毕业设计---基于小波变换的图像处理方法研究

合集下载

基于小波变换的图像压缩算法研究

基于小波变换的图像压缩算法研究

基于小波变换的图像压缩算法研究近年来,随着数字图像的广泛应用,图像处理及图像压缩技术也越来越受到重视。

而其中基于小波变换的图像压缩算法是应用最广泛的一种算法之一。

本文将从小波变换的基本原理入手,探讨基于小波变换的图像压缩算法的研究。

一、小波变换的基本原理小波分析是一种时频分析方法,其基本思想是将一段时域信号经过小波变换转换为频域信号,从而便于分析。

小波变换与傅里叶变换类似,可以将任意时域信号分解成一组基函数的线性叠加,但是小波变换所采用的基函数不是正弦、余弦函数,而是一组有限长度的小波函数。

由于这些小波函数在时域上集中在某一短时间内,因此相比于傅里叶变换,小波变换更适于分析非平稳信号及局部特征。

在进行小波变换时,需要确保基函数满足正交性和尺度变换不变性。

因此,实际应用中通常采用Daubechies小波或Haar小波作为基函数。

其中Haar小波在一维信号的分析中应用较为广泛,由于其计算简单,可以很方便地应用于数字图像的处理和压缩。

二、基于小波变换的图像压缩算法基于小波变换的图像压缩算法常用的有两种:基于小波分解的压缩算法和基于小波编码的压缩算法。

1. 基于小波分解的压缩算法基于小波分解的压缩算法主要包括以下三个步骤:分解、量化、编码。

分解:将原始图像进行小波分解,分解成多个分辨率的子带,每个子带都代表了图像中不同分辨率的特征。

在此过程中,一般采用二维离散小波变换,可以将图像分解成四个子带,分别为LL、LH、HL、HH。

其中,LL子带是图像中低频分量,而LH、HL、HH子带则是图像中高频分量。

量化:对于每个子带,将其按照一定的量化参数进行量化,使信息量减少,从而实现图像压缩。

编码:对于量化后的系数,采用一种高效的编码方式将其进行压缩,以便达到最小化压缩后数据的存储空间。

2. 基于小波编码的压缩算法基于小波编码的压缩算法则是采用小波变换将原始图像分解为不同的频率子带,然后将每个子带的小波系数进行编码,以实现图像压缩。

基于小波变换的图像处理方法研究

基于小波变换的图像处理方法研究

基于小波变换的图像处理方法研究近年来,小波变换技术在图像处理领域得到了广泛的应用。

它能够提取图像中的特征信息,减少图像噪声,较好地保留图像的细节等。

基于小波变换的图像处理方法,可以应用于医学影像诊断、卫星遥感图像处理等多个领域。

本文将介绍小波变换技术的一些基础知识,分析小波变换在图像处理中的应用,并探讨基于小波变换的图像处理方法研究。

一、小波变换的基础知识小波变换(Wavelet Transform)是一种能将时间序列信号或图像信号分解成不同尺度的子信号的数学变换技术。

在小波变换中,小波函数是用作基函数的,通过对小波基函数的线性组合,得到原始信号的一个系数序列,这个系数序列记录了不同尺度下信号的信息。

小波变换的优点之一是信号的时频局部性,它能够对信号的低频和高频部分进行分离。

二、小波变换在图像处理中的应用小波变换在图像处理中有着广泛的应用。

主要应用在图像压缩、噪声去除和边缘检测等方面。

在图像压缩中,小波变换可将图像分为不同频率的子带,其位于较低频段的子带较为平滑,可以用较少的信息来表示;其位于较高频段的子带包含了图像的细节信息,通过对子带系数进行量化和编码,可以实现图像压缩。

在噪声去除方面,小波变换可以通过阈值去除图像中的高频噪声,从而获得更好的图像质量。

在边缘检测方面,小波变换的多尺度分析特性可以用于提取图像中的边缘信息。

三、基于小波变换的图像处理方法研究基于小波变换的图像处理方法研究,是利用小波变换技术进行图像处理的一种方法。

在此方法中,首先对图像进行小波变换,然后根据具体的应用需求对小波系数进行处理,最后通过逆小波变换将处理后的小波系数重构成图像。

目前,该方法已经应用于图像增强、图像恢复和图像分割等多个领域。

在图像增强领域,基于小波变换的增强方法主要是通过增大图像中的高频分量,从而达到增强图像细节信息的目的。

该方法可以应用于医学影像诊断、高清视频制作等多个领域。

在图像恢复方面,基于小波变换的方法可以减少噪声干扰,恢复损坏的图像部分信息。

基于小波变换的图像去噪算法研究与应用

基于小波变换的图像去噪算法研究与应用

基于小波变换的图像去噪算法研究与应用一、引言图像去噪是图像处理领域的重要问题,随着数字图像处理技术的发展与应用,对图像的去噪要求越来越高。

因此,在图像领域中,图像去噪一直是研究的热点之一。

二、小波变换小波变换是一种信号处理方法,可以用于信号的压缩、去噪、特征提取等。

小波变换通过分析信号中的局部细节信息,可以将信号分解为不同频率的子带,从而更好地处理信号中的各个部分。

三、小波变换在图像去噪中的应用1.小波阈值去噪法小波阈值去噪法是一种基于小波分解的图像去噪方法,该方法通过分解图像为不同频率的小波子带,再对各自的子带进行去噪处理,最后将各子带结果合成为一张图像。

该方法的核心在于确定小波子带的阈值,目前常用的方法有软阈值和硬阈值两种。

软阈值和硬阈值的区别在于,软阈值会使小于阈值的子带信号变为0,但不会对大于阈值的信号做限制;硬阈值和软阈值类似,只是会使小于阈值的子带信号全部变为0。

2.双阈值小波去噪法双阈值小波去噪法是一种基于小波变换的两阶段去噪方法,该方法首先通过小波分解将图像分解为不同频率的小波子带,然后采用两个阈值对各子带进行去噪处理,其中一个阈值用于对高频子带进行去噪,另一个阈值用于对低频子带进行去噪。

该方法的主要优点在于,可以有效地去除噪声的同时,尽可能地保留图像中的细节和纹理信息。

四、实验分析与结果本文选择了几组不同的噪声图像进行去噪处理,将分别采用小波阈值去噪法和双阈值小波去噪法进行实验处理。

实验结果表明,采用小波阈值去噪法能够显著地去除高斯噪声和椒盐噪声;双阈值小波去噪法在去除图像噪声的同时,能够有效地保留图像中的细节信息。

五、结论小波变换是一种重要的信号处理方法,在图像去噪方面得到了广泛的应用。

通过实验对比,小波阈值去噪法和双阈值小波去噪法均能达到不错的去噪效果,可根据不同的噪声类型和噪声强度进行选择和应用。

未来,小波变换方法预计将得到更广泛的应用,为图像处理及相关领域的研究提供更有力的工具和技术。

基于小波变换的图像处理方法优化

基于小波变换的图像处理方法优化

基于小波变换的图像处理方法优化在数字图像处理领域中,小波变换被广泛应用于信号分析和图像处理等领域。

小波变换可以将图像分解成不同尺度和频率的子图像,能够提取图像中不同的特征信息,因此在图像去噪、图像压缩、图像增强等方面有着广泛的应用。

然而,小波变换作为一种线性变换,其处理结果往往存在着较大的误差和失真。

因此,在实际应用中,需要通过优化小波变换的方法,提高图像处理的精度和质量。

本文将介绍基于小波变换的图像处理方法的优化,并针对不同的图像处理任务,提供相应的优化方法。

一、图像去噪图像去噪是数字图像处理中的一个重要任务。

传统的小波变换去噪方法采用硬阈值或软阈值来对小波系数进行剪切,以从噪声中重构图像。

然而,传统的小波变换去噪方法容易出现阈值选取不当、失真过大等问题。

为了解决这些问题,提出了基于小波变换的去噪方法。

该方法使用二维小波变换将图像表示为一组不同尺度和频率的分量。

通过对各个分量进行统计分析,确定哪些分量包含有用信息,哪些分量包含噪声信息。

然后,通过对含有噪声信息的分量进行适当的调整,完成图像去噪的过程。

二、图像增强图像增强是数字图像处理中的一个重要任务。

图像增强的目的是增强图像中的细节信息,使图像更加清晰、鲜明。

传统的小波变换图像增强方法采用增益调节和灰度变换等方式,在增强图像对比度的同时也会引入一定的失真。

因此,针对传统方法存在的问题,本文介绍了一种改进的小波变换图像增强方法。

该方法使用小波分析技术将图像分解为一组不同频率的子图像,在分析各个子图像时,同时考虑到它们对整体图像质量的影响。

然后,在各个子图像的基础上,应用灰度匹配和去模糊技术来进行增强,以达到更好的效果。

三、图像压缩图像压缩是数字图像处理中的一个重要任务。

图像压缩的目的是减少存储和传输的开销,使得数据处理更加方便和高效。

传统的小波变换图像压缩方法采用了多种技术,如压缩编码、离散余弦变换和离散小波变换等。

而在这些方法中,基于小波变换的压缩方法被广泛应用。

小波变换在图像处理中的应用毕业论文

小波变换在图像处理中的应用毕业论文
3.4.2实现融合的算法流程.............................................13
结论.......................................................................15
参考文献...................................................................16
cl是x的小波分解结构则perf0100小波分解系数里值为0的系数个数全部小波分解系数个数perfl2100cxc向量的范数c向量的范数华侨大学厦门工学院毕业设计论文首先对图像进行2层小波分解并通过ddencmp函数获取全局阈值对阈值进行处理而后用wdencmp函数压缩处理对所有的高频系数进行同样的阈值量化处理最后显示压缩后的图像并与原始图像比较同时在显示相关的压缩参数
3.2.2实现增强的算法流程............................................10
3.3小波包图像去噪......................................................10
3.3.1实现去噪的主要函数............................................11
指导教师签名:
日期:
华侨大学厦门工学院毕业设计(论文)
小波变换在图像处理中的应用
摘要
近年来小波变换技术已广泛地应用于图像处理中。小波分析的基本理论包括小波包分析、连续小波变换、离散小波变换。小波变换是一种新的多分辨分析的方法,具有多分辨率和时频局部化的特性,
可以同时进行时域和频域分析。
因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定

毕业设计(论文)-基于小波图像去噪的方法研究[管理资料]

毕业设计(论文)-基于小波图像去噪的方法研究[管理资料]

毕业论文基于小波变换的图像去噪方法的研究学生姓名: 学号:学系 专 指导教师:2011年 5 月基于小波变换的图像去噪方法的研究摘要图像是人类传递信息的主要媒介。

然而,图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。

寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。

小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。

它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信号中提取信息。

随着小波变换理论的完善,小波在图像去噪中得到了广泛的应用,与传统的去噪方法相比小波分析有着很大的优势,它能在去噪的同时保留图像细节,得到原图像的最佳恢复。

本文对基于小波变换的图像去噪方法进行了深入的研究分析,首先详细介绍了几种经典的小波变换去噪方法。

对于小波变换模极大值去噪法,详细介绍了其去噪原理和算法,分析了去噪过程中参数的选取问题,并给出了一些选取依据;详细介绍了小波系数相关性去噪方法的原理和算法;对小波变换阈值去噪方法的原理和几个关键问题进行了详细讨论。

最后对这些方法进行了分析比较,讨论了它们各自的优缺点和适用条件,并给出了仿真实验结果。

在众多基于小波变换的图像去噪方法中,运用最多的是小波阈值萎缩去噪法。

传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。

但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。

鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。

该方法利用小波阈值去噪基本原理,在基于最小均方误差算法LMS和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。

基于小波变换的图像处理技术研究

基于小波变换的图像处理技术研究
合 等方面 。
连续小波变换一般是用于理论论 证 , 所 以为了满足 实际应用的需要 , 现定义如下 的离散小波变换 :

( t ) =a o (
—k b 。 ) , , k E Z
( 3 )
1 小波 变换 基 本 原 理
相 比传统 F o u r i e r 变换 、 加窗傅里 叶变换 而言 , 小波
基 于小 波 变 换 的 图像 处 理 技术 研 究
赵 丽, 王玉 兰,张孝攀
( 成都理工大 学管理科 学学院 , 成都 6 1 0 0 5 9 )

要: 小波变换 由于 自身具备 的时频域局部化特性 , 能有效地克服 F o u r i e r 变换在处理 非平稳的复
杂 图像信号 时所存在的局 限, 已成为 图像处理的一种重要手段 。在 简单介绍 小波 变换基本原理 的基 础 上, 举例说 明了小波变换在 图像去噪、 压 缩、 增强和融合等方 面的应用。实验结果表 明: 将小波变换应用
此 即 为 连 续 小 波 变 换 , 其 中 , ( ) 表 示 ( ) 的
1 . 2 离散 小 波变 换
信 号分析 、 地震勘探数据处理 、 算子 理论 、 图像处理 、 故 障诊断等很 多领 域¨ ] 。 目前 , 小 波分 析在 图像 处 理 中主要应用于 图像 压 缩 、 图像 去 噪、 图像 增强 、 图像 融
法 。这 给小 波 理 论 带 来 了 突 破 性 的 研 究 成 果 , M a l l a t
设 ( t )∈L ( R)n ( R ) , 并且 ( 0 )=0 , 令
算法也开始用于信 号 的分解 过程 与重构过 程 中。根据
( ) ,
收 稿 日期 : 2 0 1 3 - 0 7 - 0 1

基于小波变换的图像处理技术研究

基于小波变换的图像处理技术研究

基于小波变换的图像处理技术研究随着计算机技术的不断发展和进步,图像处理技术也得到了广泛的应用和发展。

作为图像处理技术的一种重要手段,小波变换技术因其良好的性能和广泛的应用领域,受到了越来越多的关注和研究。

本文将着重介绍基于小波变换的图像处理技术研究。

一、小波变换的基本概念小波变换是一种基于频域的信号分析技术,其本质是一种将信号分解为不同尺度和频率的方法。

与传统的傅里叶变换相比,小波变换存在着更好的确定性和分辨率,并且能够对信号的瞬时特征进行更好的分析。

因此,小波变换在信号处理、图像处理等领域都有着广泛的应用。

二、基于小波变换的图像处理技术1. 小波去噪小波去噪是小波变换在图像处理中最为常见的应用之一。

通过小波变换,图像信号可以被分解为不同的频率和尺度,进而对其进行去噪处理。

与传统方法相比,小波去噪技术不仅能够更好地去除图像的噪声,同时也能够保留图像的细节特征,从而得到更加清晰的图像。

2. 小波变换与压缩在图像压缩领域中,小波变换也被广泛应用。

通过对图像进行小波分析,可以将其分解为多个子带信号,然后根据不同子带的重要性进行压缩。

与传统方法相比,基于小波变换的压缩技术不仅能够实现更好的压缩比,同时也能够保留图像的细节特征,从而得到更加高质量的压缩图像。

3. 小波变换与特征提取基于小波变换的特征提取技术在图像处理中也有着广泛的应用。

通过对图像进行小波分析,可以将其分解为多个子带信号,进而提取出不同频率和尺度的图像特征。

在物体识别、图像检索等领域中,基于小波变换的特征提取技术能够提高图像识别的准确性和效率。

三、结语总的来说,基于小波变换的图像处理技术具有很多优秀的特性,可以广泛应用于信号处理、图像压缩、特征提取等领域。

与传统的方法相比,小波变换能够更好地保留图像的细节信息,同时也能够更好地处理噪声等干扰因素。

随着计算机技术的不断发展,相信基于小波变换的图像处理技术将会在未来得到更加广泛和深入的应用和研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于小波变换的图像处理方法研究摘要图像增强是图像处理的一个重要分支,它对提高图像的质量起着重要的作用。

它通过有选择地强调图像中某些信息而抑制另一些信息,以改善图像的视觉效果,将图像转换成一种更适合于人眼观察和计算机进行分析处理的形式。

传统的方法在增强图像对比度的同时也会增强图像噪声,而小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。

本文首先对传统图像增强理论进行概述,并给出直方图均衡化与灰度变换算法,通过matlab来观察其处理效果的特点,然后提出四种基于小波变换的图像增强方法,并分析它们与传统图像增强方法相比的优缺点,最后基于传统小波变换只能增强图像边缘部分而无法增强细节部分的缺点,引出了基于分数阶微分和小波分解的图像增强方法,并通过matlab观察了这种算法的处理效果。

关键词:图像增强;直方图均衡化;小波变换;分数阶微分Image enhancement based on wavelet transformationAbstractImage enhancement is an important branch in image processing.It plays an important role in improving the quality of the images.It will improve the image visual effect through emphasizing the image information and inhibitting some other information selectively.It will converse images into a form more suitable for the human eye observation and computer analysis processing.The traditional method of image enhancement will enhance image contrast,image noise as well,while wavelet transform is a decompositon method of multi-scale and multi-resolution,it can separet noise from signal in different scale so that it can arrive the purpose of image enhancement according to the distribution of the noise.In the paper,firstly, I will summarize the image enhancement theory and give the Histogram equalization algorithm,at the same time,I will analyze the disadvantages of the treatment effect through the Matlab.Then,I will give an image enhancement method based on the wavelet transform and analyze its advantages and disadvantages compared with traditional methods.Finally,because traditional wavelet transformation can only strengthen the edge of images instead of the details,we will introduce the image enhancement based on wavelet decomposition and fractional differentials.At the same time,we will observe the treatment effect of this algorithm by the matlab..Keywords: Image enhancement; Histogram equalization; Wavelet transform; Fractional differenti目录第一章绪论 (1)1.1 论文研究的背景和意义 (1)1.2 国内的研究状况 (1)1.3 论文的主要内容 (2)第二章图像增强的传统方法 (3)2.1 灰度变换法 (3)2.1.1 图像反转 (3)2.1.2 对数变换 (3)2.1.3 分段线性变换 (4)2.2 直方图调整法 (5)第三章小波变换的理论基础 (8)3.1 小波变换与傅里叶变换 (8)3.1.1 小波变换的理论基础 (8)3.1.2 小波变换和傅里叶变换的比较 (8)3.2 小波变换基本理论 (9)3.2.1 一维连续小波变换(CWT) (9)3.2.2 一维离散小波变换(DWT) (10)3.2.4 二维离散小波变换 (11)3.3 小波变换的多尺度分析 (11)第四章基于小波变换的图像增强 (13)4.1 小波变换图像增强原理 (13)4.2 小波变换图像增强算法 (14)4.2.1 非线性增强 (14)4.2.2 图像钝化 (14)4.2.3图像锐化 (15)4.2.4 基于小波变换的图像阈值去噪 (16)4.3 改进的基于小波变换的图像增强算法 (17)4.3.1 分数阶微分用于图像增强理论 (17)4.2.2 分数阶微分滤波器的构造 (19)4.2.3 基于分数阶微分和小波分解的图像增强 (20)4.2.4 小波分解层次与分数阶微分阶次对图像处理结果的影响 (23)第五章结论 (26)致谢 (27)参考文献 (28)第一章绪论1.1 论文研究的背景和意义在我们所处的信息社会,人们对于信息获取和交流的要求越来越高,从而促进了信息处理和应用技术的飞速发展。

图像,作为直观的信息表达和反映形式,越来越广泛地被应用于社会生活的各个方面。

而图像处理技术,也随着人们要求的不断提高,应用领域的不断扩大而快速发展更新。

人们要求高质量的图像,不仅仅是为了满足视觉需要,更因为在信号分析、通信技术和计算机科学的各个方面,都需要对各种图像进行分析处理从而得出结论和相关数据。

但事实上,由于客观环境和条件的限制,图像往往会受到各种噪声的污染,给后期的识别和利用造成困难,所以图像的增强和降噪,很自然就成为了现代图像处理技术中的重要组成部分。

小波分析是近些年来国际上掀起热潮的一个国际前沿领域,它在时(空)域和频域上同时具有的良好局部化性质以及多分辨率分析的特性,使之被广泛的应用于信号和图像处理中。

由于噪声和边缘点在不同小波系数上所体现的不同特性,小波变换为我们希望兼顾增强图像特性和减小噪声放大提供了可能途径,所以,人们希望将这一数学工具运用于图像处理,取得比较好的图像增强和去噪效果。

[1]1.2 国内的研究状况国内的图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。

初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。

这一时期由于图像存储成本高,处理设备造价高,因而其应用面窄。

20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式。

20世纪80年代进入了普及期,此时的计算机已经能够承担起图形图像的处理任务。

20世纪90年代进入应用期,人们运用图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查、农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。

图像增强是图像处理的重要组成部分,传统的图像增强对于改善图像质量发挥了极其重要的作用。

随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。

其中基于小波变换的图像增强方法得到了广泛的应用,近年来,基于分数阶微分的图像增强在图像处理领域也拥有了广阔的应用前景。

1.3 论文的主要内容本论文以小波分析理论为基础,主要研究了基于小波变换的图像增强和分数阶微分增强。

论文主要通过分析传统图像增强(主要为直方图均衡化)的缺点来突出基于小波变换的图像增强的优点。

同时给出各种增强方法的算法。

全文共分为五章,具体安排如下:第一章绪论。

介绍论文研究的背景意义、国内外的发展状况、研究的主要内容及结构安排。

第二章图像增强的传统方法。

主要介绍了灰度变换和直方图均衡化的基本原理。

第三章小波变换的理论基础。

第四章基于小波变换的图像增强。

主要研究了传统的小波变换图像增强和加入分数阶微分的小波变换图像增强,并对比分析了各种方法的优缺点。

第五章总结。

总结本文的研究内容。

第二章 图像增强的传统方法2.1 灰度变换法灰度即使用黑色调表示物体。

每个灰度对象都具有从0%(白色)到100%(黑色)的亮度值。

灰度变换处理是图像增强处理技术中一种非常基础、直接的空间域图像处理方法,也是图像数字化和图像显示的一个重要组成部分。

灰度变换主要是针对独立的像素点进行处理,通过改变原始图像数据所占有的灰度范围而使图像在视觉上得以改观。

灰度变换图像反转、对数变换和分段线性变换等。

2.1.1 图像反转图像反转简单来说就是使黑变白,使白变黑,将原始图像的灰度值进行反转,使输出图像的灰度随输入图像的增加而减少。

假设对灰度级范围是()1,0-L 的图像求反,就是通过变换将()1,0-L 变换到()0,1-L ,变换公式为:t=L-1-s (2.1) 变换图像如图2.1原图反转后的图像(a)(b) 图2.1 原始图像和经反转增强后的图像 由图2.1可以看到,反转后的图像有黑变白由白变黑了。

2.1.2 对数变换对数变换的一般表达式为:)1log(r c S += (2.2)其中c 是一个常数,并假设0≥r ,此变换使一窄带低灰度输入图像值映射为一宽带输入值。

可以利用这种变换来扩展被压缩的高值图像中的暗像素。

相对的是反对数变换的调整值。

转换图如图2.2:原图经对数变换增强后的图像(a)(b)图2.2 经对数变换增强后的图像 由图2.2可知,经对数变换后图像明显变亮了。

2.1.3 分段线性变换分段线性变换函数是前两种灰度变换的补充,它的优势在于形式可任意合成。

它的目的在于感兴趣区间增强,不感兴趣区间抑制,分段线性函数的主要缺点是需要更多的用户输入。

相关文档
最新文档