加速度传感器及其应用

合集下载

加速度传感器的应用和原理

加速度传感器的应用和原理

加速度传感器的应用和原理一、引言加速度传感器作为一种重要的传感器,广泛应用于许多领域,如汽车行业、工业制造业、航空航天等。

本文将介绍加速度传感器的应用和原理。

二、加速度传感器的应用加速度传感器具有高灵敏度、高精度和高稳定性的特点,因此在很多领域都得到了广泛应用。

以下是一些加速度传感器的应用场景:1.汽车行业:在汽车中,加速度传感器可以用于车辆的动态平衡控制、制动系统和悬挂系统的优化和控制,以及碰撞检测和安全气囊系统等。

2.工业制造业:在工业制造过程中,加速度传感器可用于监测和测量机器设备的振动和震动,从而实现机器设备的故障检测和预测维修。

3.航空航天:加速度传感器可以用于飞机、导弹和火箭的姿态控制和稳定,以及航天器的姿态测量和导航系统。

4.运动追踪:加速度传感器可以用于智能手环、智能手表和智能手机中,实现步数计算、距离测量、睡眠监测等功能。

同时在体育训练中也可以用来监测运动员的运动状态和姿势。

三、加速度传感器的原理加速度传感器基于压电效应或惯性效应,来测量物体的加速度。

1.压电效应原理压电效应是指某些材料在受力时会产生电荷分布不均匀的现象。

当压电材料受到外力作用时,材料内部的电荷分布会改变,从而产生电位差。

通过测量这个电位差的变化,就可以得知物体的加速度。

2.惯性效应原理惯性效应是指物体的运动状态在改变时产生的内部力,这个原理也是加速度传感器常用的原理之一。

加速度传感器的惯性效应原理是基于牛顿第二定律,即力等于质量乘以加速度。

通过测量物体在加速过程中的惯性力,就可以得知物体的加速度。

四、加速度传感器的工作方式加速度传感器一般分为模拟式和数字式两种工作方式。

1.模拟式加速度传感器模拟式加速度传感器输出的是一个模拟电压信号,输出电压的大小与加速度成正比。

这种传感器通常需要使用模拟信号处理电路进行信号调理和滤波,以使得输出信号更加稳定和可靠。

2.数字式加速度传感器数字式加速度传感器能够直接输出数字信号,无需进行模拟信号处理。

加速度传感器原理

加速度传感器原理

加速度传感器原理在现代科技进步的背景下,传感器技术被广泛应用于各个领域。

其中,加速度传感器作为一种重要的传感器,被广泛应用于汽车、航空航天、工业控制等领域。

本文将介绍加速度传感器的原理及其应用。

一、加速度传感器的基本原理加速度传感器是一种测量物体加速度的装置。

其基本原理是利用牛顿第二定律F=ma,其中F表示物体所受的力,m表示物体的质量,a 表示物体的加速度。

加速度传感器通过测量物体所受力的大小,从而间接测量物体的加速度。

常见的加速度传感器是基于微电机和微机械系统技术的MEMS加速度传感器。

它由微机械结构和信号处理电路组成。

微机械结构中包含质量块和支撑结构,当物体发生加速度时,质量块会相对于支撑结构发生位移,这个位移可以通过信号处理电路转化为电信号输出。

二、加速度传感器的工作原理加速度传感器的工作原理主要有质量块法、压电效应法和微机械共振法等。

1. 质量块法质量块法是一种常见的加速度传感器工作原理。

它通过一个质量块和支撑结构构成,质量块会相对于支撑结构发生微小位移,进而通过信号处理电路转化为电信号输出。

这种传感器广泛应用于汽车安全气囊系统等领域。

2. 压电效应法压电效应法是一种基于压电材料的加速度传感器工作原理。

压电材料在受力作用下会产生电荷累积,通过测量物体施加在压电材料上的电荷积累情况,可以得到物体的加速度。

这种传感器广泛应用于运动监测、结构健康监测等领域。

3. 微机械共振法微机械共振法是一种基于微机械共振效应的加速度传感器工作原理。

它通过微机械结构的固有振动频率和其受到的外力共振频率的比较,可以得到物体的加速度。

这种传感器在航空航天领域有着广泛的应用。

三、加速度传感器的应用加速度传感器作为一种重要的传感器,应用广泛。

1. 汽车行驶状态监测汽车中常用的加速度传感器可以检测车辆加速度的变化,从而监测车辆的行驶状态。

当车辆发生剧烈变化时,比如急刹车或者碰撞,加速度传感器可以及时检测到,并触发相应的安全措施,以减少事故发生的风险。

加速度传感器用途

加速度传感器用途

加速度传感器用途加速度传感器是一种测量物体加速度的传感器,它可以通过测量物体的加速度来检测物体的运动状态。

加速度传感器广泛应用于各种领域,如汽车、航空、医疗、电子、机械等。

1. 汽车行业在汽车行业中,加速度传感器可以用于测量汽车的加速度、制动力和转弯力等。

这些数据可以用于汽车的控制和安全系统,例如防抱死制动系统(ABS)、车辆稳定控制系统(ESP)和碰撞安全气囊等。

此外,加速度传感器还可以帮助汽车制造商进行性能测试,例如加速和制动距离测试。

2. 航空航天在航空航天领域中,加速度传感器可以用于测量飞机的加速度和振动等参数。

这些数据可以用于飞行控制系统,例如自动驾驶系统和导航系统。

此外,加速度传感器还可以用于监测飞机结构的健康状况,例如翼尖振动和结构疲劳等。

3. 医疗领域在医疗领域中,加速度传感器可以用于监测患者的运动状态和姿势。

例如,加速度传感器可以用于监测老年人的步态,并识别他们是否容易跌倒。

此外,加速度传感器还可以用于监测病人的呼吸和心跳等生理参数,以及监测运动障碍和神经系统疾病等病症。

4. 电子领域在电子领域中,加速度传感器可以用于智能手机、平板电脑和智能手表等便携式设备中。

例如,加速度传感器可以用于检测设备的旋转和倾斜,以及识别设备的运动状态和姿势。

此外,加速度传感器还可以用于游戏控制器、智能家居和虚拟现实等应用中。

5. 机械领域在机械领域中,加速度传感器可以用于监测机器的振动和冲击。

例如,加速度传感器可以用于监测旋转机器的不平衡和偏心,以及检测机器的故障和损坏。

此外,加速度传感器还可以用于机器人和自动化系统中,以帮助机器人定位和导航。

加速度传感器在各个行业中都有广泛的应用,它可以帮助我们了解物体的运动状态和姿势,从而提高产品质量和安全性。

随着技术的进步,加速度传感器的应用领域将会更加广泛和多样化。

加速度传感器原理

加速度传感器原理

加速度传感器原理加速度传感器是一种用于测量物体加速度的装置,常用于汽车、航空航天、医疗设备等领域。

本文将介绍加速度传感器的原理、工作方式以及应用。

一、原理加速度传感器的原理基于牛顿第二定律,即物体的加速度与作用在物体上的力成正比。

加速度传感器通过测量物体受到的力,从而间接地计算出物体的加速度。

二、工作方式加速度传感器通常由质量块与一些弹簧组成。

当物体加速度发生变化时,质量块会受到力的作用,从而发生位移。

弹簧的伸缩程度与位移成正比,从而产生一个电信号。

该电信号经过处理后,可以被转化为相应的加速度数值。

三、应用1. 汽车领域:加速度传感器可用于汽车的安全气囊系统。

当车辆发生碰撞时,加速度传感器会检测到车辆的突然减速,并迅速触发气囊充气,保护乘客安全。

2. 航空航天领域:在飞机或宇航器中,加速度传感器用于测量飞行器的姿态和动力学参数,从而帮助驾驶员控制飞行器的稳定性。

3. 医疗设备领域:加速度传感器广泛应用于助听器、人工肢体和运动检测设备等医疗设备中。

通过测量患者的运动状态,医生可以根据传感器提供的数据进行精确的诊断和治疗。

4. 智能手机领域:现代智能手机中内置了加速度传感器,用于自动旋转屏幕、计步器功能等。

此外,一些游戏也利用加速度传感器实现了更加真实的交互体验。

总结:加速度传感器是一种通过测量物体受力来计算加速度的装置。

它的工作原理基于牛顿第二定律,通过质量块的位移与弹簧的伸缩程度来产生电信号。

加速度传感器在汽车、航空航天、医疗设备和智能手机等领域具有广泛的应用。

通过使用加速度传感器,我们能够实时获取物体的加速度数据,从而为各种应用场景提供更精确的测量和控制。

加速度传感器用途

加速度传感器用途

加速度传感器用途加速度传感器(Accelerometer)是一种用于测量物体在三个轴上的加速度的传感器。

它广泛应用于各个领域,包括消费电子产品、汽车工业、航空航天领域、医疗设备等等。

下面将详细介绍加速度传感器的用途和工作原理。

首先,加速度传感器在消费电子产品中有着广泛的应用。

例如,智能手机中的自动旋转屏幕功能就是通过加速度传感器来实现的。

传感器可以检测到手机在水平方向的倾斜角度,从而将屏幕的显示方向调整为相应的横向或纵向。

此外,智能手表、智能手环等可穿戴设备也常常使用加速度传感器来监测人体的运动状态和睡眠质量。

其次,汽车工业是加速度传感器的另一个重要领域。

在汽车中,加速度传感器可以用来监测车辆的加速度、制动力和侧倾等信息。

这些数据对于车辆的悬挂系统、稳定性控制系统和碰撞安全系统等的设计和调整非常重要。

另外,加速度传感器还可以用于车辆的倾斜角度检测和自动驾驶系统中的姿态控制。

航空航天领域也广泛使用加速度传感器。

在飞行器中,加速度传感器可以测量飞行器的加速度和倾斜角度,对飞行的稳定性和导航控制至关重要。

此外,它还可以用于航天器的姿态控制、碰撞检测和姿态变化的记录。

医疗设备领域也是加速度传感器的重要应用领域。

例如,健身追踪器可以使用加速度传感器来监测人体的运动和步数,计算消耗的卡路里和距离。

此外,加速度传感器还可以用于医疗器械中,例如心脏起搏器或可穿戴式医疗设备,用于监测患者的身体活动和健康状况。

加速度传感器的工作原理是基于质量的惯性。

它通常由一个质量和一个弹簧组成,质量与弹簧相连,当传感器受到外部力的作用时,质量会发生位移,从而改变弹簧的形变。

通过检测弹簧的形变程度,可以精确测量物体受到的加速度。

总结起来,加速度传感器是一种用于测量物体在三个轴上的加速度的传感器。

它在消费电子产品、汽车工业、航空航天领域和医疗设备中有着广泛的应用。

无论是自动旋转屏幕、车辆稳定性控制、飞行器导航还是医疗监测,加速度传感器都发挥着重要的作用。

加速度传感器的工作原理

加速度传感器的工作原理

加速度传感器的工作原理加速度传感器是一种用于测量物体在空间中加速度的设备,广泛应用于汽车、航空航天、工业生产等领域。

它能够准确地检测物体的加速度变化,并将其转化为电信号输出。

本文将介绍加速度传感器的工作原理及其应用。

一、工作原理加速度传感器的工作原理基于质量与力的关系。

通常使用微机电系统(MEMS)技术制造的加速度传感器,它由质量块、弹簧和电容组成。

具体原理如下:1. 弹簧系统加速度传感器的核心是一个微小的质量块,质量块通过弹簧与传感器的外壳相连。

弹簧负责将质量块与外壳保持相对静止状态,使质量块不受环境振动干扰。

2. 加速度作用当物体受到加速度的作用时,质量块与外壳之间产生相对运动。

根据牛顿第二定律,物体所受的力与其质量和加速度成正比。

因此,加速度的增加将导致质量块受到更大的力。

3. 电容变化质量块上安装有一对电极,与外壳上的电极形成电容。

当质量块发生位移时,外壳上相应的电极也会随之移动,导致电容值发生变化。

电容值的变化与质量块的位移量成正比。

4. 电信号输出通过对电容的测量,传感器能够将位移量转化为电信号输出。

通常使用谐振电路或差分电路来测量电容值的变化。

最终,加速度传感器将测得的加速度值输出到外部设备,如数据采集模块或控制系统。

二、应用领域加速度传感器因其高灵敏度和广泛的应用需求,在众多领域中得到了应用。

下面介绍几个常见的应用场景:1. 汽车安全系统在汽车中,加速度传感器被广泛用于安全系统。

例如,车辆碰撞时,传感器可以检测到突发的加速度变化,并触发气囊的部署。

此外,加速度传感器还可以用于检测车辆倾斜角度,以提供车身稳定控制。

2. 航空航天领域在航空航天领域中,加速度传感器被用于飞行器姿态控制和导航系统。

传感器能够测量飞行器在各个方向上的加速度变化,确定姿态角度,从而实现飞行控制和导航定位。

3. 工业生产加速度传感器在工业生产中的应用非常广泛。

它可以用于监测机器的振动和震动情况,判断设备是否正常运行。

mems加速度传感器原理

mems加速度传感器原理

mems加速度传感器原理加速度传感器是一种常见的MEMS(微机电系统)传感器,用于测量物体在三个轴向上的加速度。

它是由微小的机械结构和敏感器件组成,通过测量物体对这些结构的力的变化来确定加速度大小。

本文将介绍mems加速度传感器的工作原理及其应用。

一、mems加速度传感器的工作原理mems加速度传感器通常由质量块、弹簧和电容等组件构成。

当物体受到加速度作用时,质量块会受到力的作用而发生位移,而弹簧会受到拉伸或压缩。

这些位移和变形将导致电容的改变,从而通过电容变化来测量加速度。

具体来说,mems加速度传感器利用了电容的变化来测量加速度。

传感器中的质量块被固定在一个支撑结构上,并与支撑结构之间通过弹簧连接。

当物体受到加速度作用时,质量块会发生位移,而弹簧则会产生相应的拉伸或压缩。

这种位移和变形将导致质量块与支撑结构之间的电容发生变化。

mems加速度传感器中的电容通常由两个金属板构成,它们分别与质量块和支撑结构相连。

当质量块发生位移时,金属板之间的距离会发生改变,进而改变了电容的值。

这种电容的变化可以通过电路进行测量和分析,从而得到加速度的值。

二、mems加速度传感器的应用mems加速度传感器具有体积小、功耗低、成本低等优点,因此在许多领域得到广泛应用。

1. 汽车安全系统:mems加速度传感器可用于汽车的安全气囊系统和车辆稳定性控制系统。

通过测量车辆的加速度,可以及时触发气囊的放出,以保护乘客的安全。

同时,加速度传感器还可以监测车辆的姿态和动态参数,为车辆稳定性控制提供依据。

2. 手机和智能设备:mems加速度传感器广泛应用于手机和智能设备中,用于实现自动旋转屏幕、晃动动作识别、步数计数等功能。

通过测量设备的加速度,可以实现多种智能交互方式,提升用户体验。

3. 工业监测和控制:mems加速度传感器可用于工业设备的监测和控制。

例如,可以用于测量机械设备的振动和冲击,从而判断设备的工作状态和健康状况,及时进行维护和修理。

压电式传感器及其应用

压电式传感器及其应用

压电式加速度传感器及其应用一、压电式加速度传感器原理压电式加速度传感器又称压电加速度计。

它也属于惯性式传感器。

它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。

当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。

加速度传感器是一种惯性传感器,它能感受加速度并转换成可用输出信号,被广泛用于航空航天、武器系统、汽车、消费电子等。

实际电路图如下:二、压电式加速度传感器构成元件预压弹簧压电元件外壳质量块基座常用的压电式加速度计的结构形式如图所示,是由预压弹簧,质量块,基座,压电元件和外壳组成。

图中为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。

由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。

三、压电式加速度传感器的实际应用加速度传感器应用范围广泛,一般来讲它有六种检测感应功能:倾斜度检测、运动检测、定位检测、震动检测、振动检测和自由落下检测。

(一)倾斜度检测加速度传感器水平放置时,在重力作用下经激励有一定幅度的输出,当与重力方向有倾角时,传感器信号输出幅度会有所变化,对两种状态下信号输出进行比较计算可推算出倾斜角的大小,应用双轴、三轴加速度传感器就可测出任意倾斜角的大小和方向。

利用加速度传感器测量倾斜度的这种检测感应功能,加速度传感器可应用于倾斜仪、倾斜度侦测电子罗盘、图像旋转、文本滚动浏览/用户界面、LCD投影和物理治疗法等方面。

飞思卡尔半导体公司推出的MMA7260Q三轴加速度传感器是用于倾角测量的典型应用之一,它以重力为输入矢量来决定物体在空间的姿态。

把加速度传感器固定于物体的水平面上,当物体姿态改变时,加速度传感器的敏感轴随之转动一定角度,由于重力的作用,传感器敏感轴上的加速度会发生改变,因此可通过测量加速度的变化来反映物体姿态的变化。

(二) 运动检测在进行运动检测时,需要考虑几个因素:如何计算它的位移,g 值的范围选择及使用量测轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
三、认识加速度传感器
弹簧
• 3.1 加速度的测量原理
• F=ma → a=F/m m可以通过测量获得精确值; 也可不通过测量m的值,而通 过标定的方式完成加速度的传 感器的标定。
读出传感器 壳体
加速度测量方向
m
检测质量
阻尼器
• 将加速度(通过质量块)转化 为对力、应变或位移的测量, 从而获得加速度的值。
20
四、往年获奖实例
• 10、魔力花 • 设计思想:通过微传感器检测 叶子颤动的加速度、外界声音 大小、人体红外信号,编程控 制花朵做出相应的开合动作以 及相关音乐、彩光的配合,打 破传统的昙花一现,静美如花 的概念,展现花开花合的动态 美,与人交互的灵性美,开创 动态装饰花的新领域。 • 特点:人机互动、控制优异、 方式多样。
• 5、“跟屁虫”玩具小车 • 设计思想:采用微惯性加速度 计测量小孩的运动状态,通过 无线发射给小车,小车计算小 孩的运动轨迹,通过控制方向 和速度实现对小孩运动轨迹的 复制。 • 功能特点:小孩携带的装置重 量轻;无线发射和接收;小车 实现了加速、减速、停止、 (转弯)等功能。
16
四、往年获奖实例
加速度传感器及其应用
—— 大赛辅导与孵化 测控技术与仪器教研室
1
一、指导思想
• 1、开拓思维、创新思想。
• 2、了解加速度传感器的优缺点、适用领域。
• 3、学会分析问题的重点、难点。 • 4、学会在调试、实践中查找问题、解决问题 • 5、根据个人特点,多人共同协作。 • 6、培养一定的艺术表现力。
18
四、往年获奖实例
• 8、易碎物品运输监测系统 • 设计思想:通过测量物品的加 速度反应易碎物品损坏的可能 性。设定损坏临界加速度阈值, 当超过阈值时给出告警,需要 检查物品状态。 • 功能特点:针对车辆制动、启 动、颠簸、转弯、上下坡、捆 扎不牢、野蛮装卸等情况进行 监测;需要测量、记录三轴方 向的加速度;可配合时间信息 作为驾驶行为和事故分析的依 据。
• 4、汽车侧翻预警系统 • 设计思想:根据加速度传感器 实时采集的数值,计算汽车侧 翻因子,进行侧翻预警。 • 工作原理:正常行驶时,只点 亮两侧各一盏绿灯;可能发生 侧翻时,点亮第二盏LED灯 (红色);接近侧翻临界值时, 点亮第三盏LED(红色);整 个过程中告警蜂鸣器越来越频 繁。
15
四、往年获奖实例
• 3.2.2 硅微电容式式加速度传感器
– – – – – 敏感器件制作简单 不受温度影响 读出电路复杂 易受寄生参数影响 非线性
8
三、认识加速度传感器
• 3.2.4 压电(石英或陶瓷)式加速度传感器 – – – – 结构简单、电压输出 无法测直流(常加速度) 温度系数较大 高频响应特性好
• (a)克服了外壳形变的影响,但仍受安装的影响。 • (b)减小了基座变形的影响,但成品率相对较低。 • (c)降低了安装复杂度,胶接方式限制了使用温度。
13
四、往年获奖实例
• 3、智能刹车系统 • 设计思想:减少“将油门误当刹车 踩”的情况。紧急刹车与缓踩油门 两种状态下汽车踏板的加速度值是 不同的,通过比较正常和误踩两种 情况下的加速度值,确定油门的临 界加速度。 • 特点:结构简单、易于实现;安全 性相关、不利影响小;看问题角度 独特。
14
四、往年获奖实例
9
三、认识加速度传感器
• • • • • • • 3.2.5 其他形式加速度传感器 1、谐振式加速度传感器 2、隧道式加速度传感器 3、磁效应型(磁阻、霍尔)加速度传感器 4、热对流式加速度传感器 5、伺服(力平衡)式加速度传感器 6、三轴(多轴)加速度传感器
10
三、设计注意事项
• • • • 1、应用场景、所需测量量、需要控制的效果。 2、测量对象 —— a 3、测量方法、大致量程、过载。 4、系统构成与设计:传感器、单片机、(存储)、显示、 通信接口、电源;是否需要校准、资源分配(计算、存储、 管脚等)、安装方法与位置、算法考虑是否周全等。 • 5、调试:硬件保证可靠;程序调试注意细节;测量值的 记录、画出曲线分析;阈值的确定,可能要经过多次实验。 • 6、表现形式:直观、准确、有冲击力、一定趣味性。
19
四、往年获奖实例
• 9、虚拟电子乐器 • 设计思想:通过捕捉人体肢体 的运动姿态,再根据用户个性 化定制的需求,允许演奏者以 符合日常习惯的方式演奏多种 乐器。 • 功能特点:通过挥动指挥棒, 根据不同的挥动方向和速度, 乐器将发出不同的声音;根据 预先编制的程序,可将动作模 式与乐曲相对应;类似于乐队 指挥的指挥棒。
• 6、智能碰撞检测机器人 • 设计思想:通过二维MEMS加 速度计,检测机器人运动过程 中所受到的外界碰撞,并计算 碰撞的方向和大小,进而控制 机器人进行相应的壁障动作。 • 功能特点:与家庭自主吸尘器 的思想一致;算法简单;检测 与控制相结合;具有实用性前 景。
17
四、往年获奖实例
• 7、汽车黑匣子 • 设计思想:记录事故前汽车的 运行状态(前后俯仰角、左右 晃动角、行车方向、速度、汽 车运动轨迹),可用于事故分 析。 • 功能特点:至少需要在汽车的 两个以上位置测量和记录;同 时还可记录行车速度与里程; 可进行超速和超市报警。
21
四、往年获奖实例
ATM机智能助手
电子钥匙
智能节拍MP3播放器
脚控鼠标
22
五、结束语
• • • • • • 创意无限,敢想敢为。 大胆假设,小心求证。 目的,计划,恒心。 勤于思考,善于沟通。 立足基础,有所为有所不为。 立意、设计是基础,表现形式是关键。
23
6
三、认识加速度传感器
• 3.2 常见的几种加速度传感器
• 3.2.1 压阻式加速度传感器
• 利用单晶硅的压阻效应,具有成本低、工艺成熟、适于大规模制造。 • 可通过“惠斯通”电桥进行电阻到电压的转换、温度补偿。 • 常用于航空、航天领域,还可用于低频震动和冲击、以及物体倾斜的 测量。
7
三、认识加速度传感器
2
二、加速度传感ቤተ መጻሕፍቲ ባይዱ的应用
• 2.1 在手持设备方面的应用
• 重力感应、三轴加速度; • 游戏、抗跌落、歌曲控制
3
二、加速度传感器的应用
• 2.2 在可穿戴设备方面的应用
• 特点:体积小、重量轻、功耗低; • 应用:计步器、运动量、强度统计;
4
二、加速度传感器的应用
• 2.3 在汽车、操作方面的应用
11
四、往年获奖实例
• 1、新概念游戏健身机 • 设计思想:以加速度计作为 动作感应系统,通过感应人 体的运动控制游戏中超级玛 丽的动作。 • 特点:创新性;成本低、体 积小、高可靠;设计灵活性; 游戏兼容性好;超强扩展性; 新概念健身、新概念游戏
12
四、往年获奖实例
• 2、魔笔 • 设计思想:以加速度计作为获取魔 笔二维加速度,通过积分得到魔笔 运动轨迹,实现(在文稿上的)划 线、画图、标记、注释等功能。 • 特点:与空中鼠标构思异曲同工; 无线信号传输;功能扩展性强;体 积小、重量轻、功耗低。
相关文档
最新文档