酶工程在现实方面的应用

合集下载

酶工程在农产品加工上的应用

酶工程在农产品加工上的应用

酶工程在农产品加工上的应用
酶工程在农产品加工上具有广泛的应用。

以下是其中一些常见的应用领域:
1. 食品加工:酶工程在食品加工领域广泛应用,例如在面包制作中使用面团酶来改善面团的膨胀性能和延长面包的保鲜期;利用纤维素酶来提高果汁的浸出率和果汁的澄清度;应用酶解蛋白酶来改善肉制品嫩化和口感等。

2. 酿酒业:酶工程在酿酒业中被广泛应用,如利用酶解淀粉酶将淀粉转化为可发酵的糖;应用葡萄糖氧化酶和葡萄糖酶来调节酒的甜度和酒精含量;使用β-葡萄糖苷酶来提高红葡萄酒中花青素的释放等。

3. 果蔬加工:酶工程在果蔬加工中具有重要应用价值,例如利用果胶酶来改善果蔬汁的澄清度和稳定性;应用纤维素酶来降低果蔬浆果浆的黏稠度;使用脂肪酶来提取油脂和蛋白质等。

4. 饲料工业:酶工程在饲料工业中被广泛应用,例如用淀粉酶来降解饲料中的淀粉,提高饲料的能量利用率;应用纤维素酶来降低饲料中纤维素的含量,增加饲料的消化率;使用蛋白酶来改善蛋白质的可利用性和饲料的营养价值等。

总之,酶工程在农产品加工上的应用能够提高产品的品质、增加生产效率、节约能源和原料、降低生产成本等,具有重要的经济和社会价值。

酶工程技术在工业中的应用与前景

酶工程技术在工业中的应用与前景

酶工程技术在工业中的应用与前景酶工程技术是将生物酶应用于工业生产中的一种技术。

这种技术已经在许多工业领域中被广泛应用,如食品工业、制药工业、医药工业、石油化工、纺织业等。

随着生物技术的发展,酶工程技术也在不断地完善,并在各行业中发挥越来越重要的作用。

酶是一种催化剂,它能够在相对较温和的条件下促进化学反应的进行。

相较于其他化学催化剂来说,酶具有选择性强、催化效率高、反应条件温和等优点。

因此,酶工程技术能够制造更环保、更高效的产品,提高工业生产效率,促进工业的可持续发展。

在食品工业中,酶工程技术得到了广泛的应用。

例如,面包的生产中需要大量使用酵母菌发酵面团,以此来实现面包的松软口感和香味。

而在牛奶和奶制品的制造中,酶也被广泛应用于提高产品的质量和口感。

此外,酶还被应用于饮料、酒类、果汁等食品的生产过程中,以使产品更加口感丰富、营养更加丰富。

在制药工业中,酶工程技术也有着极其重要的作用。

目前,糖尿病、癌症、心血管疾病等疾病的治疗中,都需要使用酶工程技术制造特定的药物。

特别是一些高效、低成本的生物制药品,如蛋白质类药物,能够通过酶工程技术得到更好地制造。

除此之外,酶工程技术还在环保领域中有着重要的应用。

石油化工行业中,酶被应用于油污的降解和治理,可以降低有害化学品的排放。

在纺织工业中,酶工程技术被用于制造高品质的天然染料,使得衣物柔软、色彩鲜艳。

此外,酶工程技术还可以应用于污水处理和海水淡化等环保领域中来。

未来,随着生物技术的不断发展,酶工程技术在工业生产中的作用将会继续扩大。

尤其是在可持续发展的背景下,酶工程技术作为一种绿色、高效、低成本的技术,将更加得到重视。

从生物催化剂的研究、工程化设计、反应器的研究与开发、在酶反应下副反应的控制、生产过程的绿色设计等角度推进酶工程技术的应用,将有助于提升酶工程技术的发展水平。

总的来说,酶工程技术在工业生产中的应用已经取得了丰硕的成果,并被广泛应用于各行业中。

随着科技的不断发展,酶工程技术在未来将会有更加广泛和重要的应用前景。

酶工程生活中的应用

酶工程生活中的应用

酶工程生活中的应用早上起来,阳光透过窗帘的缝隙洒在脸上,我迷迷糊糊地睁开眼,就听到老妈在厨房大喊:“赶紧起床,今天吃面包,再磨蹭可就没有新鲜的啦!”我伸了个懒腰,心里嘀咕着:这面包有啥特别的呀?还非得赶新鲜的。

走进厨房,就看到老妈正从烤箱里拿出一盘散发着诱人香气的面包。

那面包金黄金黄的,外皮酥脆,里面却松软得像云朵一样。

我迫不及待地伸手去拿,老妈笑着打了我的手一下,说:“小馋猫,先去洗手。

”我一边走向洗手池,一边问老妈:“这面包咋这么香呢?”老妈得意地说:“这可多亏了酶啊。

”我瞪大了眼睛,满脸疑惑:“酶?啥是酶啊?这玩意儿还能让面包变香?”老妈一边把面包放在盘子里,一边耐心地给我解释:“你看啊,这做面包的时候,面粉里得加酵母,酵母里就有酶呢。

这酶啊,就像是一个个小小的魔法师。

它们会把面粉里的淀粉分解成糖,然后糖又被分解,这个过程就会产生二氧化碳气体。

你想想,这些小气泡在面团里到处乱窜,就像在开派对一样,面团就慢慢膨胀起来了。

这样烤出来的面包啊,才会又松又软,还带着一股香味。

要是没有这些酶,那面包就会像石头一样硬邦邦的,你可就咬不动喽。

”我听着老妈的话,脑海里仿佛出现了一群小小的酶精灵在面团里欢快地忙碌着的画面,忍不住笑了起来。

吃完面包,我出门去超市帮老爸买啤酒。

到了超市的酒水区,我看着琳琅满目的啤酒,心里想:这啤酒的酿造是不是也和酶有关系呢?我好奇地拿出手机查了一下,还真是!啤酒酿造过程中,麦芽里的淀粉酶会把淀粉转化成糖,而酵母中的酶又会把糖转化成酒精和二氧化碳。

这就好比一场接力赛,淀粉酶先跑一棒,把淀粉变成糖这个“接力棒”传给酵母里的酶,然后它们再完成最后一棒,制造出酒精和二氧化碳。

如果没有这些酶在背后默默地努力,我们哪能喝到这么爽口的啤酒呢?回到家后,我看到老爸正在用加酶洗衣粉洗衣服。

我凑过去说:“爸,你也在用酶干活儿呢?”老爸愣了一下,然后笑着说:“是啊,这加酶洗衣粉可好用了。

你看我这衣服上的油渍和污渍,普通洗衣粉洗起来可费劲了,但是加酶洗衣粉里有专门分解油渍和污渍的酶,就像一群小小的清洁战士,能够把那些脏东西统统消灭掉。

简述酶工程的主要应用

简述酶工程的主要应用

简述酶工程的主要应用
酶工程是利用生物技术和分子生物学的手段对酶进行基因工程和蛋白工程的研究,目的是改良酶的性质和功能,以满足特定的工业生产需求。

酶工程的主要应用如下:
1. 生物催化剂:酶工程可以通过改变酶的结构和活性,将其应用于各种化学反应中,提高反应的速度和选择性,减少副产物的生成,从而降低生产成本。

2. 食品工业:酶工程可以应用于食品加工中,比如利用蛋白酶降解蛋白质以改善食品质量,或者利用淀粉酶和糖化酶来提高糖化效率和改善食品口感。

3. 制药工业:酶工程可以用于制药行业的药物合成、分解和修饰等方面。

通过改变酶的特性,可以提高药物的生物利用度和活性,改变药物代谢途径和降低不良反应的发生。

4. 生物燃料工业:酶工程可以用于生物质能源的转化和生物燃料的合成,通过改变酶的特性和效率,提高生物质能源的利用效率和生物燃料的产量。

5. 环境工程:酶工程可以用于环境治理和资源回收方面。

比如利用酶降解有机废弃物、去除水污染物,或者利用酶提取珍贵金属和重要化合物等。

综上所述,酶工程的主要应用领域包括生物催化剂、食品工业、制药工业、生物燃料工业和环境工程等。

通过改变酶的性质和
功能,可以提高生产效率、降低成本、改善产品质量,同时也能为环境保护和可持续发展做出贡献。

酶的应用及酶工程的研究进程

酶的应用及酶工程的研究进程

酶的应用及酶工程的研究进程第一部分:酶的应用酶是生物催化剂,可以加速化学反应的速率,并在温和条件下进行。

由于其高效、选择性和环境友好性等特点,酶在许多领域都有广泛的应用。

以下是一些常见的酶应用:一、食品工业:酶在食品加工中起到重要作用。

例如,淀粉酶可将淀粉分解为糖类,增加产品甜度;蛋白酶可用于肉类嫩化或乳制品凝固等。

是的,酶在食品工业中发挥着重要作用。

以下是一些常见的酶在食品加工中的应用:1.淀粉酶:淀粉酶可以将复杂的淀粉分子降解为较简单的糖类,如葡萄糖和麦芽糖。

这种转化过程被广泛应用于面包、啤酒、乳制品和果汁等产品中,以增加甜度、改善口感或促进发酵。

2.蛋白酶:蛋白质水解酶可以将肉类中较大分子量的蛋白质分解成更小的片段。

这种嫩化处理可使肉质变得更加柔软,并提高其口感和咀嚼性。

3.凝固剂:某些特定类型的微生物产生了能够凝结牛奶或豆浆等液体的特殊凝固剂(例如拉丁语"rennet")。

这些凝固剂主要含有胰凝乳素(chymosin),它可以水解牛奶中存在的一种叫做κ- 链球菌素(k-casein) 的蛋白质,在此过程中形成凝固物。

4.果汁澄清酶:果汁中的浑浊物质可以通过果汁澄清酶来降解和去除。

这种酶能够分解果胶、纤维素等多糖类,从而使果汁更加透明和清澈。

这些是食品工业中常见的一些酶应用,它们帮助改善产品的口感、稳定性和质量,并提高生产效率。

二、制药工业:许多药物合成过程需要使用特定的酶来催化关键步骤。

此外,生产抗体、激素和维生素等也需要借助酶。

在制药工业中,酶的应用非常广泛。

以下是一些常见的酶在制药工业中的应用:1.合成酶:许多药物的生产需要使用特定的酶来催化关键步骤。

例如,通过利用氨基转移酶和脱水氢化酶等,可以合成抗生素、激素和维生素等重要药物。

2.抗体生产:单克隆抗体是治疗和诊断许多疾病所需的重要工具。

在抗体生产过程中,将目标蛋白注射到动物或人体内后,通过特定细胞分泌出相应抗体。

酶工程技术在生产中的应用

酶工程技术在生产中的应用

酶工程技术在生产中的应用酶工程技术是一种先进的生物技术,其应用在生产中已呈现出广泛的应用和重要的作用。

酶工程技术有很多种应用,比如在生物化学制品、制药和食品等行业中,均有着非常重要的作用。

一、酶工程技术在食品生产中的应用众所周知,食品是每个人日常所必需的物品,而酶工程技术在食品生产中,尤其是在发酵食品和罐头食品的生产中,有着非常重要的应用。

比如像大家所熟知的酱油、豆腐、醋等发酵食品,在其制造中均使用了酶催化反应的方法,这种方法可以使得产品质量更加稳定、纯度更高、口感更加鲜美。

此外,酶催化反应也在罐头食品的生产中得到了广泛应用。

在罐头食品生产中,酶催化反应不仅可以加速食品的制造,同时还可以提高其品质和卫生性,从而更好地满足了人们对食品的需求。

二、酶工程技术在制药中的应用制药是一门很重要的医药学科,而酶工程技术在其中的应用更是引起了人们的广泛关注。

在制药领域中,酶工程技术可以用于药物的生产、分离和纯化,并且其可以使得药物的制造过程更加简单、高效和准确。

具体来讲,酶工程技术可以用于药物生产中的各个环节,比如筛选萃取酶、合成酶等,甚至还可以用于药物生产中的后期分离和纯化过程。

不仅如此,在药物的质量控制和质量检测过程中酶工程技术也有着至关重要的作用。

三、酶工程技术在生物化学制品中的应用生物化学制品是一种比较新兴的产业,但是其作用和功能却十分的广泛和重要,而酶工程技术在其中的应用也显得特别重要。

在生物化学制品的生产环节中,酶工程技术可以加速产品的生产速度、提高产品的质量和稳定性。

酶工程技术在生物化学制品的生产中,主要通过以下几个环节来进行:首先是筛选合适的酶催化反应酶,其次是将酶催化反应搬运到大规模生产环节中,进而再将生产出来的产品进行分离、固定、纯化等过程。

总之,酶工程技术在生产中的应用范围非常的广泛,其可以用于许多不同的领域和行业,有着极为重要的作用。

由于酶工程技术的特殊性质和功能,它在生产中不断得到了人们的关注和追捧,相信在未来其还将会有更加广泛和深刻的应用。

酶工程技术在食品工业中的应用

酶工程技术在食品工业中的应用

3、拓展应用领域:酶工程技术的运用领域将不断扩大,除了传统的食品加工 和制造领域外,还将在保健品、医药、环保等领域得到更广泛的应用。
4、食品安全与质量控制:利用酶工程技术建立更加快速、准确、灵敏的食品 安全检测方法和技术,提高食品质量安全水平。
5、适应环保要求:在酶工程技术的运用过程中,应注重环保和可持续发展, 减少对环境的污染和资源浪费。
谢谢观看
关键词:酶工程技术、食品工业、食品加工、食品改性、质量检测、蛋白质工 程技术、基因工程技术。
酶工程技术在食品工业中的应用
1、食品加工
酶工程技术在食品加工方面具有广泛的应用。例如,在奶制品行业,酶工程技 术可以用来水解乳糖,降低乳糖含量,使产品更加适合糖尿病患者食用。此外, 在肉类加工中,酶工程技术可以嫩化肉质,提高产品的口感和品质。
应用前景展望
随着科技的不断进步和人们健康意识的提高,酶工程技术在食品工业中的应用 前景十分广阔。未来,酶工程技术将在以下几个方面得到进一步发展:
1、开发新的酶制剂:随着生物技术的不断发展,将会有更多具有特殊功能的 酶被发现和开发出来,为食品工业提供新的加工助剂和添加剂。
2、提高生产效率:通过基因工程等手段对酶进行改造和优化,提高其催化效 率和稳定性,降低生产成本,从而提高酶工程技术的生产效率和经济效益。
2、食品改性
酶工程技术还可以用于食品改性。例如,通过使用特定的酶,可以破坏食物中 的某些成分,从而改变食物的口感、营养价值等。此外,酶还可以将果蔬加工 成具有特殊风味的食品,如柑橘类水果罐头中添加柚皮苷酶,可降解果胶,提 高产品的口感和透明度。
3、食品质量检测
酶工程技术也可以应用于食品质量检测。例如,在食品安全检测方面,酶联免 疫分析技术(ELISA)利用酶与抗体或抗原的反应,可快速检测食品中残留的 农药、兽药、毒素等有害物质。

蛋白质工程和酶工程在现代工艺中的应用

蛋白质工程和酶工程在现代工艺中的应用

蛋白质工程和酶工程在现代工艺中的应用06120801 20081903 付婷钰摘要:蛋白质工程[1],是指在基因工程的基础上,结合蛋白质结晶学,计算机辅助设计和蛋白质化学等多学科的基础知识通过对基因的人工定向改造等手段,对蛋白质进行修饰,改造和拼接以生产出能满足人类需要的新型蛋白质;酶作为一种生物催化剂,已广泛地应用于轻工业的各个生产领域。

近几十年来,随着酶工程不断的技术性突破,在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。

关键词:蛋白质工程酶工程应用正文:一、蛋白质工程的应用1、在医药方面[2]许多蛋白质工程的目标是设法提高蛋白质的稳定性。

在酶反应器中可延长酶的半衰期或增强其热稳定性,也可以延长治疗用蛋白质的贮存寿命或重要氨基酸抗氧化失活的能力。

在这个领域已取得了一些重要研究成果。

用蛋白质工程来改造特殊蛋白质为制造特效抗癌药物开辟了新途径。

如人的β- 干扰素和白细胞- 2 是两种抗癌作用的蛋白质。

但在它们的分子结构中,有一个不成对的基因,是游离的,因而很不稳定,会使蛋白质失去活性。

当通过蛋白质工程修饰这种不稳定的结构就可以提高这两种抗癌物质的生物活性。

美国的Cetus 公司成功地修饰了这两种治疗癌瘤的蛋白质,大大提高了它们的稳定性,已用于临床试验并取得了良好的效果。

具有抗癌作用的蛋白质工程产品免疫球蛋白质是一种高效治癌药物,它能成为征服癌症的“生物导弹”,即具有对准目标杀死特定癌细胞而不伤害正常细胞的特效。

近年来,澳大利亚医学科学研究所的一个微生物研究课题组经过多年的研究后发现了激发基因开始或停止产生癌细胞的蛋白质。

这种蛋白质在癌细胞生长过程中对癌基因起着开通或关闭的作用。

这个发现,对于通过蛋白质工程研制鉴别与控制多种类型的血液癌、固体癌的蛋白质有很好的作用,并为诊断和治疗癌症提供了新的方法。

目前,应用蛋白质工程研究开发抗癌及抗艾滋病等重大疑难病症等方面,均取得了重大进展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

酶工程在现实生活的应用学院:生命科学与食品工程学院姓名:沈峰学号:5602209078 班级:生工092摘要:酶是催化特定化学反应的蛋白质、RNA或其复合体。

是生物催化剂,能通过降低反应的活化能加快反应速度,但不改变反应的平衡点。

绝大多数酶的化学本质是蛋白质。

具有催化效率高、专一性强、作用条件温和等特点。

酶工程技术与我们生活息息相关,比如酿酒,制药工业等等。

Abstract:The enzyme is a specific protein, RNA or its complex which isused to catalytic specific chemical reaction.it's biological catalyst .It can accelerate reaction velocity by reduce the activation energy of reaction ,without changing the point of balance. The vast majority of enzyme's chemical nature is protein.so it have lots of Characteristics as high catalytic efficiency, high specificity, mild conditions and so on.The enzyme engineering is closely linked with our life ,for example,making winepharmaceutical industry and so on.关键字:酶工程酶啤酒制药酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。

它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。

酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。

如果要了解酶工程在现实生活方面的应用的话,首先先要知道什么是酶,什么是酶工程,和哪些酶可以在起作用及酶的特性有哪些。

首先酶是催化特定化学反应的蛋白质、RNA或其复合体。

目前已发现有2000 多种。

分子量在数万至数十万之间。

生物体内的含量一般极少,它能参与生物体的各种生理生化活动,起催化剂的作用。

酶的种类众多,而在酿酒等工业方面方面应用的酶也不少。

比如,曲霉,根霉,红曲霉,拟内孢霉,木霉,青霉,等等。

所以没对于现实生活有着广而深的影响,对于酶的特性的了解也就十分必要。

酶工程:酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。

酶的特性主要四点:1、酶具有高效率的催化能力;其效率是一般无机催化剂的10的7次幂~~10的13次幂。

2、酶具有专一性;(每一种酶只能催化一种或一类化学反应。

)3、酶在生物体内参与每一次反应后,它本身的性质和数量都不会发生改变(与催化剂相似);4、酶的作用条件较温和。

一酶工程在酿酒制造业的作用总所周知,现实生活中的许多家庭每天都或多或少会在酒的方面消费,还有社交应酬,聚会派对酒是必不可少的,所以一个国家的酒制造业对国家的经济也起着不容忽视的作用。

而酿酒离不开酶工程的作用,所以了解酿酒的酶工程技术也是必不可少的。

1.酿酒工艺的基本原理微生物是利用酿酒原料中的糖分转变成酒的。

所以原则上凡是含糖的原料都可以用来酿酒。

糖分多糖和单糖。

正是酒曲中的酵母菌利用单糖转化成酒,这叫发酵。

但大米、高粱、玉米中含的是多糖叫淀粉,酵母菌不能直接利用。

所以酒曲中还含有叫霉菌的一类微生物,能把多糖切割成单糖供酵母菌利用,这就叫糖化。

然而一般多糖都结合很紧密,所以需要通过高温蒸煮使多糖变松散才有利于霉菌的作用,这就叫糊化。

通过以上几个步骤就产生酒了,但酒和糟是混在一起的。

所以有的就把酒糟通过高温加热使酒变成酒蒸汽再冷凝成酒液,从而使酒从糟中分离出来,这叫蒸馏;而有的是通过压榨使酒液与糟分离这叫压榨。

无论是蒸馏还是压榨,刚出的酒很冲,口感不好。

通过存放一段时间酒就会变得柔顺谐调了,这叫陈酿老熟。

陈酿后的酒虽然口感变好了。

但每次酿的酒口感质量都有所差别,要使常年的出厂产品口感质量都保持一致,就需要通过勾兑调配了。

即酿酒全过程就是:酿酒原料前处理(粉碎或整粒浸泡);高温蒸煮(专业术语叫糊化);加曲糖化发酵;蒸馏或压榨;陈酿老熟;勾兑调配;包装出厂。

这就是酿酒企业的生产工艺流程了。

2 啤酒的制造由于啤酒在现实生活中比较广泛,所以着重讲啤酒。

(1)啤酒制造原料大麦小麦等糖类材料,酒花,水,酵母等。

(2)啤酒制造过程有以下5道工序。

主要是糖化﹑发酵﹑贮酒後熟3个过程。

原料粉碎﹕将麦芽﹑大米分别由粉碎机粉碎至适于糖化操作的粉碎度。

糖化﹕将粉碎的麦芽和淀粉质辅料用温水分别在糊化锅﹑糖化锅中混合﹐调节温度。

糖化锅先维持在适于蛋白质分解作用的温度(45~52℃)(蛋白休止)。

将糊化锅中液化完全的醪液兑入糖化锅後﹐维持在适于糖化(β-淀粉和α-淀粉)作用的温度(62~70℃)(糖化休止)﹐以制造麦醪。

麦醪温度的上升方法有浸出法和煮出法两种。

蛋白﹑糖化休止时间及温度上升方法﹐根据啤酒的性质﹑使用的原料﹑设备等决定用过滤槽或过滤机滤出麦汁後﹐在煮沸锅中煮沸﹐添加酒花﹐调整成适当的麦汁浓度後﹐进入回旋沉淀槽中分离出热凝固物﹐澄清的麦汁进入冷却器中冷却到5~8℃。

发酵﹕冷却後的麦汁添加酵母送入发酵池或圆柱锥底发酵罐中进行发酵﹐用蛇管或夹套冷却并控制温度。

进行下面发酵时﹐最高温度控制在8~13℃﹐发酵过程分为起泡期﹑高泡期﹑低泡期﹐一般发酵5~10日。

发酵成的啤酒称为嫩啤酒﹐苦味犟﹐口味粗糙﹐CO2含量低﹐不宜饮用。

後酵﹕为了使嫩啤酒後熟﹐将其送入贮酒罐中或继续在圆柱锥底发酵罐中冷却至0℃左右﹐调节罐内压力﹐使CO2溶入啤酒中。

贮酒期需1~2月﹐在此期间残存的酵母﹑冷凝固物等逐渐沉淀﹐啤酒逐渐澄清﹐CO2在酒内饱和﹐口味醇和﹐适于饮用。

过滤﹕为了使啤酒澄清透明成为商品﹐啤酒在-1℃下进行澄清过滤。

对过滤的要求为﹕过滤能力大﹑质量好﹐酒和CO2的损失少﹐不影响酒的风味。

过滤方式有硅藻土过滤﹑纸板过滤﹑微孔薄膜过滤等。

二酶工程在制药方面的应用酶在制药工业中的作用主要是催化前体物质转化为药物,另外固定化酶膜或者酶管也广泛应用于制药过程的参数检测与测量,特别是生物制药过程。

下面以一个典型的应用为例进行叙述。

青霉素酰化酶在新型抗生素生产中的应用青霉素酰化酶能以青霉素或头孢霉素为原料,可以分别在青霉素的6位或者头孢霉素的7位催化酰氨键的形成与断裂。

典型的应用顺序为首先催化青霉素或头孢霉素酰氨键的断裂,获得半合成抗生素的直接底物6-氨基青霉烷酸(6-APA)或7-氨基头孢霉烷酸(7-ACA);然后在其他酰基供体存在的条件下催化形成新的酰氨键,从而获得具有全新侧链的新型抗生素。

天然发酵生成的青霉素有两种,一为青霉素G,另一为青霉素V。

通过青霉素酰化酶催化下进行酰基置换反应,用新的酰基供体置换苯乙酰基,则可以获得许新型的半合成青霉素。

比如用¢氨基苯乙酰置换原来的苯乙酰基,可以获得氨苄西林。

羟氨苄西林、羧苄西林和磺氨苄西林等也都是采用酶催化半合成的方法通过青霉素的酰基置换反应获得的。

天然发酵生成的头孢霉素是头孢霉素C,头孢霉素C在青霉素酰化酶催化下,首先水解生成7-ACA,再与侧链羧酸衍生物反应形成各种新型头孢霉素。

例如:头孢利定、头孢噻吩、头孢氨苄等。

虽然青霉素酰化酶既可以催化酰氨键的形成,也可以催化其水解,具有催化正逆两个反应的能力。

但催化水解反应和催化合成反应时所要求的条件存在较大差异,特别是最优催化pH相差较大。

常用的催化水解反应的pH为7.0~8.0,而催化合成反应的pH应降低到5.0~7.0。

因此应采用两个连续但独立的反应器顺序进行水解和合成反应。

药物对人类的生活不可或缺人类自诞生以来就与周围的各种病菌做斗争,在人类历史上,天花和黑死病、霍乱,鼠疫等瘟疫都留下了惊人的死亡数字一百八十年前,英国发明了预防天花病的牛痘疫苗。

天花病患者的死亡率仍高达三分之一。

后来,发达国家逐步控制了这种疾病,但非洲农村仍有流行。

自一九六七年开始进行最后一次大规模消灭天花的活动。

鼠疫远在2000年前即有记载。

在世界历史上,鼠疫曾发生三次大流行,死亡人数数以千万计。

第一次发生在公元6世纪,从地中海地区传入欧洲,死亡近1亿人;第二次发生在14世纪,波及欧、亚、非;第三次是18世纪,传播32个国家。

14世纪大流行时波及中国。

仅仅天花鼠疫两种病毒就在人类历史上抹上了不可磨灭的伤痕,如此多人死亡可见其对人类的伤害。

况且,周围环境中,病毒细菌数不胜数,种类也是极其之多。

如2003年的非典,夺走了多少人的生命。

所以人类需要能够抑制或杀死病菌的东西-----药物。

各种各样的疫苗令人类克服了天花,让人类能够更好的生活在这个世界上。

三酶工程在食品方面的作用酶用于乳品加工(1)干酪生产全世界生产干酪所耗牛奶达1亿多吨,占牛奶总产量的1/4。

干酪生产的第一步是将牛奶用乳酸菌发酵制成酸奶,然后加凝乳酶水解K-酪蛋白,在酸性条件下,钙离子使酪蛋白凝固,再经切块加热压榨熟化而成。

(2)分解乳糖牛奶中含有4.5%的乳糖。

乳糖是一种缺乏甜味且溶解度很低的双糖,难于消化。

有些人饮奶后常发生腹泻、腹痛等病,其原因即在于此。

而且由于乳糖难溶于水,常在炼乳、冰淇琳中呈砂状结晶析出,从而影响食品风味。

将牛奶用乳糖酶处理,使奶中乳糖水解为半乳糖和葡萄糖即可解决上述问题。

3)黄油增香乳制品特有香味主要是加工时所产生的挥发性物质(如脂肪酸、醇、醛、酮、酯以及胺类等)所致。

乳品加工时添加适量的脂肪酶可增加干酪和黄油的香味。

将增香黄油用于奶糖、糕点等食品,可节约黄油用量,提高风味(4)婴儿奶粉人奶与牛奶区别之一在于溶菌酶含量的不同。

奶粉中添加卵清溶菌酶可防止婴儿肠道感染。

四酶工程在污水处理方面的作用污水处理的意义随着的发展,城市水资源短缺的压力越来越大,追究城市水危机的根本原因,人们越来越认识到,是水的社会循环超出了水的自然循环可承载的范围。

因此,只有充分尊重水的自然运动规律,合理地使用水资源,使上游地区的用水循环不影响下游水域的水体功能、社会循环不损害自然循环的客观规律,从而维系或恢复城市乃至流域的良好水环境,才是水资源可持续利用的有效途径。

这就要求我们从“取水-输水-用户-排放”的单向开放型的用水模式转变为“节制地取水-输水-用户-再生水”的反馈式循环流程,提高水的利用效率。

相关文档
最新文档