么吗? (2)反之,若E D B ∠=∠+∠,直线AB 与CD 有什么位置关系?请证明; (3)若将点E 移至图b 所示位置,此时B ∠、D ∠、E ∠之间有什么关系?请证明; (4)若将E 点移至图c 所示位置,情况又如何?(5)在图d 中,CD AB //,G E ∠+∠与D F B ∠+∠+∠又有何关系? (6)在图e 中,若CD AB //,又得到什么结论?分析:对于“折线”,“拐角”型问题,解决这类问题的办法是:经过拐点作平行线来沟通已知角和未知角的关系.例5.已知,如图,CD AB //,AE 平分BAC ∠,CE 平分ACD ∠,求证:CE AE ⊥分析:根据两直线平行,同旁内角互补可得o ACD BAC 180=∠+∠,在根据角平分线可知EAC ∠=21BAC ∠,ACD ACE ∠=∠21,然后求出o ACD BAC ACE EAC 90)(21=∠+∠=∠+∠,得o ACE 90=∠.例6.如图,在ABC ∆中,AB CE ⊥于E ,AB DF ⊥于F ,ED AC //,CE 是ACB ∠的角平分线。

平行线的特征

平行线的特征

平行线的特征平行线在几何学中具有重要的作用,它们是指在同一个平面上,永远不会相交的直线。

本文将探讨平行线的特征,以及与平行线相关的性质和定理。

一、平行线的定义平行线的定义是两条直线在同一个平面上,并且永远不会相交。

这意味着两条平行线之间的距离始终相等。

二、平行线的特征1. 方向相同:平行线在平面上具有相同的方向,它们始终在相同的方向上延伸。

2. 永不相交:平行线永远不会相交。

无论延长多远,它们仍然保持平行的形状。

3. 距离相等:平行线之间的任意两点到两条平行线的距离始终相等。

这是平行线的一个重要性质。

4. 平行四边形的对边平行性:在平行四边形中,对边是平行的。

这是平行线特征的一个重要应用。

三、平行线的判定1. 同位角判定:如果两条直线被一条截线所切,并且同位角相等,那么这两条直线平行。

2. 转换判定:如果一条线与两条平行线分别相交,形成相等的内错角或外错角,那么这条线与这两条平行线平行。

3. 斜率判定:如果两条直线的斜率相等,那么这两条直线平行。

斜率是直线在坐标系中的倾斜度量。

四、平行线的应用1. 平行线与横向交错线条:在道路规划和交通设计中,平行线经常用于构建车道和交通流线的布局。

2. 平行线与角度构造:在建筑设计中,平行线被广泛应用于角度构造。

通过平行线的布局,可以创建出各种角度和形状。

3. 平行线与等距关系:平行线之间的距离相等,这一性质在几何学和测量中具有重要的应用。

五、平行线的定理1. 交替内角定理:如果两条平行线被一条截线所切,那么两条平行线上的交替内角是相等的。

2. 内错角定理:如果两条平行线被一条截线所切,那么两条平行线上的内错角是补角。

3. 锐角和钝角定理:如果两条平行线被一条截线所切,那么两条平行线上的锐角和钝角的和是180度。

六、平行线的重要性平行线的研究对几何学和应用数学具有重要意义。

它们为解决实际问题提供了基础,而且在建筑、工程、地图制作等领域也有广泛的应用。

综上所述,平行线作为几何学中的一个重要概念,具有方向相同、永不相交和距离相等等特征。

平行线的判定定理和公理

平行线的判定定理和公理

平行线的判定定理和公理平行线的判定定理和公理平行线在几何学中非常重要,因为它对于正常的几何学、计算机图形学和其他相关领域都有重要的应用。

平行线的判定定理和公理是我们在几何学中学习平行线性质的基础知识。

本文将对平行线的判定定理和公理进行详细介绍,使读者对平行线的理解更加深入。

1.平行线的定义和性质在平面上给定一直线l和一点A,如果不过A的任意一条直线与l相交时,交点 angles 都等于90度,那么我们称直线l与A平行,并表示为l || A。

这是平行线的定义。

平行线的性质包括:(1) 平面上任意两条直线,要么相交成交角不为90度的两条直线,要么平行;(2) 如果一条直线与一组平行线相交,那么相交角相等;(3) 平面上有一条直线与平行于它的一组直线相交,那么两条直线被这组平行线所分成的对应角相等。

平行线的定义和性质是评估平行线的判定定理和公理的关键。

2. 平行线的判定定理平行线的判定定理有三种形式:点斜式判定、截距式判定和两线夹角判定。

点斜式判定:如果直线l与曲线y=mx+n平行,那么m 是l的斜率。

在平面上的一个点(x1, y1),如果有一直线斜率为m,那么直线的点斜式的方程是:y-y1=m(x-x1)如果直线l与曲线y=mx+n平行,那么它们垂直的方向相同,即斜率m相同。

这意味着直线的点斜式方程中的m 值必须等于y = mx+n的方程中m的值。

因此,点斜式判定定理可以表示为:若直线l与曲线y=mx+n平行,则l的斜率m=n。

截距式判定:如果直线l与直线y=mx+b平行,那么b 是l的截距。

对于一个斜率为m的直线和一个截距为b的直线,它们可以表示为:y=mx+b当这两个直线平行时,它们将有相同的斜率,因此它们的截距也必须相等。

换句话说,如果直线l与直线y=mx+b平行,则l的截距b=mx0+ b,其中(x0, y0)是直线l 的一个点。

两线夹角判定:如果两条直线l1,l2与第三条直线l3垂直,那么l1,l2互相平行。

平行线性质知识点

平行线性质知识点

平行线性质知识点在几何学中,平行线是一种特殊的线段关系,它们永远不会相交。

平行线性质是几何学的基本概念之一,对于解决与平行线相关的问题非常重要。

本文将介绍平行线的定义、判定方法以及与平行线性质相关的定理和公式。

一、平行线的定义平行线是指在同一个平面上,永远不相交的直线。

平行线的符号为"||",可以通过符号表示两条直线平行。

二、平行线判定方法1. 垂直线判定法:如果两个直线之间的夹角为90°(或两直线的斜率乘积为-1),则这两条直线是平行的。

2. 普通角等于180°判定法:如果两个直线被一条第三条直线所切割,且这两个普通角之和等于180°,则这两条直线是平行的。

3. 铅垂判定法:如果两条直线上的两个铅垂线都平行,则这两条直线是平行的。

三、平行线性质定理1. 垂直平行线定理:如果一条直线与一对平行线相交,那么这条直线与另一条平行线也是垂直的。

2. 平行线的性质:两条平行线分别与第三条直线相交,那么对应角相等,内错角和外错角互补。

3. 平行线的平行线还是平行线定理:如果两条直线分别与一条平行线平行,那么这两条直线也是平行的。

4. 三角形内部的平行线定理:如果一条直线平行于一个三角形的一条边,且与另外两条边分别相交,那么这条直线把这两条边所对应的三角形划分成三个相似的三角形。

5. 平行线的黄金分割定理:如果一条直线经过另两条平行线,那么这两条直线将原直线划分成一段与整段的比例等于整段与原直线的比例。

四、平行线的应用1. 平行线在三角形的运用:通过平行线定理,可以推导出三角形内部、外部的诸多性质,例如内错角和外错角的性质、内、外接线之间的关系等。

2. 平行线在原等腰三角形中的应用:通过平行线的判定法,可以判断出等腰三角形的性质,例如底边与顶角之间的关系。

3. 平行线在平行四边形中的应用:通过平行线的特性,可以推导出平行四边形的各个边之间的关系,例如对边相等、对角线平分的性质等。

平行线的判定和性质

平行线的判定和性质

平行线的判定和性质
1、平行线的判定方法:
同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;
另:平行于同一条直线的两条直线相互平行;垂直于同一条直线的两条直线互相平行。

2、平行线的性质:
两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

3、注意区别平行线的性质和判定方法:
(1)叙述方式不同:尽管叙述平行线的性质与判定方法的文字相同,个数相同,但条件和结论的顺序是不同的;
(2)意义不同:平行线的判定方法是根据三种角(同位角、内错角、同旁内角)的数量关系,来识别两直线是否平行;而平行线的性质,是已知两直线平行,得到三种角的数量关系。

(3)作用不同:一个是作为平行线的识别,一个是平行线的特征。

本文由101教育整理发布。

平行线的性质知识点

平行线的性质知识点

平行线的性质知识点平行线是几何学中常见的概念,其性质和特点对于理解和解决几何问题非常重要。

本文将介绍平行线的定义、性质以及与平行线相关的定理。

一、平行线的定义平行线是指在同一个平面内永远不会相交的直线。

简单来说,如果两条直线在同一个平面内,并且它们永远不会相交,那么它们就是平行线。

二、平行线的判定方法1. 同位角判定法:当一条直线与另外两条直线相交时,如果同位角对应相等(即两条直线被切分的同位角互相相等),则这两条直线是平行线。

2. 内错角判定法:当一条直线与另一条直线相交时,如果内错角互相补角相等(即两条直线被切分的内错角互为补角),则这两条直线是平行线。

3. 平行线判定定理:如果两条直线的斜率相等且不相交,则这两条直线是平行线。

三、平行线的性质1. 平行线具有等倾斜角性质:对于两条平行线上的任意一对相对应的同位角,它们的角度相等。

2. 平行线具有同旁内错角性质:对于两条平行线上的任意一对相对应的内错角,它们是互补角。

3. 平行线具有同旁外错角性质:对于两条平行线上的任意一对相对应的外错角,它们是对应角或互补角。

4. 平行线具有同旁错角成比例性质:对于两条平行线上的任意一对相对应的错角,它们成比例关系。

5. 平行线之间的距离始终相等:如果从两条平行线上任意取一对相对应的点,连接这两条点所在直线上的线段,得到的线段与两条平行线之间的距离是相等的。

四、平行线的相关定理1. 平行线定理:如果一条直线与两条平行线相交,那么这条直线的同位角对应相等。

2. 平行线外角定理:如果一条直线与两条平行线相交,那么这条直线的外错角互补。

3. 平行线内角定理:如果一条直线与两条平行线相交,那么这条直线的内错角互补。

4. 平行线内外角定理:如果一条直线与两条平行线相交,那么这条直线的内错角与外错角是对应角或互补角。

总结:平行线是几何学中的重要概念,具有许多重要性质和特点。

通过掌握平行线的定义、判定方法、性质以及相关定理,可以在解决几何问题时更加灵活运用平行线的知识,加深对几何学的理解和掌握。

数学平行线的判定

数学平行线的判定

数学平行线的判定
数学平行线的判定是指在平面几何中,如何判断两条直线是否平行。

通常有以下几种方法:
1.同位角法:若两条直线被一条横线所截,且同侧内角和为180度,则这两条直线平行。

2.对顶角法:若两条直线被一条横线所截,且对应角相等,则这两条直线平行。

3.平行线性质法:若两条直线与第三条直线分别相交,使得同侧内角和小于180度,则这两条直线平行。

4.斜率法:若两条直线的斜率相等,则这两条直线平行。

以上是数学平行线的判定方法,可以根据实际情况选择不同的方法来判断。

掌握这些方法可以有效地解决一些平面几何问题。

- 1 -。

平行线的判定及性质

平行线的判定及性质

授课主题平行线教学目的1.理解平行线的概念,掌握平行公理及其推论;2.掌握平行线的判定方法及性质,并能进行简单的推理3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;教学重点平行线的判定及性质教学内容【知识梳理】要点一、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.3.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.要点三、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点六、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.【典型例题】类型一、平行线例1.下列说法正确的是()A.不相交的两条线段是平行线.B.不相交的两条直线是平行线.C.不相交的两条射线是平行线.D.在同一平面内,不相交的两条直线叫做平行线.【答案】D例2.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

87
654
3
21
A
B
C
D
E
易达彼思教育学科教师辅导讲义
学员姓名: 年 级:七年级 课时数: 辅导科目:数学 授课时间: 学科教师:
学科组长签名 及日期
教务长签名及日期
课 题 平行线及其判定及性质
教学目标
1.理解平行线的意义,了解同一平面内两条直线的两种位置关系;
2.掌握平行公理及其推论,会按要求画平行线;
3.掌握平行线的判定方法,并会运用这些方法进行简单的推理证明;
教学内容
知识回顾
写出下图中所有的同位角、内错角、同旁内角
同位角:
内错角:
同旁内角:
新课知识
一、平行线的判定
知识点1:平行线的判定1
用该符号语言表示:如图,
∵∠1=∠2, ∴AB ∥CD (同位角相等,两直线平行)
两直线平行的判定方法1:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单地说: 同位角相等 ,两直线平行.
例1.如图,直线a,b都与直线c相交,若∠1=120°,,2=60°,则a∥b.在下列括号中填写推理理由.
∵∠1=120°().
∴∠3=60°().
又∵∠2=60°().
∴∠2=∠3().
∴a∥b
知识点2:平行线的判定2
思考:下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.
解:∵∠1=∠7 ( )
∠1=∠3( )
∴∠7=∠3( )
∴ AB∥CD( )
用该符号语言表示:如图,
∵∠2=∠3(已知),∴AB∥CD(内错角相等,两直线平行)
两直线平行的判定方法2:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单地说: 内错角相等 ,两直线平行.
知识点3:平行线的判定3
下图中,如果∠4+∠7=180°,能得出AB∥CD?
解: ∵∠4+∠7=180 °()
∠4+∠3=180°()
∴∠7=∠3()
∴ AB∥CD()
用该符号语言表示:如图,
∵∠2+∠4=180°(已知),∴AB∥CD(同旁内角互补,两直线平行)
两直线平行的判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简单地说: 同旁内角互补 ,两直线平行.
例4. 如图所示,回答下列问题,并说明理由.
(1)由∠C=∠2,可判定哪两条直线平行?
(2)由∠2=∠3,可判定哪两条直线平行?
(3)由∠C+∠D=180°,可判定哪两条直线平行?
注:(1)要掌握直线平行的判定方法,首先要掌握同位角、内错角、同旁内角的定义;
(2)判定方法是从角的关系得到两直线平行的。

知识点4:平行线的判定方法的推论
(一)两条平行线间的距离
1、定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。

如图所示,a//b,A是直线上任意一点,,垂足为B,则线段AB的长即是两平行线、间的距离。

若在直线上任找一点,过作,垂足为D,则线段CD的长也是两平行线、间的距离。

由此可见:
2、平行线间的距离处处相等。

例4.如图,AB⊥EF于点B,CD⊥EF于点D,∠1=∠2.
(1)请说明AB∥CD的理由
(2)试问BM与DN是否平行?为什么?
二、平行线的性质
知识点1:平行线的性质1
两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
如图所示,AB∥CD,有∠1=∠2.
格式:∵AB∥CD(已知).∴∠1=∠2(两直线平行,同位角相等)
例1.如图,已知a∥b,∠1=65°,则∠2的度数为()
A.65°
B.125°
C.115°
D.25°
知识点2:平行线的性质2
两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
格式:如图所示,AB∥CD,有∠2=∠3(两直线平行,内错角相等).
说明:∵AB∥CD(已知).∴∠1=∠2(两直线平行,同位角相等)
∵∠1=∠3,∴∠2=∠3
例2.如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,
∠BDE=60°,则∠CDB的度数等于()
A.70°
B.100°
C.110°
D.120°
知识点3:平行线的性质3
两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
格式:如图所示,∵AB∥CD(已知).
∴∠1+∠2=180°(两直线平行,同旁内角互补)
例3.如图,若AB∥DE,BC∥FE,则∠E+∠B= .
注:同位角相等、同旁内角互补;内错角相等,都是平行线特有的性质,且不可忽略前提条件“两直线平行”,不要看到同位角或内错角,就认为是相等的。

三、平行线的性质和判定方法的综合应用
平行线的判定和性质的区别和联系:
平行线的性质描述的是“数量关系”,它的前提是两直线平行,然后得出角相等或互补的关系,是由“位置关系”到“数量关系”;
而平行线的判定,是以角的相等或互补为前提,推导出平行,是从“数量关系”到“位置关系”
判定
即:两角的数量关系两直线的位置关系
性质
由此可见,判定与性质之间的关系是一种互逆关系。

例4.潜望镜中的两个镜子MN和PQ是互相平行的,如图所示,光线AB经镜面反射后射出,由题意知∠2=∠1,∠4=∠3,则进入的光线AB与射出的光线CD平行吗?为什么?
随堂巩固
平行线的判定
一、填空题:
1.如图③∵∠1=∠2,∴_______∥________()
∵∠2=∠3,∴_______∥________()
2.如图④∵∠1=∠2,∴_______∥________()
∵∠3=∠4,∴_______∥________()
二、选择题:
1.如图⑦,∠D=∠EFC,那么()
A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF
2.如图⑧,判定AB∥CE的理由是()
A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE
3.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,
③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()
A.①③B.②④C.①③④D.①②③④
三、完成推理,填写推理依据:
1.如图⑩∵∠B=∠_______,∴AB∥CD()
∵∠BGC=∠_______,∴CD∥EF()
∵AB∥CD ,CD∥EF,∴AB∥____()
2.已知,如图∠1+∠2=180°,填空。

∵∠1+∠2=180°()又∠2=∠3()
∴∠1+∠3=180°∴_________()
四、证明题
1.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,
请说明理由。

2.如图,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.
3.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,
求证:CD∥BE。

4.如图,已知:∠A=∠1,∠C=∠2。

求证:求证:AB∥CD。

平行线的性质
F
2
A B C D
Q
E
1
P
M
N
O
F E D C B
A
D
C
B A
1
E
2
1
D
C
B
1.如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )
A.5个
B.4个
C.3个
D.2个
(2) (3)
(1) 2.如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20° 3.如图3,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = .
4.∠1和∠2是直线AB 、CD 被直线EF 所截而成的内错角,那么∠1和∠2 的大小关系是( ) A.∠1=∠2 B.∠1>∠2; C.∠1<∠2 D.无法确定
5、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.
6.如图6,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.
求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.
图6
1 2 3
A
B。

相关文档
最新文档