高中物理牛顿运动定律的应用解析版汇编含解析
高考物理牛顿运动定律的应用解析版汇编及解析

高考物理牛顿运动定律的应用解析版汇编及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小; (2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+ 解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.3.如图所示,质量M=2kg 足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg 的小滑块,以6m/s 的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g 取l0m/s 2.(1)若木板固定,求小滑块在木板上滑过的距离.(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止. (3)若木板不固定,求木板相对地面运动位移的最大值.【答案】(1)203.6m 2v x a==(2)t=1s (3)121x x m +=【解析】 【分析】 【详解】试题分析:(1)225m /s a g μ==20 3.6m 2v x a==(2)对m :2125/a g m s μ==,对M :221()Ma mg m M g μμ=-+,221m /s a =012v a t a t -=t=1s(3)木板共速前先做匀加速运动2110.52x at m ==速度121m /s v a t ==以后木板与物块共同加速度a 3匀减速运动231/a g m s μ==,22310.52x vt a t m =+=X=121x x m +=考点:牛顿定律的综合应用4.如图所示,长L =10m 的水平传送带以速度v =8m/s 匀速运动。
高考物理易错题专题三物理牛顿运动定律(含解析)及解析

高考物理易错题专题三物理牛顿运动定律(含解析)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
人教高中物理同步讲义必修一:专题: 牛顿运动定律的综合应用(解析版)

4.7专题:牛顿运动定律的综合应用学习目标课程标准学习目标1.能根据力与运动的关系,联系牛顿运动定律和运动学知识,分析求解有关动力学问题。
2.掌握应用牛顿运动定律解决问题的基本思路和方法。
3.掌握“板块”模型、“传送带”模型特点,并解决相关问题1.掌握应用牛顿运动定律解决问题的基本思路和方法,即首先对研究对象进行受力和运动情况分析,然后用牛顿运动定律把二者联系起来。
2.初步体会牛顿运动定律对社会发展的影响,建立应用科学知识解决实际问题的意识。
02探究提升【问题探究1】动力学中的临界问题1.临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态.2.关键词语:在动力学问题中出现的“最大”“最小”“刚好”“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件.3.临界问题的常见类型及临界条件:(1)接触与脱离的临界条件:两物体相接触(或脱离)的临界条件是弹力为零.(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是实际张力等于它所能承受的最大张力,绳子松弛的临界条件是绳上的张力为零.(4)加速度最大与速度最大的临界条件:当物体在变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度.当出现加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值.4.解题关键:正确分析物体运动情况,对临界状态进行判断与分析,其中处于临界状态时存在的独特的物理关系即临界条件.【典型例题1】(多选)质量为0.5kg 的物块A 放在一个纵截面为矩形的木箱内,A 与木箱水平底面之间的动摩擦因数为0.3。
A 的右边被一根轻弹簧用1.2N 的水平拉力向右拉着而保持静止。
设最大静摩擦力等于滑动摩擦力,g 取210m/s 。
现要使弹簧能拉动物块A 相对木箱底面向右移动。
牛顿运动定律高考真题专题汇编带答案解析

专题三牛顿运动定律考点1 牛顿运动定律的理解与应用[2019浙江4月选考,12,3分]如图所示,A、B、C为三个实心小球,A为铁球,B、C为木球.A、B两球分别连接在两根弹簧上,C球连接在细线一端,弹簧和细线的下端固定在装水的杯子底部,该水杯置于用绳子悬挂的静止吊篮内.若将挂吊篮的绳子剪断,则剪断的瞬间相对于杯底(不计空气阻力,ρ木<ρ水<ρ铁) ()A.A球将向上运动,B、C球将向下运动B.A、B球将向上运动,C球不动C.A球将向下运动,B球将向上运动,C球不动D.A球将向上运动,B球将向下运动,C球不动拓展变式1.[全国卷高考题改编,多选]伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.关于惯性有下列说法,其中正确的是()A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.物体保持静止或匀速直线运动状态的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动2.[2020江苏,5,3分]中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量.某运送抗疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F.若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.FB.C.D.3.[2020浙江1月选考,2,3分]如图所示,一对父子掰手腕,父亲让儿子获胜.若父亲对儿子的力记为F1,儿子对父亲的力记为F2,则( )A.F2>F1B.F1和F2大小相等C.F1先于F2产生D.F1后于F2产生4.[2015海南,8,5分,多选]如图所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断瞬间()A.a1=3gB.a1=0C.Δl1=2Δl2D.Δl1=Δl25.[2020山东,1,3分]一质量为m的乘客乘坐竖直电梯下楼,其位移s与时间t的关系图像如图所示.乘客所受支持力的大小用F N表示,速度大小用v表示.重力加速度大小为g.以下判断正确的是()A.0~t1时间内,v增大,F N>mgB.t1~t2时间内,v减小,F N<mgC.t2~t3时间内,v增大,F N<mgD.t2~t3时间内,v减小,F N>mg6.[2021辽宁六校第一次联考,多选]如图甲所示,一轻质弹簧的下端固定在水平面上,上端叠放两个质量均为m的物体A、B(B与弹簧连接,A、B均可视为质点),弹簧的劲度系数为k,初始时物体处于静止状态.现用竖直向上的拉力F 作用在A上,使A开始向上做加速度大小为a的匀加速运动,测得A、B的v-t图像如图乙所示,已知重力加速度大小为g,则()A.施加力F前,弹簧的形变量为B.施加力F的瞬间,A、B间的弹力大小为m(g+a)C.A、B在t1时刻分离,此时弹簧弹力等于B的重力D.上升过程中,B速度最大时,A、B间的距离为a-7.[2021安徽黄山高三模拟,多选]如图甲所示,物块A、B静止叠放在水平地面上,B受到大小从零开始逐渐增大的水平拉力F的作用.A、B间的摩擦力f1、B与地面间的摩擦力f2随水平拉力F变化的情况如图乙所示.已知物块A的质量m=3 kg,取g=10 m/s2,最大静摩擦力等于滑动摩擦力,则()A.两物块间的动摩擦因数为0.2B.当0<F<4 N时,A、B保持静止C.当4 N<F<12 N时,A、B发生相对滑动D.当F>12 N时,A的加速度随F的增大而增大考点2 动力学两类基本问题[2019江苏,15,16分]如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下.接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)A被敲击后获得的初速度大小v A;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a'B;(3)B被敲击后获得的初速度大小v B.拓展变式1.[2020江西丰城模拟]如图所示,质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后速度减为零.求物体与斜面间的动摩擦因数μ和物体沿斜面向上运动的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)2.[2015新课标全国Ⅰ,20,6分,多选]如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出()图(a) 图(b)A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度3.[2016上海,25,4分]地面上物体在变力F作用下由静止开始竖直向上运动,力F随高度x的变化关系如图所示,物体能上升的最大高度为h,h<H.当物体加速度最大时其高度为,加速度的最大值为.4.[2020安徽安庆检测]如图所示,质量为10 kg的环在F=140 N的恒定拉力作用下,沿粗糙直杆由静止从杆的底端开始运动,环与杆之间的动摩擦因数μ=0.5,杆与水平地面的夹角θ=37°,拉力F与杆的夹角θ=37°,力F作用一段时间后撤去,环在杆上继续上滑了0.5 s后,速度减为零,g取 10 m/s2,sin 37°=0.6,cos 37°=0.8,杆足够长.求:(1)拉力F作用的时间;(2)环运动到杆底端时的速度大小.5.[2021山西太原模拟]如图所示,在竖直平面内有半径为R和2R的两个圆,两圆的最高点相切,切点为A.B和C分别是小圆和大圆上的两个点,其中AB长为R,AC长为2R.现沿AB和AC建立两条光滑轨道,自A处由静止释放小球,已知小球沿AB轨道运动到B点所用时间为t1,沿AC轨道运动到C点所用时间为t2,则t1与t2之比为()A.1∶3B.1∶2C.1∶D.1∶6.[2020山东,8,3分]如图所示,一轻质光滑定滑轮固定在倾斜木板上,质量分别为m和2m的物块A、B,通过不可伸长的轻绳跨过滑轮连接,A、B间的接触面和轻绳均与木板平行.A与B间、B与木板间的动摩擦因数均为μ,设最大静摩擦力等于滑动摩擦力.当木板与水平面的夹角为45°时,物块A、B刚好要滑动,则μ的值为()A.B.C.D.7.[2017全国Ⅲ,25,20分]如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离8.[2020四川南充模拟]如图传送装置,水平传送带ab在电机的带动下以恒定速率v=4 m/s运动,在传送带的右端点a无初速度轻放一个质量m=1 kg的物块A(视为质点),当物块A到达传送带左端点b点时,即刻再在a点无初速度轻放另一质量为2m的物块B(视为质点).两物块到达b点时都恰好与传送带等速,b端点的左方为一个水平放置的长直轨道cd,轨道上静止停放着质量为m的木板C,从b点滑出的物块恰能水平滑上(无能量损失)木板上表面,木板足够长.已知:物块与传送带间的动摩擦因数μ1=0.8,与木板间的动摩擦因数μ2=0.2;木板与轨道间的动摩擦因数μ3=0.1;设最大静摩擦力等于滑动摩擦力,取g=10 m/s2.试求:(1)物块A、B滑上木板C上的时间差Δt;(2)木板C运动的总时间.9.如图所示,传送带的倾角θ=37°,从A到B的长度为L AB=16 m,传送带以v0=10 m/s的速度逆时针转动.在传送带A 端无初速度释放一个质量为m=0.5 kg 的物体,它与传送带之间的动摩擦因数μ=0.5,则物体从A运动到B所需的时间是多少?(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)10.[新情境——动车爬坡][2020四川宜宾模拟,多选]动车是怎样爬坡的?西成高铁从清凉山隧道开始一路上坡,采用25‰的大坡度穿越秦岭,长达45公里,坡道直接落差1 100米,为国内之最.几节自带动力的车厢加几节不带动力的车厢编成一组就是动车组.带动力的车厢叫动车,不带动力的车厢叫拖车.动车爬坡可以简化为如图所示模型,在沿斜面向上的恒力F作用下,A、B两物块一起沿倾角为θ的斜面向上做匀加速直线运动,两物块间用与斜面平行的轻弹簧相连,已知两物块与斜面间的动摩擦因数相同,则下列操作能保证A、B两物块间的距离不变的是()A.只增加斜面的粗糙程度B.只增加物块B的质量C.只增大沿斜面向上的力FD.只增大斜面的倾角θ考点3 实验:探究加速度与力、质量的关系[2017浙江下半年选考,17,5分]在做“探究加速度与力、质量的关系”实验中(1)右图仪器需要用到的是.(2)下列说法正确的是.A.先释放纸带再接通电源B.拉小车的细线应尽可能与长木板平行C.纸带与小车相连端的点迹较疏D.轻推小车,拖着纸带的小车能够匀速下滑说明摩擦力已被平衡(3)如图所示是实验时打出的一条纸带,A、B、C、D、…为每隔4个点取的计数点,据此纸带可知小车在打点计时器打D点时速度大小为m/s(小数点后保留2位).拓展变式1.[开放题][2020山东济南检测]如图所示的实验装置可以验证牛顿第二定律,小车上固定一个盒子,盒子内盛有砂子.砂桶的总质量(包括桶以及桶内砂子质量)记为m,小车的总质量(包括车、盒子及盒内砂子质量)记为M.2.[同2020北京第15题相似]在探究加速度与力的关系的实验中,小明同学设计了如图甲所示(俯视图)的实验方案:将两个小车放在水平木板上,前端分别系一条细线跨过定滑轮与砝码盘相连,后端各系一细线.(1)平衡摩擦力后,在保证两小车质量相同、盘中砝码质量不同的情况下,用一黑板擦把两条细线同时按在桌子上,抬起黑板擦时两小车同时开始运动,按下黑板擦时两小车同时停下来.小车前进的位移分别为x1、x2,由x=at2,知=,测出砝码和砝码盘的总质量m1、m2,若满足,即可得出小车的质量一定时,其加速度与拉力成正比的结论.若小车的总质量符合远大于砝码和砝码盘的总质量的需求,但该实验中测量的误差仍然较大,其主要原因是.(2)小军同学换用图乙所示的方案进行实验:在小车的前方安装一个拉力传感器,在小车后面固定纸带并穿过打点计时器.由于安装了拉力传感器,下列操作要求中不需要的是.(填选项前的字母)A.测出砝码和砝码盘的总质量B.将木板垫起适当角度以平衡摩擦力C.跨过滑轮连接小车的细线与长木板平行D.砝码和砝码盘的总质量远小于小车和传感器的总质量(3)测出小车质量M并保持不变,改变砝码的质量分别测得小车加速度a与拉力传感器示数F,利用测得的数据在坐标纸中画出如图丙中的a-F图线A;若小军又以为斜率在图像上画出如图丙中的图线B,利用图像中给出的信息,可求出拉力传感器的质量为.3.如图所示,某同学利用图示装置做“探究加速度与物体所受合力的关系”的实验.在气垫导轨上安装了两个光电门1、2,滑块上固定一遮光条,滑块通过绕过两个滑轮的细绳与弹簧测力计相连,实验时改变钩码的质量,读出弹簧测力计的不同示数F,不计细绳与滑轮之间的摩擦力和滑轮的质量.(1)根据实验装置图,本实验(填“需要”或“不需要”)将带滑轮的气垫导轨右端垫高,以平衡摩擦力;实验中(填“一定要”或“不必要”)保证钩码的质量远小于滑块和遮光条的总质量;实验中(填“一定要”或“不必要”)用天平测出所挂钩码的质量;滑块(含遮光条)的加速度(填“大于”“等于”或“小于”)钩码的加速度.(2)某同学做实验时,未挂细绳和钩码接通气源,然后推一下滑块(含遮光条)使其从气垫导轨右端向左运动,发现遮光条通过光电门2所用的时间大于通过光电门1所用的时间,该同学疏忽大意,未调节气垫导轨使其恢复水平,就继续进行其他实验步骤(其他实验步骤没有失误),则该同学作出的滑块(含遮光条)的加速度a与弹簧测力计示数F的图像可能是(填图像下方的字母).(3)若该同学作出的a-F图像中图线的斜率为k,则滑块(含遮光条)的质量为.4.图(a)[2018全国Ⅱ,23,9分]某同学用图(a)所示的装置测量木块与木板之间的动摩擦因数.跨过光滑定滑轮的细线两端分别与木块和弹簧秤相连,滑轮和木块间的细线保持水平,在木块上方放置砝码.缓慢向左拉动水平放置的木板,当木块和砝码相对桌面静止且木板仍在继续滑动时,弹簧秤的示数即木块受到的滑动摩擦力的大小.某次实验所得数据在表中给出,其中f4的值可从图(b)中弹簧秤的示数读出.砝码的质量0.05 0.10 0.15 0.20 0.25m/kg滑动摩擦力2.15 2.36 2.55 f42.93f/N图(b)图(c)回答下列问题:(1)f4= N;(2)在图(c)的坐标纸上补齐未画出的数据点并绘出f-m图线;(3)f与m、木块质量M、木板与木块之间的动摩擦因数μ及重力加速度大小g之间的关系式为f= ,f-m图线(直线)的斜率的表达式为k= ;(4)取g=9.80 m/s2,由绘出的f-m图线求得μ= .(保留2位有效数字)5.[2018江苏,11,10分]某同学利用如图所示的实验装置来测量重力加速度g.细绳跨过固定在铁架台上的轻质滑轮,两端各悬挂一只质量为M的重锤.实验操作如下:①用米尺量出重锤1底端距地面的高度H;②在重锤1上加上质量为m的小钩码;③左手将重锤2压在地面上,保持系统静止.释放重锤2,同时右手开启秒表,在重锤1落地时停止计时,记录下落时间;④重复测量3次下落时间,取其平均值作为测量值t.请回答下列问题:(1)步骤④可以减小对下落时间t测量的(选填“偶然”或“系统”)误差.(2)实验要求小钩码的质量m要比重锤的质量M小很多,主要是为了.A.使H测得更准确B.使重锤1下落的时间长一些C.使系统的总质量近似等于2MD.使细绳的拉力与小钩码的重力近似相等(3)滑轮的摩擦阻力会引起实验误差.现提供一些橡皮泥用于减小该误差,可以怎么做?(4)使用橡皮泥改进实验后,重新进行实验测量,并测出所用橡皮泥的质量为m0.用实验中的测量量和已知量表示g,得g= .答案专题三牛顿运动定律考点1 牛顿运动定律的理解与应用D剪断绳子之前,A球受力分析如图1所示,B球受力分析如图2所示,C球受力分析如图3所示.剪断绳子瞬间,水杯和水都处于完全失重状态,水的浮力消失,杯子的瞬时加速度为重力加速度.又由于弹簧的形状来不及发生改变,弹簧的弹力大小不变,相对地面而言,A球的加速度a A=<g,方向竖直向下,其相对杯子的加速度方向竖直向上.相对地面而言,B球的加速度a B=>g,方向竖直向下,其相对杯子的加速度方向竖直向下.绳子剪断瞬间,C球所受的浮力和拉力均消失,其瞬时加速度为重力加速度,故相对杯子静止,综上所述,D正确.x图1 图2 图31.ACD物体保持静止或匀速直线运动状态的性质叫惯性,所以A、C正确.如果没有力,物体将保持静止或匀速直线运动状态,所以B错误.运动物体如果不受力,将保持匀速直线运动状态,所以D正确.2.C设列车做匀加速直线运动的加速度为a,可将后面的38节车厢作为一个整体进行分析,设每节车厢的质量均为m,每节车厢所受的摩擦力和空气阻力的合力大小均为f,则有F-38f=38ma,再将最后面的2节车厢作为一个整体进行分析,设倒数第3节车厢对倒数第2节车厢的牵引力为F',则有F'-2f=2ma,联立解得F'=F,C项正确,A、B、D项均错误.3.B F1和F2是作用力和反作用力,遵循牛顿第三定律,这对力同时产生、同时消失、大小相等、方向相反,B正确,A、C、D均错误.4.AC设物块的质量为m,剪断细线的瞬间,细线上的拉力消失,弹簧还没有来得及改变,所以剪断细线的瞬间a受到重力和弹簧S1的拉力F1;剪断细线前对bc和弹簧S2组成的整体分析可知F1=2mg,故a受到的合力F合=mg+F1=mg+2mg=3mg,故加速度a1==3g,A正确,B错误.设弹簧S2的拉力为F2,则F2=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确,D错误.5.D根据位移—时间图像的斜率表示速度可知,0~t1时间内,图像斜率增大,速度v增大,加速度方向向下,由牛顿运动定律可知乘客处于失重状态,所受的支持力F N<mg,选项A错误;t1~t2时间内,图像斜率不变,速度v不变,加速度为零,乘客所受的支持力F N=mg,选项B错误;t2~t3时间内,图像斜率减小,速度v减小,加速度方向向上,由牛顿运动定律可知乘客处于超重状态,所受的支持力F N>mg,选项C错误,D正确.6.AD A与B分离的瞬间,A与B的加速度相同,速度也相同,A与B间的弹力恰好为零.分离后A与B的加速度不同,速度不同.t=0时刻,即施加力F的瞬间,弹簧弹力没有突变,弹簧弹力与施加力F前的相同,但A与B间的弹力发生突变.t1时刻,A与B恰好分离,此时A与B的速度相等、加速度相等,A与B间的弹力为零.t2时刻,B的v-t图线的切线与t轴平行,切线斜率为零,即加速度为零.施加力F前,A、B整体受力平衡,则弹簧弹力大小F0=kx0=2mg,解得弹簧的形变量x0=,选项A正确.施加力F的瞬间,对B,根据牛顿第二定律有F0-mg-F AB=ma,解得A、B间的弹力大小F AB=m(g-a),选项B错误.A、B在t1时刻之后分离,此时A、B具有共同的速度与加速度,且F AB=0,对B有F1-mg=ma,解得此时弹簧弹力大小F1=m(g+a),选项C错误.t2时刻B的加速度为零,速度最大,则kx'=mg,解得此时弹簧的形变量x'=,B上升的高度h'=x0-x'=,A上升的高度h=a,此时A、B间的距离Δh=a-,选项D正确.7.AB根据题图乙可知,发生相对滑动时,A、B间的滑动摩擦力为6 N,所以A、B之间的动摩擦因数μ==0.2,选项A正确;当0<F<4 N时,根据题图乙可知,f2还未达到B与地面间的最大静摩擦力,此时A、B保持静止,选项B正确;当4 N<F<12 N时,根据题图乙可知,此时A、B间的摩擦力还未达到最大静摩擦力,所以A、B没有发生相对滑动,选项C错误;当F>12 N时,根据题图乙可知,此时A、B发生相对滑动,对A有a==2 m/s2,加速度不变,选项D错误.考点2 动力学两类基本问题(1)(2)3μg μg (3)2解析:(1)由牛顿运动定律知,A的加速度大小a A=μg由运动学公式有2a A L=解得v A=.(2)设A、B的质量均为m对齐前,B所受合外力大小F=3μmg由牛顿运动定律有F=ma B,得a B=3μg对齐后,A、B所受合外力大小F'=2μmg由牛顿运动定律有F'=2ma'B,得a'B=μg.(3)经过时间t,A、B达到共同速度v,位移分别为x A、x B,A的加速度大小等于a A则v=a A t,v=v B-a B tx A=a A t2,x B=v B t-a B t2且x B-x A=L解得v B=2.1.0.2516.25 m解析:物体受力分析如图所示,设未撤去F前,物体加速运动的加速度为a1,末速度为v,将重力mg和F沿斜面方向和垂直于斜面方向正交分解,由牛顿运动定律得F N=F sin θ+mg cos θF cos θ-f-mg sin θ=ma1又f=μF N加速过程由运动学规律可知v=a1t1撤去F后,物体减速运动的加速度大小为a2,则a2=g sin θ+μg cos θ由匀变速运动规律有v=a2t2由运动学规律知x=a1+a2联立各式解得μ=0.25,x=16.25 m.2.ACD由题图(b)可求出0~t1和t1~2t1时间内物块的加速度分别为a1=、a2=.设斜面的倾角为θ,由牛顿第二定律知,物块上滑时有-(mg sin θ+μmg cos θ)=ma1,下滑时有μmg cos θ-mg sin θ=ma2,联立可求得物块与斜面间的动摩擦因数μ及斜面的倾角θ,A、C正确;从以上两个方程可知,物块质量被约去,即不可求,B错误;物块沿斜面向上滑行的最大高度H=sin θ,可求出,D正确.3.0或h解析:由题图可知,力F随着高度x的增加而均匀减小,即F随高度x的变化关系为F=F0-kx,其中k=,则当物体到达h高度处时,向上的拉力F1=F0-h;由牛顿第二定律知,开始时加速度方向竖直向上,随x的增加加速度逐渐减小,然后反方向增大.物体从地面上升到h高度处的过程中,根据动能定理可得W F+W G=0,即h-mgh=0,求得F0=,则物体在刚开始运动时的加速度大小满足F0-mg=ma1,求得a1=;当物体运动到h高度处时,加速度大小满足mg-F1=ma2,而F1=-,求得a2=,因此加速度最大时其高度是0或h.4.(1)1 s (2) m/s解析:(1)撤去拉力F后,由牛顿第二定律有mg sin θ+μmg cos θ=ma2又0=v1-a2t2联立解得v1=5 m/s撤去拉力F前(注意杆对环的弹力的方向),有F cos θ-mg sin θ-μ(F sin θ-mg cos θ)=ma1而v1=a1t1联立解得t1=1 s.(2)环上滑至速度为零后反向做匀加速直线运动,由牛顿第二定律得mg sin θ-μmg cos θ=ma3,又s=(t1+t2),而v2=2a3s联立解得v= m/s.5.D如题图所示,设圆中任意一条弦为OM,圆的半径为R',则弦OM长s=2R'cos θ,小球下滑的加速度a=g cos θ,根据s=at2得t=2,与角θ无关,因此沿不同弦下滑的时间相等.故小球沿AB下滑所用的时间等于小球在高度为2R 的位置做自由落体运动所用的时间,即2R=g,小球沿AC下滑所用的时间等于小球在高度为4R的位置做自由落体运动所用的时间,即4R=g,联立有=,选项D正确.6.C根据题述, 物块A、B刚要滑动,可知A、B之间的摩擦力f AB=μmg cos 45°,B与木板之间的摩擦力f=μ·3mg cos 45°.隔离A进行受力分析,由平衡条件可得轻绳中拉力F= f AB+ mg sin 45°.对AB整体,由平衡条件得2F=3mg sin 45°-f,联立解得μ=,选项C正确.7.(1)1 m/s(2)1.9 m解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B所受的摩擦力大小分别为f1、f2,地面对木板的摩擦力大小为f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1.在物块B与木板达到共同速度前有f1=μ1m A g ①f2=μ1m B g ②f3=μ2(m+m A+m B)g ③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f2-f1-f3=ma1⑥设在t1时刻,B与木板达到共同速度,其大小为v1.由运动学公式有v1=v0-a B t1⑦v1=a1t1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s⑨.(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-a B设在B与木板达到共同速度v1后,木板的加速度大小为a2.对于B与木板组成的系统,由牛顿第二定律有f1+f3=(m B+m)a2由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2.设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2对A有v2=-v1+a A t2在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-a2在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-a A(t1+t2)2A和B相遇时,A与木板的速度恰好相同.因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B联立以上各式,并代入数据得s0=1.9 m.(也可用如图的速度—时间图线求解)8.(1)0.5 s (2)2.75 s解析:(1)物块在传送带上的加速时间即为滑上木板的时间差,设物块A、B在传送带上的加速度为a0,则有μ1mg=ma0解得a0=8 m/s2根据v=a0Δt可得Δt==0.5 s.(2)过程一物块A滑上木板C与木板有相对运动,则有μ2mg=ma A,解得a A=2 m/s2,方向水平向右水平方向对木板C有μ2mg=μ3·2mg,木板C保持静止过程二经过Δt=0.5 s后,物块B滑上木板C,此时物块A的速度为v A=v-a AΔt=3 m/s物块B和木板C有相对运动,则有μ2·2mg=2ma B代入数据解得a B=2 m/s2,方向向右对木板C有μ2·2mg+μ2mg-μ1(2m+2m)g=ma C代入数据解得a C=2 m/s2,方向水平向左木板C由静止开始向左匀加速运动,物块A与木板C共速时有v A-a A t1=a C t1=v AC代入数据解得t1=0.75 s,v AC=1.5 m/s此时v B=v-a B t1=2.5 m/s过程三物块B相对木板C继续向左运动,仍做a B=2 m/s2的匀减速运动,木板C和物块A保持相对静止,将木板C和物块A看作整体有μ2·2mg-μ3(2m+2m)g=2ma AC解得a AC=0故木板C和物块A向左做匀速直线运动,直到A、B、C共速,速度为v B-a B t2=v AC,解得t2=0.5 s过程四三物体保持相对静止,一起做匀减速运动,直到减速到零,木板C停止运动,则有μ3(2m+2m)g=4ma ABC代入数据解得a ABC=1 m/s2t3==1.5 s故木板C运动的总时间为t=t1+t2+t3=2.75 s.图甲9.2 s解析:开始阶段,传送带对物体的滑动摩擦力沿传送带向下,物体由静止开始加速下滑,受力分析如图甲所示由牛顿第二定律得mg sin θ+μmg cos θ=ma1解得a1=g sin θ+μg cos θ=10 m/s2物体加速至速度与传送带速度相等时需要的时间t1==1 s物体运动的位移s1=a1 =5 m<16 m即物体加速到10 m/s时仍未到达B点图乙当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带对物体的滑动摩擦力沿传送带向上,如图乙所示由牛顿第二定律得mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2设此阶段物体滑动到B所需时间为t2,则L AB-s1=v0t2+a2,解得t2=1 s故所需时间t=t1+t2=2 s.10.AD A、B两物块间的距离不变,则弹簧弹力不变,对A、B及弹簧整体应用牛顿第二定律可得F-(m A+m B)g sin θ-μ(m A+m B)·g cos θ=(m A+m B)a,所以两物块做匀加速直线运动的加速度a=-g sin θ-μg cos θ,对物块B应用牛顿第二定律可得T-m B g sin θ-μm B g cos θ=m B a,所以弹簧弹力T=m B(g sin θ+μg cos θ)+m B a=.只改变斜面粗糙。
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
高中物理牛顿运动定律的应用试题(有答案和解析)及解析

高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。
高中物理牛顿运动定律的应用解析版汇编含解析

高中物理牛顿运动定律的应用解析版汇编含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x=L−x相对滑动产生的热量为:Q=μmg△x代值解得:Q=0.5J【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移.2.如图所示,质量为2kg的物体在与水平方向成37°角的斜向上的拉力F作用下由静止开始运动.已知力F的大小为5N,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s末物体的瞬时速度大小和8s时间内物体通过的位移大小;(3)若8s末撤掉拉力F,则物体还能前进多远?【答案】(1)a=0.3m/s2 (2)x=9.6m (3)x′=1.44m【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f=maF sin37°+F N=mg又f=μF N联立得:a=cos37(sin37) F mg Fmμ--o o代入解得a=0.3m/s2(2)8s末物体的瞬时速度大小v=at=0.3×8m/s=2.4m/s8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动,根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a=''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.3.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg带负电荷的绝缘物块,其带电荷量q = -5×10-8 C .物块与水平面间的动摩擦因数μ=0.2,给物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求:(1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】(1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a =(2)物块进入电场向右运动的过程,根据动能定理得:()210102mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m(3)物块先向右作匀减速直线运动,根据:00111••22t v v vs t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m=μ-=. 根据:212212s a t =得220.2t s =物块离开电场后,向左作匀减速运动:232m/s mga g mμμ=-=-=-根据:3322a t a t = 解得30.2t s =物块运动的总时间为:123 1.74t t t t s =++= 【点睛】本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.4.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
高考物理牛顿运动定律的应用解析版汇编及解析

高考物理牛顿运动定律的应用解析版汇编及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M =2kg 的平板车静止在光滑的水平地面上,现有质量均为m =1kg 的小物块A 和B (均可视为质点),由车上P 处开始,A 以初速度=2m/s 向左运动,同时B 以=4m/s 向右运动,最终A 、B 两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B 离小车右端的距离;(2)从A 、B 开始运动计时,经t=6s 小车离原位置的距离。
【答案】(1)B 离右端距离(2)小车在6s 内向右走的总距离:【解析】(1)设最后达到共同速度v ,整个系统动量守恒,能量守恒解得:,A 离左端距离,运动到左端历时,在A 运动至左端前,木板静止,,解得B 离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a 向右加速:小车向右走位移接下来三个物体组成的系统以v 共同匀速运动了小车在6s 内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.质量M =0.6kg 的平板小车静止在光滑水面上,如图所示,当t =0时,两个质量都为m =0.2kg 的小物体A 和B ,分别从小车的左端和右端以水平速度1 5.0v =m/s 和2 2.0v =m/s 同时冲上小车,当它们相对于小车停止滑动时,恰好没有相碰。
已知A 、B 两物体与车面的动摩擦因数都是0.20,取g =10m/s 2,求:(1)A 、B 两物体在车上都停止滑动时车的速度; (2)车的长度是多少?(3)从A 、B 开始运动计时,经8s 小车离原位置的距离. 【答案】(1)0.6m/s (2)6.8m (3)3.84m 【解析】 【详解】解:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律有:()()122m v v M m v -=+代入数据解得:v =0.6m/s ,方向向右.(2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系有:()()22212121112222mg L L mv mv M m v μ+=+-+ 又L ≥L 1+L 2代入数据解得L ≥6.8m ,即L 至少为6.8m(3)当B 向左减速到零时,A 向右减速,且两者加速度大小都为12a g μ==m/s 2 对小车受力分析可知,小车受到两个大小相等、方向相反的滑动摩擦力作用,故小车没有动则B 向左减速到零的时间为2111v t a ==s 此时A 的速度为1113A v v a t =-=m/s当B 减速到零时与小车相对静止,此时A 继续向右减速,则B 与小车向右加速,设经过t s 达到共同速度v对B 和小车,由牛顿第二定律有:()2mg m M a μ=+,解得:20.5a =m/s 2 则有:12A v v a t a t =-=,代入数据解得:t =1.2s 此时小车的速度为20.6v a t ==m/s ,位移为21210.362x a t ==m 当三个物体都达到共同速度后,一起向右做匀速直线运动,则剩下的时间发生的位移为()28 3.48x v t =-=m则小车在8s 内走过的总位移为12 3.84x x x =+=m3.如图所示,一质量M=4.0kg 、长度L=2.0m 的长方形木板B 静止在光滑的水平地面上,在其右端放一质量m=1.0kg 的小滑块A (可视为质点)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理牛顿运动定律的应用解析版汇编含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。
【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【解析】【详解】(1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得:可解得:μ=0.875.(2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为(3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为:0~6 s内物体位移为:则0~6 s内物体相对于皮带的位移为0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小,代入数据得:Q=126 J故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【点睛】对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。
2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】 【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -= 对B :B B B B m g f m a -=A B f f = 0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t =212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E =(3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+-- 代入以上数据得:250J E ∆=【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到. (2)根据运动性质和动能定理可得到. (3)由能量守恒定律可求出.3.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
【答案】(1)5m/s 2 2m/s 2(2)14m (3)12m 【解析】 【分析】(1)由题意知,冲上木板后木块做匀减速直线运动,木板由静止做匀加速度直线运动,根据牛顿第二定律求解加速度;(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等;根据位移关系求解木板的长度;(3)木块木板达到共同速度后将一起作匀减速直线运动,结合运动公式求解木板在地面上运动的最大位移. 【详解】(1)由题意知,冲上木板后木块做匀减速直线运动,初速度 v 0=14m/s ,加速度大小 212a μg 5m /s ==木板由静止做匀加速度直线运动 即 ()212μmg μM m g Ma -+=解得 22a 2m /s =(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等。
设此过程所用时间为t即 012v v a t v a t =-==木板木块 解得 t=2s木块位移 2011x v t a t 18m 2木块=-= 木板位移 221x a t 4m 2木板== 木板长度 L x x 14m =-=木板木块(3)木块木板达到共同速度后将一起作匀减速直线运动,分析得2231v a t 4m /s a μg 1m /s ====共,木板位移 23vx8m 2a ==,共木板总位移 ,x x x 12m =+=木板木板4.传送带以恒定速率v =4m/s 顺时针运行,传送带与水平面的夹角θ=37°.现将质量m =1 kg 的小物块轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F =10 N 拉小物块,经过一段时间物块被拉到离地高为H =1.8m 的平台上,如图所示.已知物块与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g 取10m/s 2,已知sin37°=0.6,cos37°=0.8.求:(1)物块在传送带上运动的时间;(2)若在物块与传送带速度相等的瞬间撤去恒力F ,则物块还需多少时间才能脱离传送带? 【答案】(1)1s (2)【解析】 【详解】(1)物体在达到与传送带速度v =4 m/s 相等前,做匀加速直线运动,有: F +μmgcos37°-mgsin37°=ma 1 解得a 1=8 m/s 2由v =a 1t 1 得t 1=0.5s 位移x 1=a 1t 12=1m物体与传送带达到共同速度后,因F -mgsinθ=4 N =μmgcos37° 故物体在静摩擦力作用下随传送带一起匀速上升. 位移x 2=-x 1=2mt 2==0.5s总时间为t =t 1+t 2=1s(2)在物体与传送带达到同速瞬间撤去恒力F ,因为μ<tan37°,故有: mgsin37°-μmgcos37°=ma 2 解得:a 2=2m/s 2假设物体能向上匀减速运动到速度为零,则通过的位移为x ==4 m>x2故物体向上匀减速运动达到速度为零前已经滑上平台.故x2=vt3-a2t32解得t3=(2-)s或t3=(2+)s(舍去)【点睛】本题关键是受力分析后判断物体的运动状态,再根据牛顿第二定律求解出加速度,然后根据运动学公式列式求解时间.5.研究物体的运动时,常常用到光电计时器.如图所示,当有不透光的物体通过光电门时,光电计时器就可以显示出物体的挡光时间.光滑水平导轨MN上放置两个物块A和B,左端挡板处有一弹射装置P,右端N处与水平传送带平滑连接,将两个宽度为d=3.6×10-3m 的遮光条分别安装在物块A和B上,且高出物块,并使遮光条在通过光电门时挡光.传送带水平部分的长度L=9.0m,沿逆时针方向以恒定速度v=6.0m/s匀速转动。
物块B与传送带的动摩擦因数μ=0.20,物块A的质量(包括遮光条)为m A =2.0kg。
开始时在A和B之间压缩一轻弹簧,锁定其处于静止状态,现解除锁定,弹开物块A和B,迅速移去轻弹簧.两物块第一次通过光电门,物块A通过计时器显示的读数t1=9.0×10-4s,物块B通过计时器显示的读数t2=1.8×10-3s,重力加速度g取10m/s2,试求:(1)弹簧储存的弹性势能E p;(2)物块B在传送带上滑行的过程中产生的内能;(3)若物体B返回水平面MN后与被弹射装置P弹回的A在水平面上相碰,碰撞中没有机械能损失,则弹射装置P必须对A做多少功才能让B碰后从Q端滑出。
【答案】(1)E p=24J;(2)Q=96J;(3)84JW>。
【解析】【分析】【详解】(1)解除锁定,弹开物块AB后,两物体的速度大小v A=3413.610m/s 4.09.010dt--⨯==⨯m/sv B=3323.610m/s 2.01.810dt--⨯==⨯m/s由动量守恒有m A v A =m B v B得m B =4.0kg弹簧储存的弹性势能22112422p A A B B E m v m v =+=J (2)B 滑上传送带先向右做匀减速运动,当速度减为零时,向右滑动的距离最远由牛顿第二定律得B B m g m a μ=所以B 的加速度a =2.0m/s 2B 向右运动的距离212Bv x a==1.0m <9.0m物块将返回向右运动的时间为1 1.0Bv t a==s 传送带向左运动的距离为21x vt ==6.0mB 相对于传送带的位移为112x x x ∆=+物块B 沿传送带向左返回时,所用时间仍然为t 1,位移为x 1 B 相对于传送带的位移为221x x x ∆=-物块B 在传送带上滑行的过程中产生的内能22()B Q m g x x μ=⋅∆+∆=96J(3)设弹射装置给A 做功为W ,根据功能关系有221122A A A A m v m v W '=+ AB 碰相碰,碰前B 的速度向左为2B v =m/s ,碰后的速度设为'Bv 规定向右为正方向,根据动量守恒定律和机械能守恒定律得A AB B A A B B m v m v m v m v '=+'-''碰撞过程中,没有机械能损失222211112222A AB B A A B B m v m v m v m v ''+''+=B 要滑出平台Q 端,由能量关系有212B BB m v m gL μ>'所以由得W>84J6.如图所示,质量为m=1kg的滑块,在水平力F作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s,长为L=1.4m,今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫7.如图所示,始终绷紧的水平传送带以的恒定速率沿顺时针方向转动,质量的平板车停在传送带的右端.现把质量可视为质点的行李箱轻轻放到距传送带右端位置.行李箱与传送带、平板车间的动摩擦因数分别为、,平板车与水平地面间的动摩擦因数为.(不计空气阻力,g=10m/s2)试求:(1)行李箱在传送带上运动的时间(2)若行李箱由传送带滑到平板车上时速度不变,要想行李箱恰不从平板车上滑出,平板车的最小长度.【答案】(1)2.25s (2)见解析【解析】(1)行李箱在传送带加速时的加速度满足,则行李箱在传送带能加速的时间,能加速的距离,所以行李箱在传送带上先加速后匀速。