定量分析测定误差(二)分析

合集下载

第4章 定量分析概论二、三节

第4章 定量分析概论二、三节

分 准确度高低的尺度。 析 误差的表示方式分为绝对误差和相对误差两种。
概 绝对误差:测量值与真实值之差。 Ea x xT
论 相对误差:绝对误差占真实值的百分比。
1
Er

Ea xT
100 %
郑工学院
例:用分析天平直接称量铁粉,其质量分别为5.0000g和
0.5000g,试问哪一个称量值会较准确?

溶液溅失;
定 量 分 析 概 论

加错试剂; 读错刻度; 记录和计算错误等。
注意:过失误差必须给予删除。
1
郑工学院
减小误差的方法
第 四 ☆尽可能地减小系统误差和偶然误差 章
减小和消除系统误差
定 量
①选择合适的分析方法 在相同的条件下,对已知准确含量的标
②对照试验:
准样品进行多次测定,将测定值和准确 值进行比较,求出校正系数,用校正系

n
4



dr

d x
100 %

0.14 15.82
100 %

0.89%
1
郑工学院
(三)准确度与精密度的关系
第 四 章




概 结 论:
论 1. 准确度高,要求精密度一定高,精密度是保证准确度的
前提,但精密度高,准确度不一定高;
2. 准确度反映了测量结果的正确性,精密度反映了测量结
1
果的重现性。
分 ③空白试验(空白值) 数来校正试样的分析结果。
析 分析结果-空白值=较准确的分析结果
概 指不加待测试样,在相同的条件下,按分析试样所采用的方法进行测 论 定,其测定结果为空白值。

化学分析中误差及分析数据的处理

化学分析中误差及分析数据的处理

xi x 100% x
精密度是几次平行测定结果之间相互接 近的程度。
偏差(deviation)是指单次测定结果与几次 测定结果的平均值之间的差值。
●当绝对偏差di相同时,被测物测定结果 的平均值x越大,相对偏差Er 就越小,表 示测定结果的精密度越高。
(4) 准确度和精密度的关系
以打靶为例:三人打靶,每人打十发子弹。
(1)系统误差偏低。重复测定时,它会重复出现。
① 方法误差(method error) ② 仪器误差(instrumental error) ③ 试剂误差(reagent error) ④ 主观误差(personal error)
(2)偶然误差特点:随机发生,难以控制。
由一些难以控制的因素造成的误差。 ●测量时环境温度、压力的变化。 ●仪器的不稳定。 ●操作时的不当心。 ●天气的阴、晴、雨、雪变化。
总体与样本:总体亦称母体,是指随机变量xi
的全体。样本(或子样)是指从总体中随机抽取 的一组数据。 样本平均值:对某试样平行测定n次的算术平均值。
(1)真实值、平均值与中位数
总体平均值:在消除系统误差后,对某试样平行 测定无穷多次的算术平均值。用于代表(但不一 定是)真实值 ③中位数(xm): 一组按大小顺序排好的测量数据的中间数据既为 xm。当n为偶数时,中位数为中间相邻的两个数 据的平均值。
2、误差产生原因
系统误差(可测误差)(determinate error)
由某种固定因素造成的误差。
偶然误差(随机误差或未定误差)(random error)
由某些偶然因素造成的误差。
过失误差(粗差)(mistake)
由于工作上粗枝大叶、不遵守操作规程 等造成的误差。
特点:使测定结果系统偏高或系统

定量分析的误差及数据处理

定量分析的误差及数据处理

三、有效数字的运算规则
(一)有效数字的加减法 几个数相加或相减时,它们的和或差的有效 数字的保留,应以小数点后位数最少 (即绝对误 差最大) 的数为依据,只保留一位可疑数字。 (二)有效数字的乘除法 几个数相乘或相除时,它们的积或商的有效 数字,以有效数字最少(即相对误差最大)的数 为依据。
在运算过程中,若某一个数的首位是 8, 9 时,则有效数字的位数可多算一位。使用计 算器处理数据时,不必对每一步计算结果都进 行修约,但要注意对最后结果的有效数字的位 数进行合理取舍。
并不大,却消耗了更多的试剂和时间。在一般化
学分析中,平行测定 4 ~ 6 次已经足够,学生的
验证性教学实验,平行测定 2 ~ 3 次即可。
第三、 误差的表示方法
一、准确度与误差
二、精密度与偏差
三、准确度与精密度的关系
一、准确度与误差
分析结果的准确度是指实际测定结果与真 实值的接近程度。准确度的高低用误差来衡量,
在分析化学中常遇到 pH,pKa 等对数 , pKb
值,这些对数值的有效数字的位数只取决于小数 点后数字的位数,而与整数部分无关,整数部分 只起定位作用,不是有效数字。 在计算过程中,还会遇到一些非测定值(如
倍数、分数等)它们的有效数字位数可以认为是 , 无限多位的。
二、有效数字修约方法
二、随机误差
随机误差也称偶然误差,它是由某些无法 控制和无法避免的偶然因素造成的。由于随机 误差是由一些不确定的偶然因素造成的,其大 小和正负都是不固定的,因此无法测定,也不 可能加以校正。 随机误差的分布也存在一定规律: ( 1 )绝对值相等的正、负误差出现的机会 相等; ( 2 )小误差出现的机会多,大误差出现的 机会少,绝对值特别大的正、负误差出现的机 会非常小。

第二章 定量分析中的误差及结果处理

第二章 定量分析中的误差及结果处理
常量组分:化学分析法 —— 操作方便,准确度高 微量组分:仪器分析法 —— 灵敏度高 二、减少随机误差(偶然误差)
增加平行测定次数
三、消除系统误差 (一)对照试验 —— 检验有无方法误差
(二)空白试验 —— 检验有无试剂误差
试样 + 试剂 试剂 则 样品含量
同一条件 同一条件
测定结果 X1
测定结果 X0 ( X0—空白值
二、偏差与精密度
思考题:
甲乙两位同学对同一样品进行了五次重复测定, 测定结果分别如下: 甲: 0.3,0.2,0.3,0.3,0.4, x = 0.3 乙: = 0.3 0.1, 0.6, 0.2, 0.1, 0.5,
x
(1)甲同学测定的几个结果中哪个结果更好?乙同 学的呢? (2)两位同学的测定水平哪个更好?如何评价?
5 前面是偶数 —— 舍
5 后面全为 0 或无数字 尾数= 5时 5 后面有任一不为 0 的数 —— 入 5 前面是奇数 —— 入
例:将下列数字修约为三位有效数字
0. 3216 解: 0.322 21. 2499 21.2 10. 2500 10.2 10. 3500 10.4 3.42 3.415 10. 25001
36.50 37.00
平均值
37.50
38.00
真值
(三)准确度和精密度的关系
1、精密度高,准确度一定高。( ) 2、精密度高,准确度一定低 ( ) 3、精密度的高低不会影响准确度( ) 4、要有高的准确度,必须要有高的精密度( )
精密度是保证准确度的先决条件.精密度差, 所测结果不可靠,就失去了衡量准确度的前提, 高的精密度,不一定能保证高的准确度.
主要来源有
仪器误差:
试剂误差: 操作误差 :

定量分析测定中的误差(精)

定量分析测定中的误差(精)

第一章定量分析测定中的误差本章教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。

2、掌握系统误差和偶然误差的概念。

3、掌握有效数字的概念及运算规则,并能在实践中灵活运用。

教学重点与难点:准确度和精密度表示方法;误差来源;有效数字及运算法则。

教学内容:第一节定量分析中的误差教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。

2、掌握系统误差和偶然误差的概念。

教学重点:误差、偏差的概念和计算方法,准确度和精密度表示方法教学难点:误差来源实验引题:1、每位同学测自己20秒的脉搏,测6次,记录每次脉动次数。

2、投影屏开启4~5次,记录每次所需时间。

设问:1、同一块表测得的脉动次数或开启时间相同吗?2、不同的表(定时)测得的脉动次数或开启时间相同吗?引入内容:在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等方面的限制,使测得的结果不可能和真实含量完全一致;即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。

这说明客观上存在着难于避免的误差。

一、真实值、平均值与中位值1.真实值(x T)物质中各组分的真实数值,称为该量的真实值。

显然,它是客观存在的。

一般来说,真实值是末知的,但下列情况可认为其真实值是已知的。

(1)理论真实值 如某种化合物的理论组成等。

(2)相对真实值 认定精度高一个数量级的测定值作为低一级测量值的真实值,这种真实 值是相对比较而言的。

如分析实验室中标准试样及管理试样中组分的含量等。

2.平均值(1) 算术平均值(x ) 几次测量数据的算术平均值为12311nni i x x x x x x nn =++++==∑ (1-1) (2) 总体平均值(u ) 表示总体分布集中趋势的特征值。

定量分析的误差和数据处理

定量分析的误差和数据处理

查表:P 0.95, f 6 1 5时,t表 2.57
t计算 t表说明 x与差异异著,有系统误差
1.4.2 两组数据平均值的比较
为了比较两组数据 x1、s1、n1与 x2、s2、n2间是
否存在显著性差异,需首先用F检验法检验两 组测定结果的精密度s1、s2之间是否差异显著。
定量分析的误差和数据处理
测定结果的两个特征
准确度:即人、仪器、方法 所得结果也不可能绝对准确。
结论:定量分析中误差是不可避免的,定量分析的结 果只能是真值的近似值。误差是客观存在的。真值是 测不出的。
测定结果的第二个特征
精确度:同一个人、同一样品、相同条件下、多次平 行测定,所得结果也不可能完全相同 这是一个自然规律
标准偏差s也影响置信区间。“做多次平行测定 取平均值以减少随机误差对准确度的影响” 的前提是必须保证测定的精密度。
1.3.3 可疑值的取舍
(1)由过失引起必须舍弃; (2)非过失引起,必须根据统计学原理决定其
取舍。
取舍的意义:
无限次平行测定,随机误差遵从态分布规律, 可大可小,且绝对值相等的正负差出现机会相 同,故任一测定结果,不论偏差小都不应舍 弃;
相对标准偏差。
解: x 10.43%
d di 0.18% 0.036%
n
5
d 100% 0.036% 100% 0.35%
x
10.43%
s
d
2 i

8.610 7 4.610 4 0.046%
n 1
4
s 100% 0.046% 100% 0.44%
英国化学家W.Gosset(戈赛特)根据统计学原理,提出 t—分布,描述有限数据分布规律

定量分析中的误差

定量分析中的误差

第二章定量分析中的误差及其处理分析结果必须达到一定的准确度,满足对分析结果准确度的要求。

因为不准确的分析结果会导致产品的报废和资源的浪费,甚至在科学上得出的错误的结论,给生产或科研造成很大的损失,人民生活造成巨大困难或灾难。

但是分析结果是由分析者对所取样品(供试品或样品)利用某种分析方法、分析仪器、分析试剂得到的,必然受到这些分析的限制,分析结果不可能和样品的真实组成或真实含量完全一致,在一定条件下分析结果只能接近于真实值而不能达到真实值。

测定值与客观存在的真实值的差异就是所谓的误差(error)。

因此分析误差是客观存在、不可避免的,我们只能得到一定误差范围内的真实含量的近似值,达到一定的准确度。

采用哪些措施可能减小误差,依赖于误差本身的性质。

所以,我们应当了解误差的有关理论,明确误差的性质和来源,根据分析目的对误差的要求,选择准确度合适的分析方法,合理安排分析实验,设法减小分析误差,使分析结果的准确度达到要求,避免追求过高的准确度。

同时,也应当了解对分析结果的评价方法,以判断分析结果的可靠程度,对分析结果做出正确的取舍和表示。

2.1 分析结果的误差一、真值、样本平均值和总体平均值1. 真值与相对真值真值(true value)是指某物理量本身具有的客观存在的真实数值,表示物质存在的数量特征,用T来表示。

由于分析误差是不可避免的,因此真值是不可能测得的,实际工作中往往将理论值、约定值和标准值当作真值来检验分析结果的准确度,分别称为理论真值、约定真值和标准真值。

理论真值是指由公认理论推导或证明的某物理量的数值。

如水的组成常数或组成分数即为理论真值:1 mol H2O含2mol H和1 mol O,再如H+与OH-的反应的化学计量关系即H+与OH-的反应量之比为1 mol H+ : 1 mol OH-,该比值也是理论真值。

约定真值是指计量组织、学会或管理部门等规定并得到公认的计量单位的数值。

如国际计量大会定义的长度、时间、质量和物质的量等物理量的基本单位:光在真空中传播(1/299 792 458)s所经过的路径长度为1 m,国际千克原器的质量为1 kg、铯-133原子基态的两个超精细能级之间跃迁所对应的辐射的9 192 631 770个周期的持续时间为1 s等。

第二章 定量分析中的误差与数据处理

第二章 定量分析中的误差与数据处理
x x
平均偏差( 平均偏差(average deviation)又称算术平均偏差: )又称算术平均偏差:
d=
∑d
i=1
n
i
n
=
∑x
i =1
n
i
−x
n
相对平均偏差: 相对平均偏差:
d ×100% x
例:测定合金中铜含量的两组结果如下
d dr 测定数据/ 测定数据/% X 第一 10.3,9.8,9.4,10.2,10.1, 10.0 0.24% 2.4% 组 10.4,10.0,9.7,10.2,9.7 第二 10.0,10.1,9.3*,10.2,9.9, 10.0 0.24% 2.4% 组 9.8,10.5*,9.8,10.3,9.9
特点 单向性。 ① 单向性。对分析结果的影响 比较固定, 比较固定,即误差的正或负固 定。 重现性。平行测定时, ② 重现性。平行测定时,重复 出现。 出现。 可测性。可以被检测出来, ③ 可测性。可以被检测出来, 因而也是可以被校正的。 因而也是可以被校正的。
偶然误差(随机误差)—由偶然因素引起的误差
10kg
±1 Ea % = ×100% = 10% 10
±1 Ea % = × 100% = ±0.1% 1000
1000kg
1.相对误差衡量分析结果的准确度更加客观; 1.相对误差衡量分析结果的准确度更加客观; 相对误差衡量分析结果的准确度更加客观 2.当绝对误差相同时,被测定的量越大, 2.当绝对误差相同时,被测定的量越大,相对误 当绝对误差相同时 差越小,测定的准确程度越高。 差越小,测定的准确程度越高。
*
1.64 1.65 1.62 1.70 1.60 1.61 1.66 1.61 1.59
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 偶然(随机)误差
由于未知的因素引起的误差(非单向性;不可 测)
分析化学
系 统 误差
主要来源
仪器误差:仪器本身不够精密 方法误差:分析方法本身 试剂误差:水和试剂不纯 主观误差:操作人的主观因素所 引入的误差(例如颜色观察不敏 锐、滴定管读数偏高或偏低)
减免方法
校正仪器 对照试验 空白试验
分析化学
偶然误差
主要来源
无法控制的偶然因素
测 定 次 数
-
0
+
误差的正态分布曲线
减免方法 多次测定取平均值
过失 误 差
分析化学
未用待测液润洗滴定管
导致后果: 使装入的溶液被稀释
正确操作:滴定管的润洗方法
用2~3mL的待装液润洗三次, 并分别从滴定管的尖嘴及上口两部 分将润洗液倒出。
滴定速度过快,终点过量
分析化学
滴定管读数位置偏高或偏低
导致后果
仰视-读数偏低
俯视-读数偏高
滴定管读数方法
❖ 正确读数方法:
三要点:
1.管直(滴定管垂直)
2.眼平(眼睛与刻度线水平相切)
3.读至小数点后第三位(本实验室自制 10mL滴定管,市售50mL滴定管读至 小数点后第二位)
具体操作方法:从滴定台上取下滴定 管,左手把持滴定管0刻度线以上位置, 使滴定管自然下垂,右手轻轻辅助把 持滴定管最大刻度线以下位置,两手 合作,使滴定管保持垂直,上下移动, 使眼睛与滴定剂的弯月面水平相切, 读取体积读数。
例: 0.0121+ 25.64 + 1.05782 = ?
26.71
分析化学
2.乘除法:以有效数字位数最少的数为准。 (即以相对误差最大的数为准)
例: 0.0121 25.64 1.057823
分析化学
根据有效数字的运算规则,计算: 1. 25.25-2.525+0.2525+0.02525= 2. 0.1375-0.008= 3. 9.827×50.26÷(0.005146×13.36)= 4. 1.20 ×(112-1.260)÷5.4375=
如:分析天平称样m 如:滴定剂消耗的体积V
分析化学
例:分析天平的称量误差在±0.0002 克,如使测量时 的相对误差在0.1%以下,试样至少应该称多少克?
解:
绝对误差(E) 相对误差(RE) = ——————
试样重
× 100%
E 0.0002g
试样重 = —— = ———— = 0.2g E% 0.1%
分析化学
二、数字的修约规则
分析化学
四舍六入五留双
4 要舍,6 要入 5 后有数进一位 5 后无数看前方 前为奇数就进位 前为偶数全舍光
例:将下列测量值修约
为3位数
修约前 修约后
4.135
4.14
4.125
4.12
4.105
4.10
4.1251
4.13
4.1349
4.13
三、运算规则
分析化学
1.加减法:以小数点后位数最少的数为准。 (即以绝对误差最大的数为准)
当用25mL移液管移取溶液时,应记录为 25.00mL;
分析化学
一、有效数字(Significant figure)
2.意义
有效数字的位数与相对误差有关,位数越 多,相对误差越小
试计算:坩埚重18.5730g和18.573g的相 对误差分别是多少?
3.有效数字位数的确定
(1)数据中的“0”
① 数字中间和数字后边的“0”都是有效数字 4位有效数字:5.108,1.510 ② 数字前边的“0”都不是有效数字 3位有效数字:0.0518(5.1810-2)
分析化学
定量分析测定误差
第二节 误差来源及消除方法
分析化学
天平砝码生锈致使样品称量不准。 滴定分析中不慎将药品滴到锥形瓶外。 由于空气温度和湿度的不稳定导致称量
结果有差异。 化学试剂不纯造成分析结果不准。 重量分析中由于沉淀不完全使分析结果
偏低。
一、误差的来源及减免
分析化学
1. 系统误差
由某种固定原因所造成的误差(重复性;单 向性;可测)
样品称重必须 在0.2g以上, 才可使测量时 相对误差在 0.1%以下。
分析化学
第三节 有效数字及运算规则
➢ 有效数字 ➢有效数字的修约规则 ➢有效数字的运算规则 ➢有效数字应用
分析化学
一、有效数字(Significant figure)
1.概念 有效数字指实际能测量到的数字,其位数包括所有的
准确数字和最后的一位可疑数字。
注 意:
对于较大和较小的数据,常用10的方次表示 例:1000mL,若有3位有效数字,可写成
1.00103mL
分析化学
分析化学
(2)改变单位,不改变有效数字的位数
例: 24都是四位。
(3)结果首位为8和9时,有效数字可以多计一位
例:90.0% ,可视为四位有效数字
分析化学
滴定剂流 成线了
导致后果: 滴定终点易过量
纠正方法:
控制滴定
示请 您
剂流速,并坚 关
持做到接近滴
注 :
定终点时加入 半滴滴定剂.
此 处 有

正确滴定速度:液滴成流 半滴加入法: 完整的滴定操作
首先使滴定管尖嘴处悬挂半滴滴定剂,然后 将滴定管尖嘴贴于锥形瓶内壁,使半滴滴定剂 流下,用洗瓶圆周式吹洗锥形瓶内壁,使滴定 剂与被测物充分反应。观察是否到达滴定终点。
分析化学
分析化学
二、提高分析结果准确度的方法
1.选择合适的分析方法 化学分析:滴定分析,重量分析灵敏
度不高,高含量较合适。 仪器分析:微量分析较合适。
分析化学
二、提高分析结果准确度的方法
2.消除测定中的系统误差 3.增加平行测定的次数
3~5次
分析化学
4.减小测量误差
如何减少称样误差?
如何减少滴定分析法 中的读数误差?
例:分析天平称取样品0.5000g,表示称量的误差在 ±0.0002g以内,若记录成0.50g,则称量误差为±0.02g ,因此记录数据的位数不能随意减少。
分析化学
对于滴定管、移液管和吸量管,它们都能准确 测量溶液体积。
当用50mL滴定管测量溶液体积时,如测量体积 大于10mL小于50mL,应记录为4位有效数字, 例如24.22mL,如测量体积小于10mL,应记录 为3位有效数字,如8.13mL;
(4)pH、pK或lgC等对数值,其有效数字的位数取 决于小数部分(尾数)数字的位数
例:pH = 11.20 → [H+]= 6.3×10-12 mol/L 两位有效数字
(5)分数或比例系数(非测量数字)等不记位数
下列数据包括几位有效数字?
(1)1.302 (2)0.056 (3)10.300 (4)0.0001 (5)6.3×10-5 (6)pH= 4.53
相关文档
最新文档