2020年河南省南阳市淅川县中考数学一模试题
河南省南阳市淅川县2020年中考数学一模试卷含答案

河南省南阳市淅川县中考数学一模试卷一、选择题(共8小题,每小题3分,满分24分)1.在已知实数:﹣1,0,,﹣2中,最大的一个实数是()A.﹣1 B.0 C.D.﹣22.2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为()A.15×105B.1.5×106C.1.5×107D.0.15×1083.观察如图所示的两个物体,其主视图为()A.B.C.D.4.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.5.下列计算正确的是()A.+= B.﹣=﹣1 C.×=6 D.÷=36.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是()跳高成绩(m) 1.50 1.55 1.60 1.65 1.70 1.75跳高人数 1 3 2 3 5 1A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,57.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对8.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4C.8 D.8二、填空题(共7小题,每小题3分,满分21分)9.2的相反数是.10.已知扇形的半径为3,圆心角为120°,它的弧长为.11.袋中有4个红球,x个黄球,从中任摸一个恰为黄球的概率为,则x的值为.12.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为.13.如图,△ABC的三个顶点都在5×5的网格(•淅川县一模)如图,▱ABCD中,E是边BC上一点,AE交BD于F,若BE=2,EC=3,则的值为.15.如图,矩形ABCD中,AB=6,BC=8,E是BC边上的一定点,P是CD边上的一动点(不与点C、D重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程中,a不断变化,则a的取值范围是.三、解答题(共8小题,满分75分)16.先化简,再求值:,其中.17.已知:如图,在△ABC中,∠ACB=90°,∠CAB的平分线交BC于D,DE⊥AB,垂足为E,连结CE,交AD于点H.(1)求证:AD⊥CE;(2)如果过点E作EF∥BC交AD于点F,连结CF,猜想四边形是什么图形?并证明你的猜想.18.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(2010•义乌市)如图,一次函数y=kx+2的图象与反比例函数y=的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,=.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.20.腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据=1.73)21.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?22.在Rt△AOB中,∠AOB=90°,OA=OB=4厘米,点P从B出发,以1厘米/秒的速度沿射线BO 运动,设点P运动时间为t(t>0)秒.△APC是以AP为斜边的等腰直角三角形,且C,O两点在直线BO的同侧,连接OC.(1)当t=1时,求的值;(2)求证:△APB∽△ACO;(3)设△POC的面积为S,求S与t的函数解析式.23.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(﹣3,0),经过B 点的直线交抛物线于点D(﹣2,﹣3).(1)求抛物线的解析式;(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,求直线BD 和直线EF的解析式;(3)是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.河南省南阳市淅川县中考数学一模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.在已知实数:﹣1,0,,﹣2中,最大的一个实数是()A.﹣1 B.0 C.D.﹣2【考点】实数大小比较.【分析】根据正数大与负数和0,0大于负数,两个负数,绝对值大的反而小,即可解答.【解答】解:∵﹣2<﹣1<0<,∴最大的一个实数是,故选:C.【点评】本题考查了实数比较大小,解决本题的关键是熟记正数大与负数和0,0大于负数,两个负数,绝对值大的反而小.2.2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为()A.15×105B.1.5×106C.1.5×107D.0.15×108【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1500万用科学记数法表示为:1.5×107.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.观察如图所示的两个物体,其主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看左边是一个高矩形,右边是一个低矩形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.下列计算正确的是()A.+= B.﹣=﹣1 C.×=6 D.÷=3【考点】二次根式的加减法;二次根式的乘除法.【分析】分别根据二次根式的加减法则、乘除法则结合选项求解,然后选出正确答案.【解答】解:A、和不是同类二次根式,不能合并,故本选项错误;B、和不是同类二次根式,不能合并,故本选项错误;C、×=,计算错误,故本选项错误;D、÷==3,计算正确,故本选项正确.故选D.【点评】本题二次根式的加减法、二次根式的乘除法等运算,掌握各运算法则是解题的关键.6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是()跳高成绩(m) 1.50 1.55 1.60 1.65 1.70 1.75跳高人数 1 3 2 3 5 1A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,5【考点】众数;中位数.【分析】根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.【解答】解:跳高成绩为170的人数最多,故跳高成绩的众数为176;共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为165,故中位数为165;故选A.【点评】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候注意数据的奇偶性.7.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对【考点】翻折变换(折叠问题);平行四边形的性质.【专题】压轴题.【分析】根据题意,推出∠B=∠D=∠AMN,即可推出结论①,由AM=DA推出四边形AMND为菱形,因此推出②.【解答】解:∵平行四边形ABCD,∴∠B=∠D=∠AMN,∴MN∥BC,∵AM=DA,∴四边形AMND为菱形,∴MN=AM.故选A.【点评】本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形AMND为菱形.8.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4C.8 D.8【考点】线段垂直平分线的性质;含30度角的直角三角形;勾股定理.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:如图,∵在Rt△ABC中,∠ACB=60°,∴∠A=30°.∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=2,∴CD=AD=4,∴AB=2+4=6,在△BCD中,由勾股定理得:CB=2,在△ABC中,由勾股定理得:AC==4,故选:B.【点评】本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.二、填空题(共7小题,每小题3分,满分21分)9.2的相反数是﹣2.【考点】相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.10.已知扇形的半径为3,圆心角为120°,它的弧长为2π.【考点】弧长的计算.【分析】直接利用弧长公式求出即可.【解答】解:∵扇形的圆心角为120°,半径为6,∴扇形的弧长是:=2π.故答案为:2π.【点评】此题主要考查了弧长公式的应用,熟练记忆弧长公式是解题关键.11.袋中有4个红球,x个黄球,从中任摸一个恰为黄球的概率为,则x的值为12.【考点】概率公式.【分析】根据黄球的概率为,列出关于x的方程,解方程即可求出x的值.【解答】解:设袋中有x个黄球,根据题意得=,解得x=12.故答案为:12.【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为130°.【考点】平行线的性质;直角三角形的性质.【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=40°,∴∠3=90°﹣∠1=90°﹣40°=50°,∴∠4=180°﹣50°=130°,∵直尺的两边互相平行,∴∠2=∠4=130°.故答案为:130°.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.13.如图,△ABC的三个顶点都在5×5的网格(•淅川县一模)如图,▱ABCD中,E是边BC上一点,AE交BD于F,若BE=2,EC=3,则的值为.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,继而可判定△BEF∽△DAF,根据相似三角形的对应边成比例,即可得BF:DF=BE:AD问题得解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BE=2,EC=3,∴BC=AD=BE+CE=2+3=5,∵AD∥BC,∴△BEF∽△DAF,∴BE:AD=BF:DF=2:5,即=,故答案为:.【点评】此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DAF,再利用相似三角形的对应边成比例定理求解.15.如图,矩形ABCD中,AB=6,BC=8,E是BC边上的一定点,P是CD边上的一动点(不与点C、D重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程中,a不断变化,则a的取值范围是4<a<5.【考点】矩形的性质;三角形中位线定理.【分析】根据矩形的性质求出AC,然后求出AP的取值范围,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP.【解答】解:∵矩形ABCD中,AB=6,BC=8,∴对角线AC==10,∵P是CD边上的一动点(不与点C、D重合),∴8<AP<10,连接AP,∵M,N分别是AE、PE的中点,∴MN是△AEP的中位线,∴MN=AP,∴4<a<5.故答案为:4<a<5.【点评】本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的取值范围是解题的关键.三、解答题(共8小题,满分75分)16.先化简,再求值:,其中.【考点】分式的化简求值.【专题】计算题.【分析】线将括号内的分式通分,进行加减后再算除法,计算时,要将除法转化为乘法.【解答】解:原式=[﹣]×=×=,当x=时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.已知:如图,在△ABC中,∠ACB=90°,∠CAB的平分线交BC于D,DE⊥AB,垂足为E,连结CE,交AD于点H.(1)求证:AD⊥CE;(2)如果过点E作EF∥BC交AD于点F,连结CF,猜想四边形是什么图形?并证明你的猜想.【考点】全等三角形的判定与性质;菱形的判定.【分析】(1)欲证明AD⊥CE,只需证得△ACE为等腰三角形;(2)四边形CDEF是菱形.由(1)的结论结合已知条件可以推知对角线FD、CE相互垂直平分.【解答】证明:(1)如图,∵∠ACB=90°,∠CAB的平分线交BC于D,DE⊥AB,∴在△ACD与△AED中,,∴△ACD≌△AED(AAS),∴AC=AE,∴AH⊥CE,即AD⊥CE;(2)四边形CDEF是菱形.理由如下:∵由(1)知,AC=AE,AD⊥CE,∴CH=EH,∵EF∥BC,∴=,∴FH=HD,∴四边形CDEF是菱形.【点评】此题主要考查了全等三角形的判定与性质,菱形与平行四边形的判定,以及角平分线的性质,题目综合性较强,关键是需要同学们熟练掌握基础知识.18.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(2010•义乌市)如图,一次函数y=kx+2的图象与反比例函数y=的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,=.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.【考点】反比例函数综合题.【专题】数形结合;待定系数法.【分析】(1)在y=kx+2中,只要x=0得y=2即可得点D的坐标为(0,2).(2)由AP∥OD得Rt△PAC∽Rt△DOC,又=,可得==,故AP=6,BD=6﹣2=4,由S△PBD=4可得BP=2,把P(2,6)分别代入y=kx+2与y=可得一次函数解析式为:y=2x+2反比例函数解析式为:y=(3)当x>0时,一次函数的值大于反比例函数的值的x的取值范围由图象能直接看出x>2.【解答】解:(1)在y=kx+2中,令x=0得y=2,∴点D的坐标为(0,2)(2)∵AP∥OD,∴∠CDO=∠CPA,∠COD=∠CAP,∴Rt△PAC∽Rt△DOC,∵=,即=,∴==,∴AP=6,又∵BD=6﹣2=4,∴由S△PBD=BP•BD=4,可得BP=2,∴P(2,6)把P(2,6)分别代入y=kx+2与y=可得一次函数解析式为:y=2x+2,反比例函数解析式为:y=;(3)由图可得x>2.【点评】考查反比例函数和一次函数解析式的确定、图形的面积求法、相似三角形等知识及综合应用知识、解决问题的能力.有点难度.20.腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据=1.73)【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.【解答】解:过点C作CE⊥AB于E.∵∠ADC=90°﹣60°=30°,∠ACD=90°﹣30°=60°,∴∠CAD=90°.∵CD=10,∴AC=CD=5.在Rt△ACE中,∵∠AEC=90°,∠ACE=30°,∴AE=AC=,CE=AC•cos∠ACE=5•cos30°=.在Rt△BCE中,∵∠BCE=45°,∴BE=CE=,∴AB=AE+BE=≈6.8(米).故雕塑AB的高度约为6.8米.【点评】本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【考点】一次函数的应用.【分析】(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C的坐标,然后利用待定系数法求一次函数解析式解答;(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.【解答】解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600)所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲,此时乙所走的路程是200米.【点评】本题考查了一次函数的应用,观察图象提供的信息,利用待定系数法求函数解析式是本题考查了的重点.22.在Rt△AOB中,∠AOB=90°,OA=OB=4厘米,点P从B出发,以1厘米/秒的速度沿射线BO 运动,设点P运动时间为t(t>0)秒.△APC是以AP为斜边的等腰直角三角形,且C,O两点在直线BO的同侧,连接OC.(1)当t=1时,求的值;(2)求证:△APB∽△ACO;(3)设△POC的面积为S,求S与t的函数解析式.【考点】相似形综合题.【分析】(1)根据t=1求出BP、OP,根据勾股定理求出AP,根据余弦的定义求出AC,计算即可;(2)根据等腰直角三角形的性质求出==和∠BAO=∠PAC=45°,根据相似三角形的判定定理证明;(3)分0<t<4、t=4和t>4三种情况,根据等腰直角三角形的性质和正弦的定义以及三角形的面积公式计算即可.【解答】解:(1)当t=1时,OP=3,OA=4,在Rt△AOP中,AP==5,∵△ACP为等腰三角形,∴AC=AP•cos45°=,∴=;(2)证明:∵△AOB,△ACP都是等腰三角形,∴==,∵∠BAO=∠PAC=45°,∴∠BAP=∠OAC,∴△APB∽△ACO;(3)①当0<t<4时,∵△APB∽△ACO,∴==,∠AOC=∠ABP=45°,∴OC=BP=t,作CM⊥BO,垂足为M,则CM=OC•sin45°=t,∴S=×OP×CM=×(4﹣t)×t=﹣t2+t;②当t=4时,点P与点O重合,△POC不存在;③当t>4时,BP=t,则OP=t﹣4.由①得,S=×=×(t﹣4)×t=t2﹣t;∴S=.【点评】本题考查的是相似三角形的判定和性质、锐角三角函数的定义以及等腰直角三角形的性质,掌握相似三角形的判定定理和性质定理、熟记锐角三角函数的定义是解题的关键.23.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(﹣3,0),经过B 点的直线交抛物线于点D(﹣2,﹣3).(1)求抛物线的解析式;(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,求直线BD 和直线EF的解析式;(3)是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将A、D两点的坐标代入解析式求出b、c即可;(2)先求出B点坐标,再根据B、D两点坐标求出BD解析式,进而求出EF解析式;(3)由于EF已经与BD平行了,只需让DF∥BE就可以了,此时,F点的纵坐标与D点相同,从而可求出F点的坐标,进而求出E点坐标,即求出a的值.【解答】解:(1)将A、D两点代入y=x2+bx+c可求得:b=2,c=﹣3,∴抛物线解析式为y=x2+2x﹣3(2)由抛物线解析式y=x2+2x﹣3可求B的坐标是(1,0),由B、D两点坐标求得直线BD的解析式为y=x﹣1;∵EF∥BD,∴直线EF的解析式为:y=x﹣a(3)若四边形BDFE是平行四边形,则DF∥x轴,如图,∴D、F两点的纵坐标相等,即点F的纵坐标为﹣3.∴F点的坐标为(0,﹣3),∴DF=2,∴BE=DF=2,∴E(3,0),即:a=3.所以存在实数a=3,使四边形BDFE是平行四边形.【点评】本题是二次函数综合题,主要考查了待定系数法求二次函数解析式、抛物线与x轴的交点坐标、待定系数法求直线解析式、平行四边形的判定与性质等知识点,虽有一定综合性,但难度不大,属于较基础的题.。
2020年河南省南阳市中考数学一模试卷

中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.的算术平方根是()A. 4B. -4C. 2D. ±22.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 0.7×10-8B. 7×10-8C. 7×10-9D. 7×10-103.剪纸是我国传统的民间艺术,下列剪纸作品中,既是中心对称图形又是轴对称图形的是()A. B.C. D.4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为()A. 50°B. 40°C. 30°D. 25°5.不等式组的解集在数轴上表示,正确的是()A. B.C. D.6.某校九年级四班数学兴趣小组有5名成员,身高(单位:cm)分别为165、172、168、170、175.增加1名身高为170cm的成员后,现在兴趣小组成员的身高与原来相比()A. 平均数变小,方差不变B. 平均数不变,方差不变C. 平均数不变,方差变大D. 平均数不变,方差变小7.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x个,买苦果y个,则下列关于x、y的二元一次方程组中符合题意的是()A. B.C. D.8.关于x的一元二次方程(a-1)x2+3x-2=0有实数根,则a的取值范围是()A. B.C. 且a≠1D. 且a≠19.如图,在已知的△ABC中,按以下步骤:(1)分别以B、C为圆心,大于BC的长为半径作弧,两弧相交M、N;(2)作直线MN,交AB于D,连结CD,若CD=AD,∠B=20°,则下列结论:①∠ADC=40°②∠ACD=70°③点D为△ABC的外心④∠ACD=90°,正确的有()A. 4个B. 3个C. 2个D. 1个10.如图,在直角坐标系xoy中,已知A(0,1),B(,0),以线段AB为边向上作菱形ABCD,且点D在y轴上.若菱形ABCD以每秒2个单位长度的速度沿射线AB滑行,直至顶点D落在x轴上时停止.设菱形落在x轴下方部分的面积为S,则表示S与滑行时间t的函数关系的图象为()A. B.C. D.二、填空题(本大题共5小题,共15.0分)11.计算:(π-3)0+(-)-1=______12.如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为______.13.推动学校师生共读,家庭亲子共读,已达成我国教育发展的共识,某校组织生“朗读经典,共享阅读”大赛活动,经过评选后有两名男同学和两名女同学获一等奖,学校将从这四名同学中随机挑选两名参加市教育局组织的决赛.则挑选的两名同学恰好是一男一女的概率是______.14.如图,在矩形ABCD中,AC、BD为对角线,AB=2,把BD绕点B逆时针旋转,得到线段BE,当点E落在线段BA的延长线时,恰有DE∥AC,连接CE,则阴影部分的面积为______.15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是______.三、解答题(本大题共8小题,共75.0分)16.先化简÷(-x+1),然后从-<x<的范围内选取一个合适的整数作为x的值代入求值.17.国家“一带一路”倡议提出以后,得到全世界的广泛参与,助推我国界经济的发展,某校数学兴趣小组为了解所在城市市民对“一带一路”倡议的关注情况,在本市街头随机调查了部分市民,并根据调查结果制成了如下尚不完善的统计图表()填空:此次调查人数为,,(2)请补全条形统计图.(3)根据调查结果,可估计本市120万市民中,高度关注“一带一路”倡议的有多少人?18.如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=______时,四边形AOCP是菱形;②连接BP,当∠ABP=______时,PC是⊙O的切线.19.“五•一”期间,小明到小陈家所在的美丽乡村游玩,在村头A处小明接到小陈发来的定位,发现小陈家C在自己的北偏东45°方向,于是沿河边笔直的绿道l步行200米到达B处,这时定位显示小陈家C在自己的北偏东30°方向,如图所示.根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头D处(精确到1米)(备用数据:≈1.414,≈1.732)20.如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,-2)、B(-2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.21.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=______;(2)数学思考:①如图2,若点E在线段AC上,则=______(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:∵=4,∴的算术平方根是=2.故选:C.首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义,注意要首先计算=4.2.【答案】C【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.解:数据0.000000007用科学记数法表示为7×10-9.故选:C.3.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】A【解析】解:如图,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故选:A.由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.5.【答案】B【解析】解:解不等式①得:x>-1,解不等式②得:x≤2,则不等式组的解集为-1<x≤2,在数轴上表示为:,故选:B.分别求出各不等式的解集,再求出其公共解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【答案】D【解析】解:原数据的平均数:×(165+170+175+168+172)=170(cm),方差:×[(165-170)2+(170-170)2+(175-170)2+(168-170)2+(172-170)2]=(cm2),新数据的平均数:×(165+170+170+175+168+172)=170(cm),方差:×[(165-170)2+2×(170-170)2+(175-170)2+(168-170)2+(172-170)2]==(cm2),所以平均数不变,方差变小,故选:D.根据平均数的计算方法分别计算出5名同学和6名同学的平均数,再分别计算出方差,可得答案.本题考查了方差,关键是掌握方差的定义和计算公式.7.【答案】D【解析】解:由题意可得,,故选:D.根据题意可以列出相应的方程组,从而可以解答本题.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.【答案】D【解析】【分析】本题考查了一元二次方程根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.根据一元二次方程的定义和判别式的意义得到a≠1且△=32-4(a-1)•(-2)≥0,然后求出两个不等式解集的公共部分即可.【解答】解:根据题意得a≠1且△=32-4(a-1)•(-2)≥0,解得a≥-且a≠1.故选D.9.【答案】B【解析】解:由题意可知,直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD=20°,∴∠ADC=∠BCD+∠CBD=40°,故A选项正确;又∵CD=AD,∴∠A=∠ACD,又∵∠A+∠ACD+∠ADC=180°,∴∠ACD=70°,故B选项正确,D选项错误;∵AD=CD,BD=CD,∴AD=BD,即D是AB的中点,故C选项正确;故选:B.依据直线MN是线段BC的垂直平分线,可得∠B=∠BCD=20°,进而得出∠ADC=40°;依据AD=CD与三角形内角和定理,即可得到∠ACD=70°;依据AD=BD,即可得出D是AB的中点;依据AD=CD=DB,即可得到点D是△ABC的外接圆圆心;依据∠ACD=70°得∠ACD≠90°.本题主要考查了线段垂直平分线的性质,经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,简称“中垂线”.10.【答案】A【解析】解:∵A(0,1),B(,0),∴OA=1,OB=,∴AB===2,∵tan∠BAO===,∴∠BAO=60°,∴菱形ABCD的高为2×=,∵菱形ABCD以每秒2个单位长度的速度沿射线AB滑行,∴菱形沿y轴方向滑落的速度为1,沿x轴方向滑落的速度,①点A在x轴上方时,落在x轴下方部分是三角形,面积S=•t•t=t2,②点A在x轴下方,点C在x轴上方时,落在x轴下方部分是梯形,面积S=[t+(t-1)•1]×=t-,③点C在x轴下方,点D在x轴上方时,x轴下方部分为菱形的面积减去x轴上方部分的三角形的面积,S=2×-(3-t)•(6-2t)=2-(3-t)2,纵观各选项,只有A选项图形符合.故选:A.根据点A、B的坐标求出OA、OB,再利用勾股定理列式求出AB,再求出菱形的高,以及菱形沿y轴方向滑落的速度和x轴方向滑落的速度,再分①点A在x轴上方时,利用三角形的面积公式表示出s与t的函数关系式,②点A在x轴下方,点C在x轴上方时,利用梯形的面积公式表示出s与t的函数关系式,③点C在x轴下方,点D在x轴上方时,利用菱形ABCD的面积减去x轴上方部分的三角形的面积,列式整理得到s与t的函数关系式,从而判断出函数图象而得解.本题考查了动点问题的函数图象,主要利用了菱形的性质,解直角三角形,分三段得到x轴下方部分的图形并求出相应的函数关系式是解题的关键.11.【答案】-3【解析】解:原式=1-4=-3.故答案为:-3.根据零指数幂:a0=1(a≠0)和负整数指数幂:a-n=(a≠0)可直接得到答案.此题主要考查了零指数幂和负整数指数幂,关键是掌握零指数幂公式和负整数指数幂公式.12.【答案】8【解析】【分析】先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.【解答】解:∵点E,F分别是BD,DC的中点,∴FE是△BCD的中位线,∴EF=BC=3,∵∠BAD=90°,AD=BC=6,AB=8,∴BD=10,又∵E是BD的中点,∴Rt△ABD中,AE=BD=5,∴AE+EF=5+3=8,故答案为:813.【答案】【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.画树状图展示所有12种等可能的结果数,找出挑选的两名同学恰好是一男一女的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中挑选的两名同学恰好是一男一女的结果数为8,所以挑选的两名同学恰好是一男一女的概率==.故答案为.14.【答案】π-2【解析】解:如图,设AC交BD于点O.∵四边形ABCD是矩形,∴OB=OD=OA=OC,∵OA∥DE,∴BA=AE,∵BD=BE,∴AB=OB=OA,∴△AOB是等边三角形,∴∠EBD=60°,∵AB=2,∠BAD=90°,∴AD=AB=2,∵BE∥CD,∴S△CDE=S△ADC,∵S阴=S弓形DmE+S△CDE=S扇形BED-S△BED+S△ADC=-×42+×2×2=π-2.故答案为π-2.如图,设AC交BD于点O.首先证明△OAB是等边三角形,根据S阴=S弓形DmE+S△CDE=S -S△BED+S△ADC,计算即可.扇形BED本题考查矩形的性质,扇形的面积,弓形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】2或5【解析】【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键.【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8-x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8-x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.16.【答案】解:÷(-x+1)=,=,=,=,∵-<x<且x+1≠0,x-1≠0,x≠0,x是整数,∴x=-2时,原式=-.【解析】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法,注意取得的x的值必须使得原分式有意义.根据分式的减法和除法可以化简题目中的式子,然后在-<x<中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.17.【答案】(1)200,20,0.15;(2)补全条形图如下:(3)可估计本市120万市民中,高度关注“一带一路”倡议的有120×0.1=12(万人).【解析】解:(1)此次调查的人数为100÷0.5=200(人),m=200×0.1=20,n=30÷200=0.15,故答案为:200,20,0.15;(2)见答案;(3)见答案.【分析】(1)由B种关注情况的频数及其频率可得样本容量,再根据频率=频数÷总人数可得m、n的值;(2)根据(1)中所求结果可补全条形图;(3)总人数乘以样本中A种关注情况的频率即可得.本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.【答案】(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)120°;45°【解析】(1)见答案;(2)解:①∵四边形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【分析】(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.19.【答案】解:如图所示:可得:∠CAD=45°,∠CBD=60°,AB=200m,则设BD=x,故DC=x,∵AD=DC,∴200+x=x,解得:x=100(+1)≈273,答:小明还需沿绿道继续直走273米才能到达桥头D处.【解析】根据题意表示出AD,DC的长,进而得出等式求出答案.此题主要考查了解直角三角形的应用,正确得出AD=DC是解题关键.20.【答案】解:(1)将A(4,-2)代入y=,得k2=-8,∴y=-,将(-2,n)代入y=-,得n=4,∴k2=-8,n=4;(2)根据函数图象可知:-2<x<0或x>4;(3)将A(4,-2),B(-2,4)代入y=k1x+b,得k1=-1,b=2,∴一次函数的关系式为y=-x+2,与x轴交于点C(2,0),∴图象沿x轴翻折后,得A′(4,2),S△A'BC=(4+2)×(4+2)×-×4×4-×2×2=8,∴△A'BC的面积为8.【解析】(1)将A点坐标代入y=中求出k2,进而求出点B的坐标;(2)用函数的观点将不等式问题转化为函数图象问题;(3)求出对称点坐标,求面积.本题是一次函数和反比例函数综合题,考查了待定系数法,用函数的观点解决不等式问题.21.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,而a=-10<0,且对称轴为直线x=57,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)销售单价每上涨1元,每天销售量减少10本,则销售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.22.【答案】解:(1)1;(2)①,②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC-CE)=2(-CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(-CE)]2=40∴CE=2,或CE=-(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=-2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE-AC)=2(CE-),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE-)]2=40,∴CE=2,或CE=-(舍)即:CE=2或CE=.【解析】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE-∠CDE=∠ADC-∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE-∠CDE=∠ADC-∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②见答案;(3)见答案.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.此题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解本题的关键,求CE是本题的难点23.【答案】解:(1)由题意知,∵点A(-1,0),B(4,0)在抛物线y=x2+bx+c上,∴解得:∴所求抛物线的解析式为(2)由(1)知抛物线的解析式为,令x=0,得y=-2∴点C的坐标为C(0,-2)∵点D与点C关于x轴对称∴点D的坐标为D(0,2)设直线BD的解析式为:y=kx+2且B(4,0)∴0=4k+2,解得:∴直线BD的解析式为:∵点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q∴可设点M,∴MQ=∵四边形CQMD是平行四边形∴QM=CD=4,即解得:m1=2,m2=0(舍去)∴当m=2时,四边形CQMD为平行四边形(3)由题意,可设点Q且B(4,0)、D(0,2)∴BQ2=DQ2=BD2=20①当∠BDQ=90°时,则BD2+DQ2=BQ2,∴20+=解得:m1=8,m2=-1,此时Q1(8,18),Q2(-1,0)②当∠DBQ=90°时,则BD2+BQ2=DQ2,∴20+=解得:m3=3,m4=4,(舍去)此时Q3(3,-2)∴满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(-1,0)、Q3(3,-2).【解析】(1)直接将A(-1,0),B(4,0)代入抛物线y =x2+bx+c方程即可;(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD :,设点,,可得MQ =,根据平行四边形的性质可得QM=CD=4,即可解得m=2;(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,①当∠BDQ=90°时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②当∠DBQ=90°时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2).此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解.第21页,共21页。
河南省2020年九年级一摸数学试卷参考答案及评分标准

河南省2020年中考数学一摸数学试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. 0 12. ︒145 13. 0 , 1 , 2 14. 233-π 15. 3或326-部分选择题、填空题答案解析7.已知关于x 的一元二次方程()01212=-++x x k 有实数根,则k 的取值范围是【 】(A )k ≥2- (B )k ≥2-且1-≠k (C )k ≥2 (D )k ≤2- 解析:本题为易错题,易忽视二次项系数不等于0这个限制条件.∵该方程是有实数根的一元二次方程∴()⎩⎨⎧≥++=∆≠+0142012k k 解之得:k ≥2-且1-≠k . ∴选择答案【 B 】.9. 如图所示,在平面直角坐标系xOy 中,点B 的坐标为()2,1,过点B 作y BA ⊥轴于点A ,连结OB ,将△AOB 绕点O 按顺时针方向旋转︒45,得到△''OB A ,则点'B 的坐标为 【 】(A )⎪⎪⎭⎫⎝⎛22,2 (B )⎪⎪⎭⎫ ⎝⎛22,223 (C )⎪⎪⎭⎫⎝⎛22,3 (D )⎪⎪⎭⎫ ⎝⎛1,223 第 9 题图解析:本题考查图形的变换与点的坐标,是河南中考的必考内容.如图所示,作出旋转后的△''OB A ,过点','B A 分别作x C A ⊥'轴,x D B ⊥'轴,作C A E B ''⊥,由题意可知,△OC A '和△E B A ''均为等腰直角三角形.∵()y AB B ⊥,2,1轴∴1'',2'====B A AB OA OA ∴2222''====OA C A OC 22212''''=====B A CD E B E A ∴223222=+=+=CD OC OD 22222'''=-=-==E A C A D B CE ∴⎪⎪⎭⎫⎝⎛22,223'B . 重要结论 等腰直角三角形的斜边长是直角边长的2倍.10. 如图1所示,在矩形ABCD 中,点E 在AD上,△BEF 为等边三角形,点M 从点B 出发,沿B →E →F 匀速运动到点F 时停止,过点M 作AD MP ⊥于点P ,设点M 运动的路径长为x ,MP 的长为y ,y 与x 的函数图象如图2所示,当3310=x cm 时,则MP 的长为【 】 图 1PMFEDC BA图 2/ cm(A )233cm (B )32cm (C )3cm (D )2 cm解析:本题考查几何图形与函数图象的关系,是河南中考的必考内容,难度较高,解题时要注意几何图形的变化与函数图象的变化之间的对应关系,尤其要注意几何图形上特殊点与函数图象上的特殊点所代表的意义. 由题意可知,等边△BEF 的边长为32cm ∵3310=x cm 32>cm ∴此时点M 在EF 边上,如下图所示.P MFEDC BA在Rt △PEM 中334323310=-=EM cm,︒=∠60PEM ∵EM MPPEM =∠sin∴22333460sin =⨯=︒⋅=EM MP cm ∴选择答案【 D 】.14. 如图所示,四边形OABC 为菱形,2=OA ,以点O 为圆心,OA 长为半径画弧AE ,弧AE 恰好经过点B ,连结OE ,BC OE ⊥,则图中阴影部分的面积为_________.解析:本题考查与圆有关的阴影面积的计算,是河南中考的必考内容.阴影部分面积的计算都要涉及到扇形面积的计算,所以要熟记扇形面积的计算公式:3602r n S π=扇形.注意添加半径的辅助线,来构造出扇形.第 14 题图连结OB ,设OE 与BC 交于点F ,则有:OABF AOE S S S 梯形扇形阴影-=由题意和作图可知,△AOB 和△BOC 均为等边三角形,︒=∠90AOE .∴312,12122=-===OF BC BF ∴()23213602902⨯+-⨯⨯=π阴影S 233-=π.15.如图,在等边△ABC 中,232+=AB , 点D 在边AB 上,且2=AD ,点E 是BC 边上一动点,将B ∠沿DE 折叠,当点B 的对应点'B 落在△ABC 的边上时,BE 的长为_________.解析:本题考查与动点有关的几何图形的折叠,是河南中考必考内容,难度大,考虑到答题的时限性和此类题目的难度,不建议学生在此类题目上花费太多的时间.此类题目的结果不唯一,需要根据不同的折叠情况分类讨论.本题折叠的结果分为两种情况:点'B 落在BC 边上和点'B 落在AC 边上.①当点'B 落在BC 边上时,如图1所示.图 1CE DB'BA由折叠可知,D B BD '= ∵︒=∠60B∴△'BDB 是等边三角形 ∴322232=-+==BD BE ;②当点'B 落在AC 边上时,如图2所示.F 图 2CE DB'BA先说明此时AB D B ⊥'. 作AB DF ⊥,在Rt △ADF 中3260tan =︒⋅=AD DF由折叠可知:32'==D B BD ∴DF D B =',显然,点'B 与点F 重合. ∴AB D B ⊥',从而AC E B ⊥' ∴42'==AD AB∴2324232'-=-+=C B 在Rt △CE B '中()326323260tan ''-=⨯-=︒⋅=C B E B ∴326'-==E B BE .综上所述,BE 的长为3或326-. 三、解答题(共75分) 16.(8分)先化简,再求值:x y x x y xy x 2222-÷⎪⎭⎫ ⎝⎛--, 其中32,32-=+=y x .解:x y x x y xy x 2222-÷⎪⎭⎫ ⎝⎛-- ()()()y x y x xxy x -+⋅-=2yx yx +-=…………………………………5分 当32,32-=+=y x 时原式2332323232=-+++-+=. ……………………………………………8分 17.(9分)解:整理数据 4 , 3; ……………………2分 分析数据 76; …………………………4分 得出结论(1)估计全校九年级成绩达到90分及以上的人数为1602541000=⨯(人);……………………………………………6分 (2)从平均数评价:九年级和八年级成绩相同;从中位数评价:八年级的中位数较大,成绩优秀的人数较多;从方差评价:九年级方差大,成绩不稳定,八年级方差小,成绩稳定,故八年级的成绩比较好.……………………………………………9分 18.(9分)如图所示,已知反比例函数()0≠=k xky 与一次函数b ax y +=的图象相交于点()1,-n A ,()3,1B ,过点A 作y AD ⊥轴于点D ,过点B 作x BC ⊥轴于点C ,连结CD .(1)求反比例函数的解析式;(2)求四边形ABCD 的面积.解:(1)把()3,1B 代入x ky =得:331=⨯=k ∴反比例函数的解析式为xy 3=;……………………………………………3分 (2)把()1,-n A 代入xy 3=得:3-=n ∴()1,3--A延长AD ,交BC 的延长线于点E ,则有()431=--=-=-=A B A E x x x x AE ()413=--=-=-=A B E B y y y y BE1==DE CE……………………………………………7分∴CDE ABE ABCD S S S ∆∆-=四边形21511214421=⨯⨯-⨯⨯=.……………9分 19.(9分)如图所示,在△ABC 中,︒=∠90C ,点D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点E ,与边BC 交于点F ,过点E 作AB EH ⊥于点H ,连结BE . (1)求证:BH BC =;(2)若4,5==AC AB ,求CE 的长.321OHFEDC A(1)证明:连结OE . ……………………1分 ∵OB OE = ∴21∠=∠ ∵AC 与⊙O 相切 ∴OE AC ⊥ ∵AC BC ⊥ ∴BC OE // ∴132∠=∠=∠ ∴BE 平分ABC ∠ 在△BCE 和△BHE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BE BE BHE BCE 13 ∴△BCE ≌△BHE (AAS ) ∴BH BC =;……………………………………………5分(2)解:设x CE =,则x EH =,x AE -=4. 在Rt △ABC 中,由勾股定理得:3452222=-=-=AC AB BC……………………………………………6分 由(1)可知:3==BC BH ∴235=-=-=BH AB AH .……………………………………………7分 在Rt △AEH 中,由勾股定理得:222AE AH EH =+∴()22242x x -=+,解之得:23=x . ∴23=CE .………………………………9分 20.(9分)如图所示,为了测量某矿山CH的高度,科考组在距离矿山一段距离的B 点乘坐直升机垂直上升2000米至A 点,在A 点,在A 点观察H 点的俯角为︒35,然后乘坐直升机从A 水平向前飞行500米到E 点,此时观察H 点的俯角为︒45,所有的点都在同一平面内,科考队至此完成了数据监测,请你依据数据计算科考队测得的矿山高度.(结果保留整数,参考数据:)41.12,70.035tan ,82.035cos ,57.035sin ≈≈︒≈︒≈︒解:作AB HP ⊥,延长CH 交AE 的延长线于点D ,则四边形APHD 为矩形. 设x CH =米,则x PB =米∴()x DH AP -==2000米 在Rt △DEH 中,∵︒=∠45DEH ∴()x DH DE -==2000米 ∴5002000+-=+=x AE DE AD ()x -=2500米.……………………………………………3分 在Rt △ADH 中 ∵ADDH=︒35tan ∴70.025002000≈--xx………………………6分解之得:833≈x .…………………………8分 ∴833≈CH 米.答:科考队测得的矿山高度约为833米. ……………………………………………9分 21.(10分)随着第27届信阳茶文化节发布会、固始西九华山第三届郁金香风情文化节等系列活动的成功举办,越来越多的游客想要到信阳游玩.小明所在的公司想在五一黄金周期间组织员工去信阳游玩,咨询了甲、乙两家旅行社,两家旅行社分别推出优惠方案(未推出优惠方案前两家旅行社的收费标准相同).甲:购买一张团体票,然后个人票打六折优惠;乙:不购买团体票,当团体人数超过一定数量后超过部分的个人票打折优惠,优惠期间,公司的员工人数为x (人),在甲旅行社所需总费用为y 甲(元),在乙旅行社所需总费用为y 乙(元),y 甲、y 乙与x 之间的函数关系如图所示.(1)甲旅行社团体票是_________元,乙旅行社团体人数超过一定数量后,个人票打_________折;(2)求y 甲、y 乙关于x 的函数表达式; (3)请说明小明所在的公司选择哪个旅行社出游更划算.解:(1)600 , 四;……………………………………………2分 提示:当人数x 小于或等于10时,乙旅行社的个人票为300103000=(元),当人数超过10人时,个人票为=--102530004800120(元),4.0300120=,所以乙旅行社团体人数超过10人时,个人票打四折.(2)6001806003006.0+=+⨯=x x y 甲. ……………………………………………4分 当0≤x ≤10时,设乙y 的解析式为x k y 1=乙. 把()3000,10代入x k y 1=乙得:3001=k . ∴x y 300=乙;当10>x 时,设乙y 的解析式为b x k y +=2乙. 把()3000,10,()4800,25分别代入得:⎩⎨⎧=+=+48002530001022b k b k ,解之得:⎩⎨⎧==18001202b k .∴1800120+=x y 乙.∴()()⎩⎨⎧>+≤≤=101800120100300x x x x y 乙;……………………………………………7分 (3)当0≤x ≤10时,令x x 300600180=+,解之得:5=x ;当10>x 时,令1800120600180+=+x x ,解之得:20=x .∴当公司的员工人数为5或20时,甲、乙两家旅行社的总费用相同;当公司的员工人数大于5小于20时,选择甲旅行社出游更划算;当公司的员工人数小于5人或大于20时,选择乙旅行社出游更划算.…………………………………………10分 22.(10分)如图所示,在△ABC 中,BC AB =,D 、E 分别是边AB 、BC 上的动点,且BE BD =,连结AD 、AE ,点M 、N 、P 分别是CD 、AE 、AC 的中点,设α=∠B . (1)观察猜想①在求CEMN的值时,小明运用从特殊到一般的方法,先令︒=60α,解题思路如下: 如图1,先由BE BD BC AB ==,,得到AD CE =,再由中位线的性质得到PN PM =,︒=∠60NPM ,进而得出△PMN 为等边三角形,∴21==CE NP CE MN . ②如图2,当︒=90α时,仿照小明的思路求CEMN的值; (2)探究证明如图3,试猜想CEMN的值是否与()︒<<︒1800αα的度数有关,若有关,请用含α的式子表示出CEMN,若无关,请说明理由; (3)拓展应用如图4,︒=∠=36,2B AC ,点D 、E 分别是射线AB 、CB 上的动点,且CE AD =,点M 、N 、P 分别是线段CD 、AE 、AC 的中点,当1=BD 时,请直接写出MN 的长.图 2P NMD BA图 1PN M E D C BA图 4图 3PN MEDC BAPNMEDCBA解:(1)②∵BE BD BC AB ==, ∴CE AD =.∵BC AB =,︒=∠90B ∴△ABC 为等腰直角三角形∵点M 、N 、P 分别是CD 、AE 、AC 的中点 ∴CE PN CE PN 21,//=AD PM AD PM 21,//=∴︒=∠=∠=45,ACB APN PN PM︒=∠=∠45CAB CPM∴︒=︒-︒-︒=∠904545180NPM∴△PMN 为等腰直角三角形 ∴PN MN 2=∴222=⋅=CE PN CE MN ; ……………………………………………3分H图 5PNMED CBA(2)∵BE BD BC AB ==, ∴CE AD =.∵点M 、N 、P 分别是CD 、AE 、AC 的中点∴CE PN CE PN 21,//=AD PM AD PM 21,//=∴ACB APN PN PM ∠=∠=,CAB CPM ∠=∠∴CAB ACB NPM ∠-∠-︒=∠180α=∠=B作MN PH ⊥,如图5所示,则NH MN 2=,221α=∠=NPM NPH . 在Rt △NPH 中,∵PNNHNPH =∠sin ∴2sinα⋅=PN NH∴2sin2sin22αα===CEPNCENHCE MN ;……………………………………………8分 (3)455-=MN 或435+=MN . …………………………………………10分提示:注意条件“点D 、E 分别是射线AB 、CB 上的动点,且CE AD =”,考虑到点D 、E 不是边AB 、CB 上的动点,要进行分类讨论. ①当点D 、E 分别是边AB 、CB 上的动点时,作ACB ∠的平分线交AB 边于点F ,并连结BP ,如图6所示.图 6由题意容易得到2===BF CF AC ,且AC BP ⊥.设x BC =,则2-=x AF ,1-=x CE . 可证:△ACF ∽△ABC . ∴xx AB AC AC AF 222,=-=. 整理得:0422=--x x解之得:51+=x (51-=x 舍去). ∴51+=BC ,5151=-+=CE . 由(2)可知:︒=18sin CEMN. ∴︒=︒⋅=18sin 518sin CE MN . 在Rt △BCP 中41551118sin sin -=+==︒=∠BC CP CBP ∴()4554155-=-=MN ; ②当点D 、E 分别是边AB 、CB 的延长线上的动点时,如图7所示.52511+=++=CE图 7AB C DEM NP∴()43541552+=-⨯+=MN . 综上所述,MN 的长为455-或435+.重要结论 我们把顶角为︒36的等腰三角形称为特殊等腰三角形.已知特殊等腰三角形的底边长,作出其中一个底角的平分线,可以利用三角形相似的知识可以求出腰长.特殊等腰三角形23.(11分)如图所示,抛物线c x ax y +-=22与x 轴交于A 、B 两点,与y轴交于点C ,直线3+=x y 经过A 、C 两点. (1)求抛物线的解析式;(2)点N 是x 轴上的动点,过点N 作x 轴的垂线,交抛物线与点M ,交直线AC 于点H . ①点D 在线段OC 上,连结AD 、BD ,当BD AH =时,求AH AD +的最小值;②当OD OC 3=时,将直线AD 绕点A 旋转︒45,使直线AD 与y 轴交于点P ,请直接写出点P 的坐标.第 23 题图备用图解:(1)对于3+=x y ,令03=+x ,解之得:3-=x ,令0=x ,则3=y . ∴()0,3-A ,()3,0C .把()0,3-A ,()3,0C 代入c x ax y +-=22可得:⎩⎨⎧==++3069c c a ,解之得:⎩⎨⎧=-=31c a ∴抛物线的解析式为322+--=x x y ; ……………………………………………3分(2)①令0322=+--x x 解之得:31-=x ,12=x ∴()()0,1,0,3B A -……………………………………………5分 ∵BD AH =∴BD AD AH AD +=+ ∵BD AD +≥AB∴()()431min =--==+AB BD AD 即AH AD +的最小值为4;……………………………………………9分②点P 的坐标为⎪⎭⎫ ⎝⎛-23,0或()6,0.…………………………………………11分 提示:题目为指明直线AD 旋转的方向,这里要分为两种情况进行讨论.当直线AD 绕点A 顺时针旋转︒45时,如图1所示.图 1∵()()3,0,0,3C A -∴3==OC OA ,△AOC 为等腰直角三角形. ∴︒=∠=∠45ACO CAO .∵︒=∠+∠=∠+∠45OAD OAP OAD CAD ∴OAP CAD ∠=∠.作AC DE ⊥,则△DCE 为等腰直角三角形. ∵OD OC 3= ∴2,1==CD OD ∴2222===CD DE在Rt △AOD 中,由勾股定理得:10132222=+=+=OD OA AD∴55102sin sin ===∠=∠AD DE EAD CAD ∴55sin =∠OAP . 设m OP =,则5593222=+=+m m m m . 两边分别平方得:51922=+m m解之得:23=m (23-=m )舍去.∴23=OP∴⎪⎭⎫ ⎝⎛-23,0P ;当直线AD 绕点A 逆时针旋转︒45时,如图2.∵︒=∠=∠+∠45ACO CAP OPA第11页︒=∠=∠+∠45DAP CAD CAP∴CAD OPA ∠=∠作AC DE ⊥,则△DCE 为等腰直角三角形. 设m OP =∵55sin sin =∠=∠EAD CAD ∴5593sin 2=+==∠m PAOAOPA . 两边分别平方得:51992=+m . 解之得:6=m (6-=m )舍去. ∴6=OP ∴()6,0P .综上所述,点P 的坐标为⎪⎭⎫ ⎝⎛-23,0或()6,0.学生整理用图321OHFEDC BAF 图 6PNMEDCBA图 7ABCDEM NPxy第 23 题图OMH NDC BAxy备用图CBA O。
2020年河南省南阳市淅川县中考数学一模试卷 (含解析)

2020年河南省南阳市淅川县中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中最大的数是()A. 5B. √3C. πD. −82.下列计算正确的是()A. 2a2+4a2=6a4B. (a+1)2=a2+1C. (a2)3=a5D. x7÷x5=x23.2017年我省粮食总产量为695.2亿斤,其中695.2亿用科学记数法表示为()A. 6.952×106B. 6.952×108C. 6.952×1010D. 695.2×1084.如图,直线a//b,∠1=30°,∠2=40°,且AD=AC,则∠3的度数是()A. 70°B. 40°C. 45°D. 35°5.如图所示的几何体是由五个完全相同的小正方体组成的,则不是它的三视图的是()A. B.C. D.6.方程x2−2x−m=0无实数根,一次函数的图象y=(m+1)x+m−1不经过第()象限.A. 四B. 三C. 二D. 一7.数学老师给出如下数据1,2,2,3,2,关于这组数据的正确说法是()A. 众数是2B. 极差是3C. 中位数是1D. 平均数是48.如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,BC的长为半径作弧,两弧相交于D、E两点,作直线DE大于12交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF的长为()A. 52B. 3C. 2D. 729.如图,将平面直角坐标系中的△AOB绕点O顺时针旋转90°得△A′OB′.已知∠AOB=60°,∠B=90°,AB=√3,则点B′的坐标是()A. (√32,1 2 )B. (√32,3 2 )C. (32,√3 2)D. (12,√3 2)10.如图,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为Ac边上的一个动点,连接PD,PB,PE,设AP=x,左图中某条线段长为y,若表示y与x的函数关系的图象大致如图所示,则这条线段可能是()A. PEB. PBC. PDD. PC二、填空题(本大题共5小题,共15.0分)11.计算:(−12)−1−√4=______.12.不等式组{3x−2<14x<8的解集为______ .13.不透明的袋子中装有三个标有一1、1、2的小球,它们除数字外其余均相同,随机抽取两个小球,它们标记的数字之积是负数的概率为______.14.如图,将△ABC绕点B逆时针旋转到△A′BC′,使A,B,C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为_________cm2.15.如图,直角三角形纸片的两直角边AC=6cm,BC=8cm.现将直角边AC沿AD折叠,使它落在斜边AB上,点C与点E重合,则CD=_______________________.三、解答题(本大题共8小题,共75.0分)16.先化简:(x+1x−1+1)÷x2+xx2−2x+1+2−2xx2−1,然后从−2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.17.为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:(1)本次接受调查的市民共有______人;(2)扇形统计图中,扇形B的圆心角度数是______;(3)请补全条形统计图;(4)若该市“上班族”约有15万人,请估计乘公交车上班的人数.18.如图,AB是半圆O的直径,点C是半圆O上不与A,B重合的一个动点,连接CA、CB,点D是过点C的切线上的一点,连接AD交半圆O于点E,且∠ADC=90∘,CF⊥AB于点F.(1)求证:DE=BF.(2)填空:①当∠CAB=________°,四边形OBCE为菱形;②当CD=4,AD=6时,半圆O的半径为________.19.如图,为了测量一座大桥的长度,在一架水平飞行的无人机AB的尾端A点测得桥头P点的俯角α=74°,前端B点测得桥尾Q点的俯角β=30°,此时无人机的飞行高度AC=868米,AB=1米.求这座大桥PQ的长度(结果保留整数)(参考数据:sin74°≈0.9,cos74°≈0.3,tan74°≈3.5,√3≈1.7,√2≈1.4)20.某单位准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和两台B型换气扇共需300元.(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该单位准备同时购进这两种型号的换气扇共80台,并且A型换气扇的数量不多于B型换气扇数量的3倍,如果B型打八折,请设计出最省钱的购买方案,并说明理由.21.课本上,在画y=6x 图象之前,通过讨论函数表达式中x,y的符号特征以及取值范围,猜想出y=6x的图象在第一、三象限.据此经验,猜想函数y=−2x的图象在第______象限.22.如图,在正方形ABCD中,点E是对角线BD上一动点,AE的延长线交CD于点F,交BC的延长线于点G,M是FG的中点.(1)求证:∠DAE=∠DCE;(2)判断线段CE与CM的位置关系,并证明你的结论;(3)当AD=√3+1,并且△CEG恰好是等腰三角形时,求DE的长.x2+bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点23.如图,抛物线y=−43A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)在对称轴的左侧是否存在点M使四边形OMPB的面积最大,如果存在求点M的坐标;不存在请说明理由.【答案与解析】1.答案:A解析:本题考查了实数大小比较的方法,估算无理数的大小,要熟练掌握常用二次根式的大小估计与π的大小,解答此题的关键是要明确:正实数>0>负实数,√3≈1.732,π≈3.14.正实数都大于0,负实数都小于0,正实数大于一切负实数,√3≈1.732,π≈3.14,据此判断即可.解:由√3≈1.732,π≈3.14,(或1<√3<2<3<π<4),根据实数比较大小的方法,可得−8<√3<π<5,所以各数中最大的数是5.故选:A.2.答案:D解析:解:A、2a2+4a2=6a2,所以A选项不正确;B、(a+1)2=a2+2a+1,所以B选项不正确;C、(a2)3=a6,所以C选项不正确;D、x7÷x5=x2,所以D选项正确.故选:D.根据合并同类项对A进行判断;根据完全平方公式对B进行判断;根据幂的乘方法则对C进行判断;根据同底数幂的除法法则对D进行判断.本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了合并同类项、幂的乘方以及同底数幂的除法法则.3.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:695.2亿=69520000000=6.952×1010,故选C.4.答案:B解析:解:∵∠4=∠1+∠2=70°,∵AD=AC,∴∠5=180°−2∠4=40°,∵直线a//b,∴∠3=∠5=40°,故选:B.根据三角形的外角的性质得到∠4=∠1+∠2=70°,根据等腰三角形的性质得到∠5=180°−2∠4= 40°,根据平行线的性质即可得到结论.本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键.5.答案:B解析:本题考查几何体的三视图,根据几何体的三视图即可解答.解:由题意可知,题中几何体的三视图如图所示,故选B.6.答案:D解析:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式,一次函数图象与系数的关系.根据判别式的意义得到Δ=(−2)2+4m<0,解得m<−1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m−1图象不经过哪个象限.解:∵一元二次方程x2−2x−m=0无实数根,∴Δ<0,∴Δ=4−4(−m)=4+4m<0,∴m<−1,∴m+1<1−1,即m+1<0,m−1<−1−1,即m−1<−2<0,∴一次函数y=(m+1)x+m−1的图象不经过第一象限,故选D.7.答案:A解析:本题考查了极差、中位数、众数及平均数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,极差是用最大值减去最小值.根据极差、中位数、众数及平均数的定义,结合数据进行分析即可.解:A.众数是2,故A选项正确;B.极差是3−1=2,故B选项错误;C.将数据从小到大排列为:1,2,2,2,3,中位数是2,故C选项错误;D.平均数是(1+2+2+2+2)÷5=95,故D选项错误;,故选A.8.答案:A解析:本题考查了作图−基本作图:熟练掌握基本作图,也考查了线段垂直平分线的性质.利用线段垂直平分线的性质得到FG⊥BC,FB=FC,CG=BG=2,再证明BF=AF,则CF为斜边AB上的中线,然后根据勾股定理计算出AB,从而得到CF的长.解:由作法得GF垂直平分BC,∴FG⊥BC,FB=FC,CG=BG=2,即BC=4,∴∠FCB=∠B,∵∠ACB=90°,∴∠ACF+∠FCB=∠A+∠B=90°,∴∠ACF=∠A,∴AF=CF,∴AF=CF=BF,∴CF为斜边AB上的中线,∵AB=√32+42=5,∴CF=12AB=52.故选:A.9.答案:A解析:本题考查了坐标与图形变化−旋转,用到的知识点是旋转变换的性质,解直角三角形,作辅助线构造出直角三角形是解题的关键.过点B′作B′C⊥x轴于点C,根据旋转变换的性质和解直角三角形可得OB′=OB=1,再根据平角等于180°求出∠B′OC的度数,然后解直角三角形求出OC,B′C的长度,即可得解.解:如图,过点B′作B′C⊥x轴于点C,∵△AOB绕O点顺时针旋转90°得△A′OB′,∴OB′=OB,∠BOB′=90°,∵∠AOB=60°,AB=√3,∴OB=OB′=1,∠B′OC=180°−∠AOB−∠BOB′=180°−60°−90°=30°,∴OC=OB′cos30°=1×√32=√32,B′C=OB′sin30°=1×12=12,∴B′的坐标为(√32,12 ),故选A.10.答案:A解析:本题主要考查的是动点问题的函数图象,灵活运用等腰三角形的性质和二次函数图象的对称性是解题的关键.解题时需要深刻理解动点的函数图象,了解图象中关键点所代表的实际意义.先设等边三角形的边长为1个单位长度,再根据等腰三角形的性质确定各线段取最小值时x的范围,最后结合函数图象得到结论.解:分别过D、B、E作AC边的垂线,垂足分别为F、G、H.∵AB=BC,AC=m,∴AG=CG=12AC=12m.∴DF是△ABG的中位线,EH是△BCG的中位线.∴AF =FG =GH =CH =14AC =14m .当0<x <m 时,根据题意和等腰三角形的性质可知,当x =34m 时,线段PE 有最小值;当x =12m 时,线段PB 有最小值;当x =14m 时,线段PD 有最小值;线段DE 的长为定值12m .结合图像可知当x =34m 时,y 有最小值.故选A .11.答案:−4解析:此题主要考查了实数运算,正确化简各数是解题关键.直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.解:原式=−2−2=−4.故答案为−4.12.答案:x <1解析:解:{3x −2<1①4x <8②,由①得,x <1,由②得,x <2, 故不等式组的解集为:x <1.故答案为:x <1.分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.答案:23解析:解:根据题意画树状图如下:共有6种等情况数,其中它们标记的数字之积是负数的有4种结果,所以它们标记的数字之积是负数的概率为46=23,故答案为:23.根据题意先画出树状图,得出所有等情况数,再找出标记的数字之积是负数的情况,利用概率公式计算可得.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.答案:4π解析:本题考查了扇形的面积公式,直角三角形的性质,三角形的面积以及旋转的性质;根据图形及已知条件分析出阴影面积的求解方法是解此题的关键;阴影部分的面积为,即阴影部分面积为圆心角为120°,两个半径分别为4和2的圆环的面积差.解:∵∠BCA=90°,∠BAC=30°,AB=4cm,∴BC=2cm,AC=2√3cm,∠A′BA=120°,∠CBC′=120°,∴阴影部分面积为:==S扇形BAA′−S扇形BCC′=120π360×(42−22)=4π(cm2).故答案为4π.15.答案:3cm解析:本题考查了翻折变换及勾股定理,以及方程的应用.解答此类题目时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其它线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE.解:∵△ABC是直角三角形,AC=6cm,BC=8cm,∴AB=√AC2+BC2=√62+82=10(cm),∵△AED是△ACD翻折而成,∴AE=AC=6cm,∴BE=AB−AE=10−6=4cm,设DE=CD=xcm,∠AED=90°,在Rt△BDE中,BD2=DE2+BE2,即(8−x)2=42+x2,解得x=3.CD的长为3cm.故答案为3cm.16.答案:解:(x+1x−1+1)÷x2+xx2−2x+1+2−2xx2−1=x+1+x−1x−1⋅(x−1)2x(x+1)+2(1−x)(x+1)(x−1) =2x⋅(x−1)2−2=2x−4x+1;满足−2≤x≤2的整数有:−2、−1、0、1、2但x=−1、0、1时,原式无意义,∴x=−2或2,∴当x=2时,原式=0.解析:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将x=2代入计算即可求出值.17.答案:(1)200(2)43.2°(3)C组人数=200×40%=80(人),A组人数=200−24−80−50−16=30(人).条形统计图如图所示:(4)15×40%=6(万人).答:估计乘公交车上班的人数为6万人.解析:解:(1)本次接受调查的市民共有:50÷25%=200(人),故答案为200.=43.2°;(2)扇形统计图中,扇形B的圆心角度数=360°×24200故答案为43.2°(3)见答案(4)见答案本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)根据D组人数以及百分比计算即可.(2)根据圆心角度数=360°×百分比计算即可.(3)求出A,C两组人数画出条形图即可.(4)利用样本估计总体的思想解决问题即可.18.答案:(1)解:如图,连接CE,OC∵CD是半圆O的切线,∴OC⊥CD,∴∠ACO+∠DCA=90°.∵AD⊥CD,∴∠CAD+∠DCA=90°,∴∠ACO=∠CAD.∵OA=OC,∴∠OAC=∠ACO,∴∠CAD=∠OAC.∵CF⊥AB,AD⊥CD,∴DC=CF.∵四边形ABCE是圆的内接四边形,∴∠FBC+∠AEC=180°,∵∠DEC+∠AEC=180°,∴∠DEC=∠FBC.∵∠CDE=∠CFB=90°,∴△DCE≌△FCB(AAS),∴DE=BF.(2)①30.②13.3解析:此题主要考查了平行线的判定与性质,角平分线的性质,等腰三角形的性质,等边三角形的判定与性质,矩形的判定,正方形的判定,菱形的判定,圆周角定理及其推论,切线的性质.(1)连接OC,根据直线l是半圆O的切线,得到OC⊥CD,根据AD⊥CD,得到AD//OC,∠ACO=∠CAD,根据OA=OC,得到∠OAC=∠ACO,∠CAD=∠OAC,根据CF⊥AB,CD⊥AD,即可得到CD=CF;(2)连接EC,EO,当∠CAB=30°时,根据AB是半圆O的直径,得到∠ACB=90°,∠CBA=60°,证明△COB是等边三角形,得到OB=BC,证明△OEA是等边三角形,得到∠EOA=60°,∠EOC=60°,证明△OEC是等边三角形,得到OE=EC,即OB=BC=OE=EC,即可得到四边形OBCE为菱形.(1)见答案;(2)①连接EC,EO,当∠CAB=30°时,∴∠ACB=90°,∠CBA=60°,∴△COB是等边三角形,∴OB=BC,∴△OEA是等边三角形,∴∠EOA=60°,∠EOC=60°,∴△OEC是等边三角形,∴OE=EC,即OB=BC=OE=EC,即可得到四边形OBCE为菱形.故答案为30;②13.319.答案:解:作BM ⊥CQ 于M ,在Rt △ACP 中,tan∠APC =AC CP , ∴CP =AC tan∠APC ≈8683.5=248(米)在Rt △BMQ 中,tan∠BQM =BM QM ,QM =BMtan∠BQM =868√3≈1475.6(米)PQ =CM +MQ −CP =1+1475.6−248=1228.6≈1229(米)答:这座大桥PQ 的长度约为1229米.解析:作BM ⊥CQ 于M ,根据正切的定义分别求出CP 、MQ ,结合图形计算即可.本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20.答案:解:(1)设一台A 型换气扇x 元,一台B 型换气扇的售价为y 元,根据题意得:{x +3y =2753x +2y =300, 解得{x =50y =75, 答:一台A 型换气扇50元,一台B 型换气扇的售价为75元.(2)设购进A 型换气扇z 台,总费用为w 元,则有z ≤3(80−z),解得:z ≤60,∵z 为换气扇的台数,∴z ≤60且z 为正整数,w =50z +75×0.8(80−z)=−10z +4800,∵−10<0,∴w 随着z 的增大而减小,∴当z =60时,w 最小=−10×60+4800=4200,此时80−z =80−60=20.答:最省钱的方案是购进60台A 型换气扇,20台B 型换气扇.解析: 此题主要考查了二元一次方程组的应用以及一次函数的应用等知识.(1)设一台A型换气扇x元,一台B型换气扇的售价为y元,根据“一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元”列方程组求解即可;(2)首先确定自变量的取值范围,然后得到有关总费用和换气扇的台数之间的关系得到函数解析式,确定函数的最值即可.21.答案:二、四解析:解::y=6x 图象在第一、三象限.据此经验,猜想函数y=−2x的图象在第二、四象限,故答案为:二、四根据反比例函数的性质,可得答案.本题考查了反比例函数的性质,利用反比例函数的性质是解题关键.22.答案:(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠ADB=∠CDB,在△ADE和△CDE中,{DA=DC∠ADE=∠CDEDE=DE ∴△ADE≌△CDE(SAS),∴∠DAE=∠DCE;(2)EC⊥MC,理由如下:∵AD//BG,∴∠DAE=∠G,∵M是FG的中点,∴MC=MG=MF,∴∠G=∠MCG,又∵∠DAE=∠DCE,∴∠DCE=∠MCG,∵∠FCG=∠MCG+∠FCM=90°,∴∠ECM=∠DCE+∠FCM=90°,∴EC⊥MC;(3)∵∠FCG=90°,∴∠ECG一定是钝角,∴△CEG为等腰三角形必有CE=CG,∴∠CEM=∠G,FG,∵MC=MF=MG=12∴∠MCG=∠G,又∵∠EMC=∠MCG+∠G,∴∠EMC=2∠G,∵∠ECM=90°,∴∠CEM+∠EMC=90°,∴∠G+2∠G=90°,∴∠G=30°,∴∠AFD=∠CFG=90°−∠G=90°−30°=60°,∴∠DAE=90°−∠AFD=90°−60°=30°,过点E作EH⊥AD于H,∴∠EHA=∠EHD=90°,设EH=x,∵在Rt△EFA中,∠DAE=30°,∴AE=2EH=2x,∴AH=√AE2−EH2=√3x,∵在Rt△EHD中,∠ADE=45°,∴DH=EH=x,∴DE=√DH2+EH2=√2x,则AD=AH+HD=√3x+x=√3+1,解得,x=1,∴DE=√2x=√2.解析:本题考查的是正方形的性质、全等三角形的判定和性质、勾股定理,直角三角形的性质,掌握正方形的性质、直角三角形的性质是解题的关键.(1)根据正方形的性质得到DA=DC,∠ADB=∠CDB,证明△ADE≌△CDE,根据全等三角形的性质证明即可;(2)根据直角三角形的性质得到MC =MG =MF ,证明∠ECM =90°即可;(3)过点E 作EH ⊥AD 于H ,设EH =x ,根据题意求出∠G =30°,根据直角三角形的性质用x 表示出AH 、HD ,列方程求出x ,得到答案.23.答案:解:(1)设直线AB 的解析式为y =px +q ,把A(3,0),B(0,2)代入得{3p +q =0q =2,解得{p =−23q =2, ∴直线AB 的解析式为y =−23x +2;把A(3,0),B(0,2)代入y =−43+bx +c 得{−43×32+3b +c =0c =2,解得{b =103c =2, ∴抛物线解析式为y =−43x 2+103x +2; (2)∵M(m,0),MN ⊥x 轴,∴N(m,−43m 2+103m +2),P(m,−23m +2), ∴NP =−43m 2+4m ,PM =−23m +2,而NP =PM ,∴−43m 2+4m =−23m +2,解得m 1=3(舍去),m 2=12, ∴N 点坐标为(12,103);(3)在对称轴的左侧不存在点M 使四边形OMPB 的面积最大,理由如下:B(0,2),M(m,0),MN ⊥x 轴,∴P(m,−23m +2), S 梯形OMPB =12(PM +OB)⋅OM =12(−23m +2+2)m =−13m 2+2m =−1(m −3)2+3 ∵对称轴是x =−b 2a =54,M 在对称轴的左侧,∴0<m <54,∴m 的值无法确定,在对称轴的左侧不存在点M使四边形OMPB的面积最大.解析:(1)利用待定系数法求直线和抛物线解析式;(2)先表示出N(m,−43m2+103m+2),P(m,−23m+2),则计算出NP=−43m2+4m,PM=−23m+2,则利用NP=PM得到−43m2+4m=−23m+2,然后解方程求出m即可得到N点坐标;(3)根据梯形的面积公式,可得二次函数,根据二次函数的性质,可得答案.本题考查了二次函数的综合题,解(1)的关键是待定系数法;解(2)的关键是利用中点得出−43m2+4m=−23m+2;解(3)的关键是利用梯形的面积公式得出二次函数,又利用了二次函数的性质.。
2020年河南省南阳市淅川县中考数学一模试题(word无答案)

2020年河南省南阳市淅川县中考数学一模试题一、单选题(★★) 1. 下列实数中最大的是()A.B.C.D.(★★) 2. 下列计算正确的是( )A.B.C.D.(★) 3. 2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109B.1.61×1010C.1.61×1011D.1.61×1012(★★) 4. 如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是( )A.30°B.35°C.40°D.45°(★) 5. 如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A.B.C.D.(★★) 6. 若一次函数的图象不经过第二象限,则关于的方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定(★) 7. 下面是2019年某周发布的郑州市最高温度:16℃,19℃,22℃,24℃,26℃,24℃,23℃.关于这组数据,下列说法正确的是()℃.A.中位数是24B.众数是24C.平均数是20D.极差是9(★) 8. 如图,在菱形中,,按以下步骤作图:①分别以点和点为圆心,大于长为半径作弧,两弧相交于点;②作直线,且恰好经过点,与交于点,连接,则()A.B.C.D.(★) 9. 如图,在Rt△ ABC中,∠ BAC=60°,点 A的坐标为(﹣1,0),点 B的坐标为(2,4),将△ ABC绕点 A顺时针旋转α(0° α 90°),得到△ AB 1 C 1,若 AC 1⊥ x轴,则点 B 1的坐标为()A.B.C.D.(★★) 10. 如图①,在等边中,点 D是 BC边的中点,点 P为 AB边上的一个动点,设,图①中线段 DP的长为 y,若表示 y与 x的函数关系的图象如图②所示,则等边的周长为()A.4B.C.12D.二、填空题(★) 11. 计算:=_____.(★) 12. 不等式组的解为_____________________.(★) 13. 一个不透明的袋子中装有四个小球,它们除了分别标有的数字1,4,5,8不同外,其他完全相同,从袋子中任意摸出一个球后放回,再任意摸出一个球,则两次摸出的球所标数字都是偶数的概率是_____.(★★) 14. 如图,在扇形中,,,将扇形绕点沿顺时针方向旋转到扇形的位置,点的对应点落在上,则图中阴影部分的面积为__________ .(★★) 15. 如图,在Rt△ ABC的纸片中,∠ C=90°, AC=5, AB=13.点 D在边 BC上,以AD为折痕将△ ADB折叠得到△ ADB′,AB′与边 BC交于点 E.若△ DEB′为直角三角形,则 BD的长是___.三、解答题(★)16. 先化简:÷(x﹣),再从﹣2,﹣1,0,1,2中选取合适的数代入求值.(★★) 17. (9分)2019年4月28日,由世界月季联合会、中国花卉协会、中国花卉协会月季分会主办的“2019世界月季洲际大会暨第九届中国月季展”在河南南阳开幕.来自澳大利亚、比利时、智利、芬兰等18个国家的专家学者和其他各界人士共襄盛会,交流月季栽培、造景、育种、文化等方面的研究进展及成果.为了解该市市民对月季展的关注情况(选项分为:“ A—高度关注”,“ B—一般关注”,“ C—关注度低”,“ D—不关注”),某校兴趣小组随机采访该市部分市民,对采访情况制作了如下不完整的统计图表.根据以上统计图,解答下列问题:(1)本次接受采访的市民共有________人;(2)在扇形统计图中,扇形 D的圆心角的度数是_________;(3)请补全条形统计图;(4)若该市区有100万人,根据采访结果,估计不关注月季展市民的人数.(★★★★★) 18. 如图, AB是半圆 O的直径, AC是半圆内一条弦,点 D是的中点, DB 交 AC于点 G,过点 A作半圆的切线与 BD的延长线交于点 M,连接 AD.点 E是 AB上的一动点, DE与 AC相交于点 F.(1)求证: MD= GD;(2)填空:①当∠ DEA=时, AF= FG;②若∠ ABD=30°,当∠ DEA=时,四边形 DEBC是菱形.(★★) 19. 襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱 BC和塔冠 BE)进行了测量.如图所示,最外端的拉索 AB 的底端 A到塔柱底端 C的距离为121 m,拉索 AB与桥面 AC的夹角为37°,从点 A出发沿 AC 方向前进23.5 m,在 D处测得塔冠顶端 E的仰角为45°.请你求出塔冠 BE的高度(结果精确到0.1 m.参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41).(★★★★) 20. 为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B 两种蔬菜,若种植20亩A种蔬菜和30亩B种蔬菜,共需投入36万元;若种植30亩A种蔬菜和20亩B种蔬菜,共需投入34万元.(1)种植A,B两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元.设种植A种蔬菜m亩,求w关于m的函数关系式;(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.(★★) 21. 小明根据学习函数的经验,对函数 y= x+ 的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数 y= x+ 的自变量 x的取值范围是.(2)下表列出了 y与 x的几组对应值,请写出 m, n的值: m=, n=;(3)如图,在平面直角坐标系 xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)结合函数的图象,请完成:①当 y=﹣时, x=.②写出该函数的一条性质.③若方程 x+ = t有两个不相等的实数根,则 t的取值范围是.(★★★★) 22. 某数学活动小组在一次活动中,对一个数学问题做了如下研究:(问题发现)(1)如图①,在等边三角形 ABC中,点 M是 BC边上任意一点,连接 AM,以AM为边作等边三角形 AMN,连接 CN,则∠ ABC和∠ ACN的数量关系为;(变式探究)(2)如图②,在等腰三角形 ABC中, AB= BC,点 M是 BC边上任意一点(不含端点 B, C,连接 AM,以 AM为边作等腰三角形 AMN,使∠ AMN=∠ ABC, AM= MN,连接 CN,试探究∠ ABC与∠ ACN的数量关系,并说明理由;(解决问题)(3)如图③,在正方形 ADBC中,点 M为 BC边上一点,以 AM为边作正方形AMEF,点 N为正方形 AMEF的中心,连接 CN, AB, AE,若正方形 ADBC的边长为8, CN=,直接写出正方形 AMEF的边长.(★★★★) 23. 如图①,直线 AB的解析式为 y=﹣ x+4,抛物线 y=﹣+ bx+ c与 y轴交于点 A,与 x轴交于点 C(6,0),点 P是抛物线上一动点,设点 P的横坐标为 m.(1)求抛物线的解析式;(2)当点 P在第一象限内时,求△ ABP面积的最大值,并求此时点 P的坐标;(3)如图②,当点 P在 y轴右侧时,过点 A作直线l∥ x轴,过点 P作PH⊥ l于点 H,将△ APH绕点 A顺时针旋转,当点 H的对应点H′恰好落在直线 AB上时,点 P的对应点P′恰好落在坐标轴上,请直接写出点 P的横坐标.。
2020届初三中考数学一诊联考试卷含参考答案 (河南)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.方程组125x yx y-=⎧⎨+=⎩的解是()A.12xy=-⎧⎨=⎩B.21xy=⎧⎨=-⎩C.12xy=⎧⎨=⎩D.21xy=⎧⎨=⎩2.一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则x是()A.6 B.8 C.9 D.103)A.32B.32-C.32±D.81164.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×1075.用反证法证明“在同面内,若a⊥c,b⊥c,则a∥b”时应假设()A.a不垂直于b B.a⊥bC.a与b相交D.a,b不垂直于c6.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC 边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.7.某种品牌自行车的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于5%,则至多可打的折数是()A.八折B.八四折C.八五折D.八八折8.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M 作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM为定值.其中一定成立的是A.①②③B.①②④C.②③④D.①②③④9.如图两个长方体如图放置,则该立方体图形的左视图是()A.B.C.D.10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母22个或螺栓16个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套.则下面所列方程中正确的是()A .2×16x=22(27﹣x )B .16x=22(27﹣x )C .22x=16(27﹣x )D .2×22x=16(27﹣x )二、填空题(共4题,每题4分,共16分)11.在ABC △中,AB AC =,30A ∠=︒,E 为直线BC 上一点(点E 不与点B 、C 重合),ABC ∠与ACE ∠的平分线相交于点D ,则BDC ∠的度数为________.12.正比例函数的图像与反比例函数的图象相交于A 、B 两点,其中点A (2,n),且n>0,当时,的取值范围是___________________.13.甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)14.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是_____.三、解答题(共6题,总分54分)15.图①、图②均是边长为1的小正方形组成的5X5的网格,每个小正方形的顶点称为格点线段AB 的端点均在格点上.(1)在图①中作正方形ABCD ,正方形ABCD 的面积为___(2)在图②中作Rt △ABM ,使点M 在格点上,且sin ∠.16.如图.在平面直角坐标系中.抛物线y=12x2+bx+c与x轴交于A两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣2).已知点E(m,0)是线段AB上的动点(点E不与点A,B重合).过点E作PE⊥x 轴交抛物线于点P.交BC于点F.(1)求该抛物线的表达式;(2)当线段EF,PF的长度比为1:2时,请求出m的值;(3)是否存在这样的m,使得△BEP与△ABC相似?若存在,求出此时m的值;若不存在,请说明理由.17.《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?18.如图,在平面直角坐标系中,菱形ABDC的顶点D,C在反比例函数y=k x上(k>0,x>0),横坐标分别为12和2,对角线BC∥x轴,菱形ABDC的面积为9.(1)求k的值及直线CD的解析式;(2)连接OD,OC,求△OCD的面积.19.如图,经过正方形ABCD的顶点A在其外侧作直线AP,点B关于直线AP 的对称点为E,连接BE、DE,其中DE交直线AP于点F.(1)依题意补全图1.(2)若∠PAB=30°,求∠ADF的度数.(3)如图,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.20.如图,数轴上的点A,B,C,D表示的数分别为﹣3,﹣1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.--------------参考答案,仅供参考使用-------------------一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要。
2020年河南省南阳市中考数学一模试卷及答案解析

2020年河南省南阳市中考数学一模试卷
一、选择题:(每小题3分,共30分.)(下列各小题只有一个答案是正确的.)
1.(3分)在下列四个数中,最小的数是()
A.﹣2B.2﹣1C.√3D.0
2.(3分)5月5日,从省文化和旅游厅获悉,今年“五一”假期,全省累计接待国内游客1692.11万人次,实现旅游总收入79.26亿元.数据“79.26亿”用科学记数法表示为()A.79.26×108B.7.926×109C.79.26×109D.7.926×108 3.(3分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()
A.35°B.30°C.25°D.15°
4.(3分)下列运算正确的是()
A.2√2+3√3=5√5B.(a2)3=a5C.a3•a2=a5D.√6+√3=√2 5.(3分)如图,甲、乙、丙三个图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()
A.仅有甲和乙相同B.仅有甲和丙相同
C.仅有乙和丙相同D.甲、乙、丙都相同
6.(3分)如图,顽皮的小聪在小芳的作业本上用红笔画了个“×”(作业本中的横格线都平行,且相邻两条横格线间的距离都相等),A、B、C、D、O都在横格线上,且线段AD、BC交于点O.若线段AB=4cm,则线段CD长为()
第1 页共28 页。
河南省2020年中考模拟数学试卷及答案参考(一)

l O12ABCNCDE F GN OAB河南省2020年中考模拟数学试卷(一) 时间:100分钟 总分:120分一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上 1.下列四个数:-3,-0.5,23( )A .-3B .-0.5C .23D 2.港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为( )A .1.269×1010B .1.269×1011C .12.69×1010D .0.1269×1012 3 .下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )A .B .C .D .4.如图,OC 是∠AOB 的角平分线,l ∥OB ,若∠1=52°,则∠2的度数为( ) A .52° B .54° C .64° D .69° 5这些男生跳远成绩的众数、中位数分别是( )A .2.10,2.05B .2.10,2.10C .2.05,2.10D .2.05,2.05 6.不等式组26321054x x x x -⎧⎪+-⎨-≥⎪⎩<的解集在数轴上表示正确的是( )A .B .C .7.如图,正比例函数y =32x 的图象与一次函数y =34x +32的图象交于点A , 若点P 是 直线AB 上的一个动点,则线段OP 长的最小值为( )A .1B .32C .65D .28.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( A .140° B .40° C .50° D . 100°9.如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线 OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G . 给出下列结论:①△COE ≌△DOF ;②△OGE ∽△FGC ;③四边形CEOF 的面积为正方形ABCD 面积的14;④DF 2+BE 2=OG ∙OC .其中正确的是( )13-613-6-61313-6CDEP OA第14题图1234B 第15题图CEBCDF AB10ABCD 中,对角线AC 与BD 相交于点O , P 是BD 上 一动点,过P 作EF ∥AC ,分别交正方形的两条边于点E , F .设BP =x ,△OEF 的面积为y ,则能反映y 与x 之间关系的图象为( )A .B .C .D .二、填空题(每小题3分,共15分) 11.计算:-(14)-112.2019年郑州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是_______.13.关于x 的一元二次方程a (x -h )2+k =x +n 两根为x 1=-1,x 2=3,则方程a (x -h -3)2+k +3=x +n 的两根为______.14.如图,7个腰长为1的等腰直角三角形(Rt △B 1AA 1,Rt △B 2A 1A 2,Rt △B 3A 2A 3…)有一条腰在同一条直线上,设△A 1B 2C 1的面积为S 1,△A 2B 3C 2的面积为S 2,△A 3B 4C 3的面积为S 3,则阴影部分的面积是______ .15.如图,Rt △ABC 中,∠ACB =90°,AC =2,BC =4,CD 是△ABC 的中线,E 是边BC 上一动点,将△BED 沿ED 折叠,点B 落在点F 处,EF 交线段CD 于点G ,当△DFG 是直角三角形时,则CE =__________.三、解答题(本大题共8个小题,满分75分)16.(8 分)先化简,再求值:22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭,其中a 是方程a 2+a -6=0的解.17.(9 分) 如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,以D 为圆心,D 长为半径作作⊙D . ⑴求证:AC 是⊙D 的切线.⑵设AC 与⊙D 切于点E ,DB =1,连接DE ,BF ,EF . ①当∠BAD = 时,四边形BDEF 为菱形; ②当AB = 时,△CDE 为等腰三角形.18.(9分)设中学生体质健康综合评定成绩为x 分,满分为100分,规定:85≤x ≤100为A 级;75≤x <85为B 级; 60≤x <75为C 级;x <60为D 级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,A 级人数占本次抽取人数的百分比为______%; x 1414综合评定成绩扇形统计图48%αD级C级B级A级综合评定成绩条形统计图人数a(3)扇形统计图中C级对应的圆心角______度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?19.(9 分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到0.1km)(=1.73,sin53°=0.80,sin37°=0.60,tan53°=1.33,tan37°=0.75,sin38°=0.62,sin52°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73).20.(9 分)如图,直线y=2x+6与反比例函数y=kx(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6−kx<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?这两种台灯的进价、售价如下表所示.(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a<20),问该商场该如何进货,才能获得最大的利润?图1图2图3MCADBECADBEA BCDE备用图22.(10 分) (1)问题发现如图1,在Rt △ABC 和Rt △CDE 中,∠ACB =∠DCE =90°,∠CAB =∠CDE =45°,点D 时线段AB 上一动点,连BE . 填空:①BEAD的值为______ ②∠DBE 的度数为________ (2)类比探究如图2,在Rt △ABC 和Rt △CDE 中,∠ACB =∠DCE =90°,∠CAB =∠CDE =60°,点D 是线段AB 上一动点,连接BE .请判断BEAD的值及∠DBE 的度数,并说明理由; (3)拓展延伸如图3,在(2)的条件下,将点D 改为直线AB 上一动点,其余条件不变,取线段DE 的中点M ,连接BM 、CM ,若AC =2,则当△CBM 是直角三角形时,线段BE 的长是多少?请直接写出答案.23.(11 分) 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 的图像与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点A 、C 的坐标分别为(﹣1,0),(0,﹣3),直线x =1为抛物线的对称轴,点D 为抛物线的顶点,直线BC 与对称轴相交于点E . ⑴求抛物线的解析式及点D 的坐标;⑵点P 为直线x =1右方抛物线上的一点(点P 不与点B 重合),记A 、B 、C 、P 四点所构成的四边形面积为S ,若S =52S △BCD ,求点P 的坐标.⑶点Q 是线段BD 上的动点,将△DEQ 沿边EQ 翻折得到△D ,EQ ,若△D ,EQ 与△BEQ 的重叠部分图形为直角三角形,请直接写出BQ 的长.EF河南省2020年中考模拟数学试卷(一)参考答案一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上 1.A 2.B 3.B 4.C 5.C 6.D 7.C 8.D 9 . A 10.B 二、填空题(每小题3分,共15分) 11. 0 12.11213. x 1=2,x 2=6 14. 3 15.1或52三、解答题(本大题共8个小题,满分75分)16.【解答】解: 22221 42442(2)(2)(2)(2)2222aa a a a a a a a a a a a a a a a a⎛⎫-÷ ⎪--++⎝⎭-++=⋅+--+=⋅-+=, 由a 2+a -6=0,得a =-3或a =2,∵a -2≠0,∴a ≠2,∴a =-3,当a =-3时,原式32133-+==- 17.【解答】⑴证明:作DM ⊥AC 于M ,∵∠B =90°,∠BAC 的平分线交BC 于点D , ∴DM =DB .∵DB 是⊙D 的半径,∴AC 是⊙D 的切线; ⑵①30°18.【解答】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人), α=1250×100%=24%;故答案为:50,24; (2)等级为C 的人数是:50-12-24-4=10(人),补图略 (3)扇形统计图中C 级对应的圆心角为1050×360°=72°;故答案为:72; (4)根据题意得:1000×450=80(人),答:该校D 级学生有80人. 19.【解答】解:(1)如图,过点D 作DE ⊥AC 于点E ,过点A 作AF ⊥DB , 交DB 的延长线于点F ,在Rt △DAF 中,∠ADF =30°,∴AF =12AD =12×8=4, ∴DF=4;在Rt △ABF 中,BF==3,∴BD =DF -BF-3, sin ∠ABF =AF AB =45,在Rt △DBE 中,sin ∠DBE =DEBD,∵∠ABF =∠DBE ,∴sin ∠DBE =45, ∴DE =BD •sin ∠DBE =45≈3.1(km );∴景点D 向公路a 修建的这条公路的长约是3.1km ;(2)由题意可知∠CDB =75°,由(1)可知sin ∠DBE =45=0.8,所以∠DBE =53°,∴∠DCB =180°-75°-53°=52°C ME∴景点C与景点D之间的距离约为4km.20.【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为8yx =;(2)不等式2x+6− kx<0的解集为0<x<1;(3)由题意,点M,N的坐标为M(8n,n),N(8n,n),∵0<n<6,∴62n-<0,∴8n−62n->0∴S△BMN= 12|MN|×|y M|=12×(8n−62n-)×n=−14(n-3)2+254,∴n=3时,△BMN的面积最大,最大值为254.21.【解答】解:(1)设该商场购进A种台灯x盏,购进B种台灯(50-x)盏,由题意得:40x+65(50-x)=2500,解得:x=30,∴该商场购进A种台灯30盏,购进B种台灯20盏.(2)设购进B种台灯y盏,由题意得:35y+20(50-y)≥1400,解得:y≥803,∴y的最小整数解为27,∴至少需购进B种台灯27盏;(3)设该商场购进A种台灯m盏,由题意得:40m+65(50-m)≤2600,解得:m≥26,∴26≤m≤30,设该商场获得的总利润为w元,则w=20m+(35-a)(50-m)=(a-15)m+1750-50a,∵10<a<20,∴当10<a≤15时,m=26,即购进A种台灯26盏,购进B种台灯24盏,该商场获得的总利润最大,当15<a<20时,m=30,即购进A种台灯30盏,购进B种台灯20盏,该商场获得的总利润最大.22.【解答】解:(1)∵∠ACB=90°,∠CAB=45°,∴∠ABC=∠CAB=45°,∴AC=BC,∠DBE=∠ABC+∠CBE=90°,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且∠CAB=∠CDE=45°,∴△ACD∽△BCE,∴BE BCAD AC==1,故答案为:1,90°;(2)BEAD=DBE=90°,理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°,∴tan∠ABC=tan30°=ACBC=,∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE,∴AC CD BC CE=∴AC BCCD CE=,且∠ACD=∠BCE∴△ACD∽△BCE,∴BE BCAD AC=,∠CBE=∠CAD=60°,∴∠DBE=∠ABC+∠CBE=90°;(3)若点D在线段AB上,如图,由(2)知:BE BCAD AC=ABE=90°∴BEAD,∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BCADBEM图2图3图4∵∠ECD =∠ABE =90°,且点M 是DE 中点,∴CM =BM =12DE , 且△CBM 是直角三角形∴CM 2+BM 2=BC 22,∴BM =CM∴DE DB 2+BE 2=DE 2,∴(4-AD )2)2=24,∴AD ∴BE AD , 若点D 在线段BA 延长线上,如图, 同理可得:DE BE AD ,∵BD 2+BE 2=DE 2,∴(4+AD )2)2=24, ∴AD 1∴BE =3 综上所述:BE的长为323.解:(1)∵点A 与点B 关于直线x =1对称,∴B (3,0),设抛物线解析式为y =a (x +1)(x -3),把C (0,-3)代入得-3a =-3,解得a =1, ∴抛物线就笑着说为y =(x +1)(x -3)=x 2-2x -3, ∵y =(x -1)2-4,∴抛物线顶点D 的坐标为(1,-4); (2)设P (m ,m 2-2m -3),易得直线BC 的解析式为y =x -3,当x =1时,y =x -3=-3,则E (1,-2),∴S △BDC =S △BDE +S △CDE =12×3×(-2+4)=3,当点P 在x 轴上方时,即m >3,如图1,S =S △P AB +S △CAB =12•3•(3+1)+12•(3+1)•(m 2-2m-3)=2m 2-4m , ∵S =52S △BCD ,∴2m 2-4m =152,整理得4m 2-8m -15=0,解得m 1,m 2(舍去), ∴P 点坐标为34);当点P 在x 轴下方时,即1<m <3,如图2,连结OP ,S =S △AOC +S △COP +S △POB =12•3•1+12•3•m +12•3•(-m 2+2m +3)=-32m 2+92m +6,∵S =52S △BCD ,∴-32m 2+92m +6=152,整理得m 2-3m +1=0,解得m 1,m 2(舍去);∴P 点坐标为), 综上所述,P 点坐标为34)或),(3)存在.直线x =1交x 轴于F ,BD①如图3,EQ ⊥DB 于Q ,△DEQ 沿边EQ 翻折得到△D ′EQ , ∵∠EDQ =∠BDF ,∴Rt △DEQ ∽Rt △DBF ,图5∴BQ =BD -DQ; ②如图4,ED ′⊥BD 于H ,∵∠EDH =∠BDF ,∴Rt △DEQ =H ∽Rt △DBF , ∴DH DE DF BD ==EH BF,即42DH EH ==,解得DH,EH, 在Rt △QHD ′中,设QH =x ,D ′Q =DQ =DH -HQ-x , D ′H =D ′E -EH =DE -EH =2, ∴x 2+(2)2-x )2,解得x =1,∴BQ =BD -DQ =BD -(DH -HQ )=BD -DH +HQ+1; ③如图5,D ′Q ⊥BC 于G ,作EI ⊥BD 于I ,由①得EI,BI, ∵BEBG =BE -EG,∵△DEQ 沿边EQ 翻折得到△D ′EQ , ∴∠EQD =∠EQD ′,∴EG =EI,∵∠GBQ =∠IBE ,∴△BQG ∽△BEI , ∴BQ BG BE BI ==,∴BQ综上所述,当BQDEQ 沿边EQ 翻折得到△D ′EQ , 使得△D ′EQ 与△BEQ 的重叠部分图形为直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年河南省南阳市淅川县中考数学一模试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列实数中最大的是()
B.C.D.
A.
2. 下列计算正确的是( )
A.B.
C.D.
3. 2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()
A.1.61×109B.1.61×1010C.1.61×1011D.1.61×1012
4. 如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是( )
A.30°B.35°C.40°D.45°
5. 如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()
A.B.C.D.
6. 若一次函数的图象不经过第二象限,则关于的方程
的根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定
7. 下面是2019年某周发布的郑州市最高温度:16℃,19℃,22℃,24℃,26℃,24℃,23℃.关于这组数据,下列说法正确的是()℃.
A.中位数是24 B.众数是24 C.平均数是20 D.极差是9
8. 如图,在菱形中,,按以下步骤作图:①分别以点和点
为圆心,大于长为半径作弧,两弧相交于点;②作直线,且恰好经过点,与交于点,连接,则()
A.B.C.D.
9. 如图,在Rt△ABC中,∠BAC=60°,点A的坐标为(﹣1,0),点B的坐标为(2,4),将△ABC绕点A顺时针旋转α(0°α90°),得到
△AB1C1,若AC1⊥x轴,则点B1的坐标为()
A.B.
C.D.
10. 如图①,在等边中,点D是BC边的中点,点P为AB边上的一个动点,设,图①中线段DP的长为y,若表示y与x的函数关系的图象如图②所示,则等边的周长为()
A.4 B.C.12 D.
二、填空题
11. 计算:=_____.
12. 不等式组的解为_____________________.
13. 一个不透明的袋子中装有四个小球,它们除了分别标有的数字1,4,5,8不同外,其他完全相同,从袋子中任意摸出一个球后放回,再任意摸出一个球,则两次摸出的球所标数字都是偶数的概率是_____.
14. 如图,在扇形中,,,将扇形绕点沿顺时针方向旋转到扇形的位置,点的对应点落在上,则图中阴影部
分的面积为__________.
15. 如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC 上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是___.
三、解答题
16. 先化简:÷(x﹣),再从﹣2,﹣1,0,1,2中选取合适的数代入求值.
17. (9分)2019年4月28日,由世界月季联合会?中国花卉协会?中国花卉协会月季分会主办的“2019世界月季洲际大会暨第九届中国月季展”在河南南阳开幕.来自澳大利亚?比利时?智利?芬兰等18个国家的专家学者和其他各界人士共襄盛会,交流月季栽培?造景?育种?文化等方面的研究进展及成果.为了解该市市民对月季展的关注情况(选项分为:“A—高度关注”,“B—一般关注”,“C—关注度低”,“D—不关注”),某校兴趣小组随机采访该市部分市民,对采访情况制作了如下不完整的统计图表.
根据以上统计图,解答下列问题:
(1)本次接受采访的市民共有________人;
(2)在扇形统计图中,扇形D的圆心角的度数是_________;
(3)请补全条形统计图;
(4)若该市区有100万人,根据采访结果,估计不关注月季展市民的人数.
18. 如图,AB是半圆O的直径,AC是半圆内一条弦,点D是的中点,DB交AC于点G,过点A作半圆的切线与BD的延长线交于点M,连接AD.点E是AB 上的一动点,DE与AC相交于点F.
(1)求证:MD=GD;
(2)填空:①当∠DEA=时,AF=FG;
②若∠ABD=30°,当∠DEA=时,四边形DEBC是菱
形.
19. 襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC和塔冠BE)进行了测量.如图所示,最外端的拉索AB的底端A到塔柱底端C的距离为121m,拉索AB与桥面AC的夹角为37°,从点A出发沿AC方向前进23.5m,在D处测得塔冠顶端E 的仰角为45°.请你求出塔冠BE的高度(结果精确到0.1m.参考数据
sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
≈1.41).
20. 为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B两种蔬菜,若种植20亩A种蔬菜和30亩B种蔬菜,共需投入36万元;若种植30亩A种蔬菜和20亩B种蔬菜,共需投入34万元.
(1)种植A,B两种蔬菜,每亩各需投入多少万元?
(2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元.设种植A种蔬菜m亩,求w关于m的函数关系式;
(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.
21. 小明根据学习函数的经验,对函数y=x+的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数y=x+的自变量x的取值范围是.
(2)下表列出了y与x的几组对应值,请写出m,n的值:m=,n =;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当y=﹣时,x=.
②写出该函数的一条性质.
③若方程x+=t有两个不相等的实数根,则t的取值范围
是.
22. 某数学活动小组在一次活动中,对一个数学问题做了如下研究:
(问题发现)(1)如图①,在等边三角形ABC中,点M是BC边上任意一点,连接AM,以AM为边作等边三角形AMN,连接CN,则∠ABC和∠ACN的数量关系为;
(变式探究)(2)如图②,在等腰三角形ABC中,AB=BC,点M是BC边上任意一点(不含端点B,C,连接AM,以AM为边作等腰三角形AMN,使∠AMN=∠ABC,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(解决问题)(3)如图③,在正方形ADBC中,点M为BC边上一点,以AM为边作正方形AMEF,点N为正方形AMEF的中心,连接CN,AB,AE,若正方形ADBC的边长为8,CN=,直接写出正方形AMEF的边长.
23. 如图①,直线AB的解析式为y=﹣x+4,抛物线y=﹣+bx+c与y轴交于点A,与x轴交于点C(6,0),点P是抛物线上一动点,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当点P在第一象限内时,求△ABP面积的最大值,并求此时点P的坐标;(3)如图②,当点P在y轴右侧时,过点A作直线l∥x轴,过点P作PH⊥l 于点H,将△APH绕点A顺时针旋转,当点H的对应点H′恰好落在直线AB上时,点P的对应点P′恰好落在坐标轴上,请直接写出点P的横坐标.。