第二章紫外可见分光光度法

合集下载

第二章 紫外-可见分光光度法(Ultraviolet and Visible ....

第二章 紫外-可见分光光度法(Ultraviolet and Visible ....

无机物分子能级跃迁
一些无机物也产生紫外 - 可见吸收光谱,其跃迁类型包 括 p-d 跃迁或称电荷转移跃迁以及 d-d, f-f 跃迁或称配场跃
迁。
1. 电荷转移跃迁 (Charge transfer transition) 一些同时具有电子予体(配位体)和受体(金属离子)的无机 分子,在吸收外来辐射时,电子从予体跃迁至受体所产生的 光谱。
1)共轭体系的存在----红移
如 CH2=CH2 的 -* 跃迁, max=165~200nm ;而 1,3- 丁二烯,
max=217nm
2)异构现象:使异构物光谱出现差异。
如 CH3CHO 含水化合物有两种可能的结构: CH3CHO-H2O 及
CH3CH(OH)2; 已烷中,max=290nm,表明有醛基存在,结构为前 者;而在水溶液中,此峰消失,结构为后者。
-胡罗卜素
咖啡因
几种有机化合物的 分子吸收光谱图。
阿斯匹林
丙酮
二、分子吸收光谱跃迁类型
有机分子能级跃迁
1. 可能的跃迁类型 有机分子包括:
成键轨道 、 ;
反键轨道 *、* 非键轨道 n
例如 H2O分子的轨道:
oo C O o o
= = o=n
各轨道能级高低顺序: n**(分子轨道理论计算结果); 可能的跃迁类型:-*;-*;-*;n-*;-*;n-*
苯酚在酸性或中性水溶液中,有210.5nm及270nm两个吸
收带;而在碱性溶液中,则分别红移到235nm和 287nm(p-
共轭).
6)溶剂效应:红移或蓝移 由n-*跃迁产生的吸收峰,随溶剂极性增加,形成 H 键
的能力增加,发生蓝移;由-*跃迁产生的吸收峰,随溶剂

2.紫外可见分光光度法

2.紫外可见分光光度法

一均匀的、非散射的吸光物质溶液时,溶液的吸光
度与溶液浓度和厚度的乘积成正比。
21
(2)表达形式 (Ⅰ)
A = lg
I0 I
= abc
式中, A: 吸光度 , 反映了溶液对光的吸收程度,为
无因次量 ;
b:液层厚度(吸收光程长度),单位为 cm ;
c:溶液的浓度,单位 g · L-1 ;
a:吸光系数,单位
答对了!
点此进入下一题
43
课堂练习

7.常用作光度计中获得单色光的组件是 ( )
A.光栅(或棱镜)+反射镜 C.光栅(或棱镜)+稳压器 B.光栅(或棱镜)+狭缝
D.光栅(或棱镜)+准直镜
很遗憾,您答错了 很遗憾,您答错了 很遗憾,您答错了
答对了!
点此进入下一题
44
课堂练习

8. 某药物的摩尔吸光系数()很大,则表 明( )
答对了!
点此进入下一题
39
课堂练习

3.常见紫外-可见发光光度计的波长范围为 ( )
B. 400~760 nm
A. 200~400 nm C. 200~760 nm 很遗憾,您答错了 很遗憾,您答错了 很遗憾,您答错了
D. 400~1000 nm
答对了!
点此进入下一题
40
课堂练习

4. 在分光光度法中,运用朗伯-比尔定 律进行定量分析采用的入射光为( )
A.白光 C.可见光 B.单色光
D.紫外光
很遗憾,您答错了 很遗憾,您答错了 很遗憾,您答错了
答对了!
点此进入下一题
41
课堂练习

5. 符合朗伯-比尔定律的有色溶液稀释 时,其最大吸收峰的波长位置 ( )

紫外-可见分光光度法-N讲解

紫外-可见分光光度法-N讲解
2.红移与蓝(紫)移 化合物结构及溶剂改变等,使吸收峰向长波长方向移动的现象 化合物结构及溶剂改变等,使吸收峰向短波长方向移动的现象
第一节 基本原理
一、紫外-可见吸收光谱与紫外-可见吸收光谱法 甲苯E h
二、紫外-可见吸收光谱的产生 吸收紫外-可见光产生分子能级跃迁
1. 有机化合物中的电子轨道及其跃迁 s键: s、s*轨道 p键: p、p*轨道
孤对电子:n轨道
σ~σ*跃迁 > n~σ*跃迁 >
σ*
π~π*跃迁 > n~π*物
En
含p键的有机物 共轭体系
π
含非键电子的不饱和有机物 杂原子 σ
第一节 基本原理
一、紫外-可见吸收光谱与紫外-可见吸收光谱法 E h
波长/nm 分区名称 波长/mm 分区名称
<0.005 g射线 0.8~2.5 近红外光
l=650nm =4.62×1014Hz E=3.06×10-19j=1.91eV
0.005~10 X射线 2.5~50
中红外光
10~200 真空紫外 50~1000 远红外光
200~400 近紫外光 1~300mm
微波
400~800 可见光 >300mm 无线电波
第一节 基本原理
一、紫外-可见吸收光谱与紫外-可见吸收光谱法
二、紫外-可见吸收光谱的产生 实现能量交换
1. 电磁波与电磁波的能量 c / l E h
2. 分子的能量
量子化
E 连续能 Ev Er Ee
E
n1
V3
V2
V1
n0
JJ12
第一节 基本原理
l、I0
l、I T I / I0 透光率
A lg T 吸光度

仪器分析2(紫外可见光分光光度)

仪器分析2(紫外可见光分光光度)

白光除了可由所有波长的可见光复 合得到外,还可由适当的两种颜色的 光按一定比例复合得到。能复合成白 光的两种颜色的光叫互补色光。
/nm 400-450 450-480 480-490 490-500 500-560 560-580 580-610 610-650 650-760
颜色 紫 蓝
绿蓝 蓝绿
改变溶剂的极性,会引起吸收带形状
的变化。改变溶剂的极性,还会使吸收带
的最大吸收波长发生变化。下表为溶剂
对一种丙酮紫外吸收光谱的影响。
正己烷 CHCl3 CH3OH H2O
* 230
238
237 243
n * 329
315
309 305
由于溶剂对电子光谱图影响很大, 因此,在吸收光谱图上或数据表中必 须注明所用的溶剂。与已知化合物紫 外光谱作对照时也应注明所用的溶剂 是否相同。在进行紫外光谱法分析时, 必须正确选择溶剂。
电子的跃迁吸收光的波长主要在
真空紫外到可见光区,对应形成的光 谱,称为电子光谱或紫外-可见吸收光 谱。
三.有机化合物的紫外—可见吸收 光谱
(一)、跃迁类型 主要有σ→σ*、n→σ*、n→π* 、 π→π*
n
E*
* n*
* n *
a.σ→σ* 跃迁主要发生在真空紫外区。 b. π→π* 跃迁吸收的波长较长,孤立
ε(480nm)=A/ cb
= -lg0.398/0.150×10-3 ×2.00 =1.33 ×103 ( L ·mol-1 ·cm-1)
由ε=aM , 得: a= ε/M
= ε /251=5.30(L ·g-1 ·cm-1)
三.实际溶液对吸收定律的偏离及原因: (一)偏离:被测物质浓度与吸光

第二章 紫外-可见分光光度法-答案

第二章 紫外-可见分光光度法-答案

第二章 紫外-可见分光光度法一、选择题1 物质的紫外 – 可见吸收光谱的产生是由于 ( B )A. 原子核内层电子的跃迁B. 原子核外层电子的跃迁C. 分子的振动D. 分子的转动2 紫外–可见吸收光谱主要决定于 ( C )A. 原子核外层电子能级间的跃迁B. 分子的振动、转动能级的跃迁C. 分子的电子结构D. 原子的电子结构3 分子运动包括有电子相对原子核的运动(E 电子)、核间相对位移的振动(E 振动)和转动(E 转动)这三种运动的能量大小顺序为 ( A )A. E 电子>E 振动>E 转动B. E 电子>E 转动>E 振动C. E 转动>E 电子>E 振动D. E 振动>E 转动>E 电子4 符合朗伯-比尔定律的一有色溶液,当有色物质的浓度增加时,最大吸收波长和吸光度分别是 ( C )A. 增加、不变B. 减少、不变C. 不变、增加D. 不变、减少5 吸光度与透射比的关系是 ( B ) A. T A 1= B. TA 1lg = C. A = lg T D. A T 1lg = 6 一有色溶液符合比尔定律,当浓度为c 时,透射比为T 0,若浓度增大一倍时,透光率的对数为 ( D )A. 2T OB. 021TC.0lg 21T D. 2lg T 0 7 相同质量的Fe 3+和Cd 2+ 各用一种显色剂在相同体积溶液中显色,用分光光度法测定,前者用2cm 比色皿,后者用1cm 比色皿,测得的吸光度值相同,则两者配合物的摩尔吸光系数为 ( C )已知:A r(Fe) = ,A r(Cd) =A. Cd Fe 2εε≈B. e d F C 2εε≈C. e d F C 4εε≈D. Cd Fe 4εε≈8 用实验方法测定某金属配合物的摩尔吸收系数ε,测定值的大小决定于 ( C )A. 入射光强度B. 比色皿厚度C. 配合物的稳定性D. 配合物的浓度9 以下说法正确的是 ( A )A. 吸光度A 随浓度增大而增大B. 摩尔吸光系数ε随浓度增大而增大C. 透光率T 随浓度增大而增大D. 透光率T 随比色皿加厚而增大10 下列表述中的错误是 ( A )A. 比色法又称分光光度法B. 透射光与吸收光互为补色光,黄色和蓝色互为补色光C. 公式bc II A ε==0lg 中,ε称为摩尔吸光系数,其数值愈大,反应愈灵敏 D. 吸收峰随浓度增加而增大,但最大吸收波长不变11 吸光光度分析中比较适宜的吸光度范围是 ( C )A. 0.1~B. ~1.2C. ~D. ~12 若显色剂无色,而被测溶液中存在其它有色离子干扰,在分光光度法分析中,应采用的参比溶液是 ( D )A. 蒸馏水B. 显色剂C. 试剂空白溶液D. 不加显色剂的被测溶液13 采用差示吸光光度法测定高含量组分时,选用的参比溶液的浓度c s 与待测溶液浓度c x 的关系是 ( D )A. c s =0B. c s = c xC. c s > c xD. c s 稍低于c x14 桑德尔灵敏度S 与摩尔吸光系数ε的关系是 ( A ) A. εMS = B. 610⨯=εM S C. ε610⨯=M S D. M S ε=15下列因素对朗伯-比尔定律不产生偏差的是 ( A )A. 改变吸收光程长度B. 溶质的离解作用C. 溶液的折射指数增加D. 杂散光进入检测器二、填空题1吸光光度法进行定量分析的依据是__朗伯-比耳定律,用公式表示为___A= εbc,式中各项符号各表示:A为吸光度,b为吸收介质厚度,ε为摩尔吸光系数,c为吸光物质的浓度。

紫外可见分光光度法UltravioletVisible

紫外可见分光光度法UltravioletVisible
A1 = 1bc1 A2 = 2bc2 A = 1bc1+ 2bc2
当物质中只有一种吸光组分,则上式简化 为:

A=bc
(3)定义2:若将I/I0称为透光度(亦称:透 射率),用T表示, T=I/I0 则 A= lgI0/I= - lgT= bc
2. 朗伯-比尔定律成立的条件及其偏离该定律 的因素 (1)成立的条件 (a) 适用于极稀的溶液(一般c<0.01molL-1)。 (b) 电磁波辐射和所讨论的吸光成分之间的 相互作用机制只是光被该成分吸收。 (c) 采用“单色光”。 (d) 吸收成分(分子或离子)的行为相互无 关,且不论其数量和种类如何。
iii) 分子络合物内部电荷转移 例如:在乙醇介质中,将醌与氢醌混 合,就可以得到美丽的醌氢醌暗绿色结晶, 它的吸收峰在可见光区。
特点:电荷转移吸收光谱的最大特点 是:吸收强度大,摩尔吸收系数一般超过 104L/ (mol cm)。
(3)两种吸收谱带的区别 这类光谱一般位于可见光区。 电荷迁移吸收带的谱带较宽,吸收强度 大,最大波长处的摩尔吸收系数max可大于 104 L cm-1mol-1。 与电荷迁移跃迁比较,配位场跃迁吸收 谱带的摩尔吸收系数小,一般max< 102L cm-1mol-1。
吸收峰红移,n→*跃迁所产生的吸收峰蓝移。
(3)除上述六种跃迁可产生紫外-可见吸收 谱带外,还有两种跃迁也可产生紫外-可见吸 收谱带,即电荷转移跃迁和配位场跃迁。
综上所述:发生在电磁光谱的紫外和可 见光区内的,由于电子的跃迁或转移而引起 的吸收光谱共有以上八种价电子跃迁类型。
3. 在有机物的紫外-可见谱解析中吸收带的分类 在有机物的紫外-可见谱解析中,通常将吸 收带分为以下四种类型。
而n→*、n→*和→*三种跃迁需要能

紫外可见分光光度法2

紫外可见分光光度法2
度等间距条痕(600、1200、2400条/mm )。
光栅可根据光的衍射和干涉原理将复合光 色散为不同波长的单色光,然后再让所需 波长的光通过狭缝照射到吸收池上。其分 辨率比棱镜大,可用的波长范围也较宽。
3.吸收池
吸收池也称比色皿,用于盛放参比溶液或待测溶 液。它是由无色透明、耐腐蚀、化学性质相同、厚度 相等的玻璃制成的,按其厚度分为0.5 cm,1 cm,2 cm,3 cm和5 cm。在可见光区测量吸光度时使用玻璃 吸收池,紫外区则使用石英吸收池。使用比色皿时应 注意保持清洁、透明,避免磨损透光面。经常使用的 吸收池应于清洗后浸泡在蒸馏水中保存。
E分子 = E电子 + E振动 + E转动
振动能级
当一束光照射到某物质或某溶液时,组成该物质的分子、
原子或离子等粒子与吸光子作用,光子的能量发生转移,
使原子核外层电子由低能量轨道跃迁到高能量轨道,即由 基态转变为激发态。
M(基态) + h
M*(激发态)
这个过程即是物质对光的吸收。当用频率为的电磁波
溶液的颜色 ⑴溶液为什么会有颜色?
由于溶液中的质点选择性地吸收某种颜色的光所引起的。
⑵ 吸收光与溶液颜色的关系:
当白光通过某一均匀溶液时: ①如溶液对其全不吸收,光全透过,溶液为无色;
②如溶液对其全部吸收,无光透过,溶液呈黑色; ③如溶液对其部分吸收,其余光透过,溶液呈透过光的颜色。
CuSO4溶液:之所以呈蓝色,是因为吸收了白光中的黄光,透过 其黄光的互补光蓝光。
(4) 210-250 nm有强吸收峰,表明可能含有2个共轭双键 ;在260nm,300 nm,330 nm有强吸收峰,说明是3个或3个以 上双键的共轭体系。
(5)若吸收峰延伸至可见光区,则可能是长链共轭或稠环 化合物

仪器分析-紫外可见光光谱分析

仪器分析-紫外可见光光谱分析
1,3,5-己三烯
正己烷
258
n=4
1,3,5,7-辛四烯
环己烷
304
不共轭双键不发生红移。
C=O双键同C=C双键的共轭作用使n→*和→*跃迁的吸收峰都发生红移。
3)溶剂效应
01
02
03
04
05
极性溶剂使π-π*跃迁发生红移。
pH值
Note: 测UV-Vis应注明溶剂
pH增大,苯酚π-π*吸收带发生红移。
1
2
特点:灵敏度高,实际工作中常用。
1
常将M与某L(显色剂)生成具有电荷迁移的配合物,然后进行含量测定。
2
-* 跃迁 配体具有双键的金属络合物
3
2.3光的吸收定律
郎伯-比尔(Lambert-Beer )定律 入射光强度 吸光强度 反光强度 透光强度 + IS 散射光强度 均匀溶液,散射光小,可忽略
由于n—π共轭参与,使分子整体共轭效应增强。
取代基 苯环或烯烃(吸电子基)上的H被各种取代基取代,多发生红移。 空间异构
蓝移(紫移):使化合物的吸收波长向短波方向移动效应。 影响蓝移因素: 1)溶剂效应 极性溶剂使n-π*跃迁发生蓝移 2)pH值 pH值减小,苯胺的π-π*吸收带蓝移n—π共轭参与少,使分子整体π共轭效应减少。
分子转动-转动能级(rotation)
分子整体能级 E=Ee+Ev+Er
01
03
02
04
05
分子从基态能级跃迁到激发态能级
当有一频率v , 如果辐射能量hv恰好等于该分子较高能级与较低能级的能量差时,即有:
激发态
基态
ΔE电=1-20eV ΔE振=0.05-1eV ΔE转 在分子能级跃迁所产生的能量变化,电子跃迁能量变化最大,它对应电磁辐射能量主要在区紫外—可见区。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

500106 6 c 8.9510 (mol L1 ) 55.85
则根据朗伯—比尔定律 ,A
εbc
A 0.197 4 -1 1 1.1 10 L.mol . cm bc 2.0cm 8.95 10 6
例2-2 精密称取维生素B12样品25mg,用水配成100ml。精密 吸取10.00ml,置于100ml容量瓶中,加水至刻度,取此溶液 在1cm的比色皿中,于 361nm处测定吸光度为 0.507,求 B12的 质量分数?已知a(Fe)=207 L · g –1 · cm -1 。 解 根据朗伯—比尔定律 :

T 取值为0.0 % ~ 100.0 % 全部吸收 全部透射 T = 0.0 % T = 100.0 %
2、 光吸收基本定律: Lambert-Beer定律
A Kbc
K--吸光系数 b--吸光液层的厚度(光程), cm c--吸光物质的浓度, g / L, mol / L
当一束平行单色光通过均匀、透明的吸光介质时, 其吸光度与吸光质点的浓度和吸收层厚度的乘积成 正比.
S= 0.001 103 M

=
M

( g/cm 2 )
例7邻二氮菲光度法测铁 :(Fe)=1.0mg/L,
b=2cm , A=0.38 ,计算 ,a 和
E
1% 1cm
解: c(Fe)=1.0 mg/L=1.0×10-3 g/L /55.85g/mol

=1.8×10-5mol/L 0.38 4 -1 -1 = = 1.1 10 ( L mol cm ) 2 1.8 10-5
102 nm 104 nm
紫 外 光 红 外 光
0.1 cm 10cm
微 波
0.1mm~1m
103 cm
无 线 电 波
105 cm
10nm~
750nm~0.1cm
1m~1000m

远紫外
(真空紫外)

400~750 nm

近紫外
10nm~200nm 200~400nm
2、微粒性
光是由光子流组成,光子的能量:
二、光与物质的作用
1.吸收光与透射光 当复合光照射到物体上时,一部分光被 吸收,而另一部分光则被透射过去。即: 入射光=吸收光+透射光
互补 吸收光 透射光
光的作用方式
光谱示意
复合光
表观现象示意
完全吸收
完全透过
吸收黄色光
物质的颜色与光的关系
不同颜色的可见光波长及其互补光
/nm 颜色 紫 蓝 互补光 黄绿 黄 400-450 黄 橙 红 450-480
25.0 106 g 4 1 5 . 00 10 ( g L ) 3 50.0 10 L
则根据朗伯—比尔定律 A=abc,
A 0.300 -2 -1 1 a 3.00 10 L.g . cm b 2.0cm 5.00104 g L1
而ε= Ma = 64.0g· mol-1×3.00×10-2 L· g-1· cm-1 =1.92 (L· mol-1· cm-1)
在最大吸收波长λmax处的摩尔吸光系数,常以εmax表
示 εmax表明了该吸收物质最大限度的吸光能力。
吸光度的加合性
在多组分体系中如果各吸光物质之间无相互作用这时体系总 的吸光度等于各个吸光物质的吸光度之和。
A= Ai
吸光度的测量:
用参比溶液调T=100%(A=0),再测样品溶液 的吸光度,即消除了吸收池对光的吸收、反射, 溶剂、试剂对光的吸收等。
朗伯-比尔定律的适用条件
单色光
应选用max处或肩峰处测定.
吸光质点形式不变
离解、络合、缔合会破坏线性关系,
应控制条件(酸度、浓度、介质等).
稀溶液
浓度增大,分子之间作用增强.
例2-1 已知含Fe3+浓度为500μg/L溶液,用KSCN显色,于波 长480nm处,用2.0cm比色皿测得A=0179,求摩尔吸光系数ε 。已知M(Fe)=55.85。 解
• 1、紫外-可见吸收光谱定性分析的依据:光 吸收程度最大处的波长叫做最大吸收波长, 用λmax表示,同一种吸光物质,浓度不同 时,吸收曲线的形状不同,λmax不变,只 是相应的吸光度大小不同,这是定性分析 的依据。
2、吸收谱带强度与该物质分子吸收的光子数成正比--定 量分析基础
同一种物质不同浓度下,其吸收曲线形状相似λmax不变。 在λmax处吸光度A随浓度变化的幅度最大。所以测定最灵 敏。此特性可作为定量分析时选择入射光波长的重要依据。
a=M/ =55.85/1.1×104=0.0051 (g/cm2)
A= E
1% 1cm
b c
c =1.0mg/L=1.0×10-3 g /1000mL = 1.0×10-4 g/100mL
1% -4 3 -1 1 E1 = 0.38/2.0 10 = 1.9 10 ( 100mL g cm ) cm
显示器
0.00
吸光度与光程的关系 A = Kbc 朗 光源 伯 检测器 定 参 律 比
b
0.20
0.10
(1760)
2b
显示器
0.00
吸光度与浓度的关系 A = Kbc 比 光源 检测器 尔 参 定 比 律
(1852)
c
0.20
0.10
2c
A = kb c
吸光系数(K) 物质的性质 入射光波长 温度
c -真空中光速 :~3.0 ×108m/s
-波长:1m=10-6m, 1nm=10-9m, 1Å=10-10m -频率,单位:赫兹 Hz 次/秒
n -折射率,真空中为1:
= c ; 波数σ = 1/ = /c
光谱区间

10-2 nm 10 nm
射 线 x 射 线
0.1nm~
1.0
T
100
A
T = 0.0 %
A
T%
A=∞
T = 100.0 %
0.5
50
A = 0.0
0
c
0
溶液的T越大,说明对光的吸收越小,浓度低; T越小,溶液对光的吸收越大,浓度高
.透光率 (透射比,Transmittance )
入射光强度 I0 透射光强度It
一束平行单色光
透光率定义:
It T I0
例2-4

根据朗伯—比尔定律 :
A abρ
A 0.19 2 –1 · -1 L · g cm a 1 . 9 10 b 2 5.00104
mol –1 · cm -1 Ma 55.8 1.9 102 1.1104 L ·
例5 浓度为25.0μg/50mL的Cu2+溶液,用双环已酮草酰二腙 分 光光度法 测定 , 于 波长 600nm 处 ,用 2.0cm 比色皿测得 T=50.1%,求吸光系数a和摩尔吸光系数ε。已知M(Cu)=64.0 。 解 已知T=0.501,则A=-lgT=0.300,b=2.0cm,
例2-3 略
解:根据朗伯—比尔定律 ,
A εbc
Ax c x b cx 1.5 3 A cb 1.00 10
1 得:cx 1.50103 molL
钢样品中Mn的质量m cxVM 1.5 103 0.25 54.95 0.0206g
钢样品中 Mn 的质量分数 Mn 0.0206 100 % 2.06% 1.00
M(基态)+hv------M*(激发态) 这就是对光的吸收作用。
2.吸收光谱曲线
S2 h
(Absorption Spectra)
A
S1
S0 分子内电子跃迁
带状光谱

用不同波长的单色光照射,测吸光度— 吸收曲线
紫外可见吸收光谱:分子价电子能级跃迁。电子跃迁的 同时,伴随着振动能级、转动能级的跃迁。带状光谱。
得白光,这两种光就叫互为补色光。物质呈现的颜色和 吸收的光颜色之间是互补关系。
M + h

M*
M + 热
M + 荧光或磷光
基态 激发态 E1 (△E) E2 物质对光的吸收满足Plank 条件
E E j E0 h
hc

物质的电子结构不同,所能吸收光的波长也不同, 这就构成了物质对光的选择吸收基础。
与浓度无关,取值与浓度的单位相关
c:mol / L
K κ K a
摩尔吸光系数,L · mol –1 · cm -1
Α=κbc
c: g / L
质量吸光系数, L · g –1 · cm -1
Α=αbc
κ=αM
摩尔吸光系数ε的讨论
(1)吸收物质在一定波长和溶剂条件下的特征常数
(2)不随浓度c和液层厚度b的改变而改变。 在温度和波长等条件一定时,ε仅与吸收物质本身 的性质有关,与待测物浓度无关; (3)同一吸光物质在不同波长下的ε值是不同的。
第二章
紫外可见分光光度法 UV-VIS
紫外可见分光光度法是:利用物质对 紫外可见光的吸收特征和吸收强度,对物质 进行定性和定量分析的一种仪器分析方法
第一节基本原理
一、 光的基本性质
光 的 波 粒 二 象 性
波动性

光的折射 光的衍射 光的偏振
光的干涉
粒子性
E
光电效应
1、波动性
光的传播速度:
c V = = n
4、 偏离朗伯—比耳定律的原因
标准曲线法测定未知溶液的浓度时,发现:标准曲线
常发生弯曲(尤其当溶液浓度较高时),这种现象称为对
朗伯—比耳定律的偏离。 引起这种偏离的因素(两大类): (1)物理性因素,即仪器的非理想引起的; (2)化学性因素。
相关文档
最新文档