七年级数学上册期末考试模拟试题-5
(完整版)人教版七年级数学上册期末模拟试卷及答案

(完整版)人教版七年级数学上册期末模拟试卷及答案一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =3.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109D .1289×1074.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1 B .2 C .3 D .4 5.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣76.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个7.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-8.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查9.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱10.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离11.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102512.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚B .赚了9元C .赚了18元D .赔了18元二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.把53°30′用度表示为_____.16.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.17.|-3|=_________;18.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.19.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.20.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)21.用“>”或“<”填空:13_____35;223-_____﹣3.22.-2的相反数是__.23.当12点20分时,钟表上时针和分针所成的角度是___________. 24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.27.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?28.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________ (3)用含n 的式子列式,并计算第n 个图的钢管总数. 29.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.30.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.31.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB .(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.32.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x (s ), 甲乙两点之间距离为y (cm ). (1)当甲追上乙时,x = . (2)请用含x 的代数式表示y . 当甲追上乙前,y = ;当甲追上乙后,甲到达C 之前,y = ; 当甲到达C 之后,乙到达C 之前,y = .问题二:如图2,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB=30°.(1)分针OD 指向圆周上的点的速度为每分钟转动 cm ;时针OE 指向圆周上的点的速度为每分钟转动 cm .(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】 【分析】利用max}2,x x 的定义分情况讨论即可求解.【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x =2x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.A解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.3.C【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109. 故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.B解析:B 【解析】 【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B 【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.5.A解析:A 【解析】 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.6.C解析:C 【解析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.7.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A8.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查9.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.10.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.11.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.12.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.16.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.17.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.18.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 19.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.20.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD =4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.21.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:13<35;223>﹣3.故答案为:<、>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.22.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.23.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.24.46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB是平角且它等于∠1、∠2和∠COE三个角之和是解题关键.三、压轴题25.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A 在原点的左侧,点B 在点C 的右侧时,图略,c=285. 当点A 在原点的左侧,点B 在点C 的左侧时,图略,c=8. 综上,点c 的值为:±8,±285. 【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.26.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得 231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.27.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ; (2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP-NP=AP-BP=(AP-BP )=AB=15,∴综上所述,线段MN 的长度不发生变化,其值为15.(3)若点P 、Q 同时出发,设点P 运动t 秒时与点Q 距离为4个单位长度.①点P 、Q 相遇之前,由题意得4+5t=30+3t ,解得t=13;②点P 、Q 相遇之后,由题意得5t-4=30+3t ,解得t=17.答:若点P 、Q 同时出发,13或17秒时P 、Q 之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++ ()312n n =+ 【点睛】 此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.29.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析.【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可; (3)将图中所有锐角求和即可求得所有锐角的和与∠AOE 、∠BOD 和∠BOD 的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD ,∠AOC ,∠AOB ,∠BOE ,∠BOD ,∠BOC ,∠COE ,∠COD ,∠DOE .(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,30.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t =5时,射线OC 第一次平分∠MON .【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.31.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=,解得:314x =或112,又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解 综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.32.问题一、(1)32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011. 【解析】【分析】问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。
(完整版)人教版七年级数学上册期末模拟试卷及答案

(完整版)人教版七年级数学上册期末模拟试卷及答案 一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 2.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.3.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒ 4.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7 5.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③B .①②C .②④D .③④ 6.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .7 7.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( )A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=0 8.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 9.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180° 10.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .7 11.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32b B .a =2b C .a =52b D .a =3b12.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题13.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.14.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.15.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.16.单项式22ab -的系数是________. 17.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.19.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.20.﹣225ab π是_____次单项式,系数是_____. 21.计算:3+2×(﹣4)=_____.22.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.23.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、解答题25.计算: (1)()7.532-⨯-(2)()383+3233⨯-+-26.如图,已知180AOB ∠=︒,射线ON .()1请画出BON ∠的平分线OC ;()2如果70AON ∠=︒,射线OA OB 、分别表示从点O 出发东、西两个方向,那么射线ON 方向,射线OC 表示 方向.()3在()1的条件下,当60AON ∠=︒时,在图中找出所有与AON ∠互补的角,这些角是_ .27.温州市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题.(1)这次共抽取了 名学生进行调查.(2)用时在2.45~3.45小时这组的频数是_ , 频率是_ .(3)如果该校有1000名学生,请估计一周电子产品用时在0.45~3.45小时的学生人数.28.化简求值:()()2222533x y xy xy x y --+,其中1x =,12y . 29.如图,已知点C 为AB 上的一点,12AC =,23CB AC =,点D 是AC 的中点,点E 是AB 的中点,求DE 的长30.设A =3a 2+5ab +3,B =a 2﹣ab .(1)化简;A ﹣3B .(2)当a 、b 互为倒数时,求A ﹣3B 的值.四、压轴题31.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.C解析:C【解析】试题解析:A ∵0的绝对值是0,故本选项错误.B ∵互为相反数的两个数的绝对值相等,故本选项正确.C 如果一个数是正数,那么这个数的绝对值是它本身.D ∵0的绝对值是0,故本选项错误.故选C .3.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C .本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.5.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.6.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A .8.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b ,两边同时加上c ,可得 a+c<b+c ,故A 选项错误,不符合题意;B. 由a<b ,两边同时减去c ,得a-c<b-c ,故B 选项正确,符合题意;C. 由a<b ,当c>0时,ac<bc ,当c<0时,ac<bc ,当c=0时,ac=bc ,故C 选项错误,不符合题意;D.由 a<b ,当a>0,c ≠0时,a b c c <,当a<0时,a b c c>,故D 选项错误, 故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 9.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A 的补角只要用180°﹣∠A 即可.【详解】设∠A 的补角为∠β,则∠β=180°﹣∠A =120°.故选:C .【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.10.C解析:C【解析】【分析】根据同类项的概念求得m 、n 的值,代入m n +即可.【详解】解:∵2m ab -与162n a b -是同类项,∴2m=6,n-1=1,∴m=3,n=2,则325m n +=+=.故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.11.B解析:B【解析】【分析】从图形可知空白部分的面积为S 2是中间边长为(a ﹣b )的正方形面积与上下两个直角边为(a +b )和b 的直角三角形的面积,再与左右两个直角边为a 和b 的直角三角形面积的总和,阴影部分的面积为S 1是大正方形面积与空白部分面积之差,再由S 2=2S 1,便可得解.【详解】由图形可知,S 2=(a-b )2+b (a+b )+ab=a 2+2b 2,S 1=(a+b )2-S 2=2ab-b 2,∵S 2=2S 1,∴a 2+2b 2=2(2ab ﹣b 2),∴a 2﹣4ab +4b 2=0,即(a ﹣2b )2=0,∴a =2b ,故选B .【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x 秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB 上;设乙再走y 秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.14.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.16.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键. 解析:12- 【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】 解:单项式22ab -的系数是12-, 故答案为:12-. 【点睛】此题主要考查了单项式,正确把握相关定义是解题关键. 17.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.18.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n +1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n 个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.20.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 21.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.23.>.【解析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.24.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.三、解答题25.(1)13.5;(2)9.【解析】【分析】(1)根据有理数的四则混合运算解答; (2)根号二次根式的四则运算进行解答. 【详解】 解:(1) ()7.532-⨯-=7.56+=13.5;(2) ()383+3233⨯-+-=()23+3233⨯-+=6+23233-+=9.【点睛】本题考查的是有理数以及二次根式的计算问题,解题关键按照四则运算去计算即可.26.(1)详见解析;(2)北偏东20°,北偏西35°;(3),BON AOC ∠∠【解析】【分析】(1)以点O 为圆心,以任意长为半径画弧,与OB 、ON 相交于两点,再分别以这两点为圆心,以大于它们12长度为半径画弧,两弧相交于一点,然后过点O 与这点作射线OC 即为所求;(2)过点O 作OE ⊥AB ,根据垂直的定义以及角平分线的定义求出∠EON 与∠COE ,然后根据方位角的定义解答即可;(3)根据∠AON=60°,利用平角的定义可得∠BON ,利用角平分线的定义求出∠CON=60°,然后求出∠AOC=120°从而得解.【详解】解:(1)如图所示,OC 即为∠BON 的平分线;(2)过点O 作OE ⊥AB ,∵∠AON=70°,∴∠EON=90°-70°=20°,∴ON 是北偏东20°,∵OC 平分∠BON ,∴∠CON=12(180°-70°)=55°,∴∠COE=∠CON-∠EON=55°-20°=35°,∴OC 是北偏西35°;故答案为:北偏东20°;北偏西35°.(3)∵∠AON=60°,OC 平分∠BON ,∴∠CON=12(180°-60°)=60°, ∴∠AOC=∠CON+∠AON=60°+60°=120°,∴∠AOC+∠AON=180°,又根据平角的定义得,∠BON+∠AON=180°,∴与∠AON 互补的角有∠AOC ,∠BON ;故答案为:∠AOC ,∠BON.【点睛】本题考查了复杂作图,角平分线的定义,方位角,以及余角与补角,比较简单,作角平分线是基本作图,一定要熟练掌握.27.(1)400. (2)104; 0.26.(3)540【解析】【分析】(1)根据频数分布直方图得到各个时间段的频数,计算即可;(2)从频数分布直方图找出用时在2.45−3.45小时的频数,求出频率;(3)利用样本估计总体即可.【详解】解:(1)这次共抽取的学生数为:40+72+104+92+52+40=400(人),故答案为:400;(2)用时在2.45−3.45小时这组的频数为104, 频率为:1040.26400,故答案为:104;0.26;(2)1000×4072104540400(人).答:估计1000名学生一周电子产品用时在0.45~3.45小时的学生人数为540人.【点睛】本题考查的是读频数分布直方图的能力和利用统计图获取信息的能力以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.28.22126x y xy -,152-. 【解析】【分析】根据整式的运算法则,将代数式进行化简,然后将字母的值代入求取结果即可.原式=222215-53x y xy xy x y --=22126x y xy -.当x =1,y =-12时, 原式=2211121--61-22⨯⨯⨯⨯()() =15-2. 【点睛】 本题考查了整式的化简求值,解决本题的关键是正确理解题意,熟练掌握整式运算的法则,注意在合并同类项时找准同类项.29.4【解析】【分析】 根据已知条件可求出28,203CB AC AB ===,再根据点D 是AC 的中点,点E 是AB 的中点,求出,DC AE ,由图可得出DE AE AD =-,计算求解即可.【详解】解:∵12AC =,23CB AC =∴28,203CB AC AB === ∵点D 是AC 的中点,点E 是AB 的中点∴10,6AE AD DC ===∴1064DE AE AD =-=-=.【点睛】本题考查的知识点是与线段中点有关的计算,能够根据图形找出相关线段间的数量关系是解此题的关键.30.(1)8ab +3;(2)11【解析】【分析】(1)把A 与B 代入A ﹣3B 中,然后进行化简即可;(2)根据倒数的性质可得ab =1,然后代入计算即可.【详解】解:(1)∵A =3a 2+5ab +3,B =a 2﹣ab ,∴A ﹣3B =3a 2+5ab +3﹣3a 2+3ab =8ab +3;(2)由a ,b 互为倒数,得到ab =1,则A ﹣3B =8+3=11.本题考查了整式的化简求值,灵活运用四则运算法则是解答本题的关键.四、压轴题31.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。
(完整版)人教版七年级数学上册期末模拟试卷及答案

(完整版)人教版七年级数学上册期末模拟试卷及答案一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°2.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( )A .1B .2C .3D .43.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟 D .36011分钟 4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .5 5.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,3 6.下列选项中,运算正确的是( ) A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab += 7.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )A .﹣9℃B .7℃C .﹣7℃D .9℃8.在实数:3.14159π17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( )A .1个B .2个C .3个D .4个9.下列说法中正确的有( )A .连接两点的线段叫做两点间的距离B .过一点有且只有一条直线与已知直线垂直C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线10.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .1601603045x x -=B .1601601452x x -=C .1601601542x x -=D .1601603045x x+= 11.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .712.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
浙教版2022-2023学年七年级上学期期末数学模拟测试卷(五)(解析版)

浙教版2022-2023学年七年级上学期期末数学模拟测试卷(五)(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.下列各图中表示线段 MN ,射线 PQ 的是( )A .B .C .D .【答案】C【解析】由线段及射线的定义可得,表示线段 MN ,射线 PQ 的是故答案为:C. 2.嫦娥五号奔走38万千米外的月球带着“月球标本”飞回地球.数据380000用科学记数法表示为( ) A .380×103 B .3.80×105 C .38.0×104 D .0.380×106 【答案】B【解析】380000= 3.80×105 , 故答案为:B.3.−12 的倒数与 −2 的相反数的和为( )A .0B .4C .−32D .−52【答案】A【解析】 −12的倒数与 −2 的相反数的和为:-2+2=0.故答案为:A.4.下列判断正确的是( ) A .如果 3x =2 ,那么 x =32B .如果 ax =bx ,那么 a =bC .如果 5x −y =2y ,那么 5x =3yD .如果 a −2b =0 ,那么 ab =2 【答案】C【解析】A. 如果 3x =2 ,那么 x =23,故此选项不符合题意;B. 如果 ax =bx ,当x≠0时,那么 a =b ,故此选项不符合题意;C. 如果 5x −y =2y ,那么 5x =3y ,正确;D. 如果 a −2b =0 ,当b≠0时,那么 ab =2 ,故此选项不符合题意故答案为:C5.已知关于 x 的方程 2x +8=−6 与 2x −3a =−5 的解相同,则 a 的值为( ) A .13 B .3 C .−3 D .8 【答案】C【解析】∵2x +8=−6 , ∴x =−7 ,把 x =−7 代入 2x −3a =−5 得 −14−3a =−5 , ∴a =−3 . 故答案为:C. 6.《九章算术》中“盈不足术”有这样的问题:“今有共买羊,人出六,不足四十五;人出八,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出 6 元,则差 45 元;每人出 8 元,则差 3 元.求人数和羊价各是多少?设买羊人数为 x 人,则根据题意可列方程为( ) A .6x +45=8x +3 B .6x +45=8x −3 C .6x −45=8x +3 D .6x −45=8x −3 【答案】A【解析】设买羊人数为 x 人,则根据题意可列方程为:6x +45=8x +3故答案为:A.7.下列等式变形:(1)如果 ax =ay ,那么 x =y ;(2) 如果 a +b =0 , 那么 a 2=b 2 ;(3)如果 |a|=|b| ,那么 a =b ;(4)如果 3a =2b ,那么 a 2=b 3.其中正确的有( )A .(1)(2)(4)B .(1)(2)(3)C .(1)(3)D .(2)(4) 【答案】D【解析】当 a =0 时,x 和y 的值可以不相等,故(1)错误;a +b =0 ,即 a =−b ,等号两边平方,即得出 a 2=b 2 ,故(2)正确; 当a ,b 互为相反数时满足 |a|=|b| ,但不一定满足 a =b ,故(3)错误; 3a =2b ,等号两边同时除以6,即得出 a 2=b 3,故(4)正确.综上可知正确的有(2)(4), 故答案为:D. 8.《孙子算经》是中国古代数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余一尺,问木头长多少尺?可设木头长为x 尺,则所列方程正确的是( ) A .(x +4.5)−2x =1 B .2x −(x +4.5)=1 C .x −x+4.52=1 D .x+4.52−x =1【答案】C【解析】设木头长为x 尺,根据题意得x −x+4.52=1.故答案为:C.9.a 、b 、c 三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )①abc >0 ;②−c >a >−b ;③1b >1a;④|c|=−cA .4个B .3个C .2个D .1个 【答案】B【解析】∵c <-2<-1<b <0<1<a , ∴abc >0,故①正确; ∴-c >2,∴-c >a >-b ,故②正确;∵−1b<0,1a >0∴1b <1a ,故③错误; ∵c <0,∴|c|=-c ,故④正确; ∴正确的个数为3个. 故答案为:B.10.如图是一个由4张纸片拼成的长方形,相邻纸片之间互不重叠也无缝隙,其中①②是两个面积相等的梯形,③④是正方形,若要求出长方形的面积,则需要知道下列哪个条件( )A .①与②的周长之差B .③的面积C .①与③的面积之差D .长方形的周长【答案】D【解析】如图,∵①②是两个面积相等的梯形,③④是正方形,设CD=x,DE=a,AB=y,则CE=a+x,AE=2a+y∴长方形的面积=(a+x)(2a+y)=2a2+ay+2ax+xy,∵①②是两个面积相等的梯形,∴12(a+x+a)y=12(2a+2a+y)x∴y=2x,∴长方形的面积=2a2+2ax+2ax+2x2=2(a+x)2,A、①与②的周长之差为a+a+x+y-(2a+2a+y+x)=-2a,故A的条件不能求出长方形的面积;故A 不符合题意;B、③的面积为a2,此条件不能求出长方形的面积,故B不符合题意;C、①与③的面积之差为13(a+a+x)y−a2=2ax+x2−a2,此条件不能求出长方形的面积,故C 不符合题意;D、长方形的周长为2(2a+y+a+x)=2(2a+2x+a+x)=6(a+x),此条件能求出长方形的面积,故D 符合题意;故答案为:D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.25的算术平方根为x,4是y+1的一个平方根,则x−y=.【答案】-10【解析】(1)∵25的算术平方根为x,∴x=5,∵4是y+1的一个平方根,∴y+1=16,∴y=15,∴x−y=5−15=10,故答案为:-10.12.如图,C,D是线段AB上的两点,若CB=4cm,DB=7cm,且D是AC的中点,则线段AC的长等于cm.【答案】6【解析】由线段的和差,得DC=DB−CB=7−4=3cm,由D是AC的中点,得AC=2DC=6cm,故答案为:6.13.若代数式x−2y的值是4,则代数式−2x+4y+1的值为.【答案】−7【解析】∵x−2y=4,∴−2x+4y+1=−2(x−2y)+1=−2×4+1=−8+1=−7.故答案为:−7.14.钟面上4时30分,时针与分针的夹角是度,15分钟后时针与分针的夹角是度.【答案】45;127.5【解析】根据题意:钟面上4时30分,时针与分针的夹角是30°+3060×30°=45°;15分钟后时针与分针的夹角是5×30°−(30+15)×0.5°=150°−22.5°=127.5°.故答案为:45,127.5.15.如图,OA的方向是北偏东15∘,OB的方向是西北方向,若∠AOC=∠AOB,则OC的方向是.【答案】北偏东75°【解析】∵OA的方向是北偏东15°,OB的方向是西北方向,∴∠AOB=15°+45°=60°.∵∠AOC=∠AOB,∴∠AOC=60°,∴OC的方向是北偏东15°+60°=75°.故答案为:北偏东75°.16.已知正整数a,b,c均小于5,存在整数m满足2022+1000m=2a+2b+2c,则m(a+ b+c)的值为.【答案】-14【解析】∵正整数a,b,c均小于5,∴2a+2b+2c⩽24+24+24=48,2a+2b+2c⩾2+2+2=6,∴6⩽2022+1000m⩽48,∴−2.016⩽m⩽−1.974,∵m为整数,∴m=−2,∴2022+1000m=22.∵2a,2b,2c,的取值只能为2,4,8,16,观察得只有2+4+16=22,∴a+b+c=1+2+4=7,∴m(a+b+c)=−2×7=−14.故答案为:-14.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.计算:(1)4×(−2)+(−3)÷(−3 5);(2)−12×22−12×(14−16)【答案】(1)解:原式= 4×(−2)+(−3)×(−53)=−8+5=−3(2)解:原式= −12×22−12×(14−16)=−1×4−3+2=−5.18.解方程:(1)2x−3(x−1)=1;(2)1−x−12=2(x+1).【答案】(1)解:2x−3(x−1)=12x−3x+3=1−x=−2x=2;(2)解:1−x−12=2(x+1)2−x+1=4x+4−5x=1x=−15.19.已知a、b满足(a+1)2+|2−b|=0.(1)求a,b的值.(2)若A=3a2−4ab,B=b2−2ab,求A−2B的值.【答案】(1)解:∵(a+1)2+|2−b|=0,∴a+1=0,2-b=0,∴a=-1,b=2;(2)解:∵A=3a2−4ab,B=b2−2ab,∴A−2B= 3a2−4ab-2(b2−2ab)= 3a2−4ab-2b2+4ab=3a2-2b2,∵a=-1,b=2,∴原式=3×1-2×4=-5.20.将一副三角板叠放在一起,使直角顶点重合于点O.(1)如图1,若∠AOD=35°,求∠BOC的度数.(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.【答案】(1)解:∵∠AOB=90°,∠AOD=35°,∴∠BOD=90°-35°=55°,∵∠COD=90°,∴∠BOC=90°-55°=35°(2)解:∠AOC+∠BOD=180°,如图1时,∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=∠AOB+∠BOC+∠BOD=∠AOB+∠COD=90°+90°=180°;如图2时,∠AOC+∠BOD=360°-90°-90°=180°;综上可知,∠AOC+∠BOD=180°.21.某长方形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.(1)[规律总结]若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为.(用含n的代数式表示).(3)[问题解决]若一条这样的人行道一共有2022块等腰直角三角形地砖,则这条人行道正方形地砖有多少块?【答案】(1)2(2)2n+4(3)解:由规律知:等腰直角三角形地砖块数2n+4是偶数,2022正好是偶数.解:设正方形地砖有n块?则4+2n=2022,得n=1009答:正方形地砖有1009块。
江苏省盐城市鞍湖实验学校2014-2015学年七年级上期末数学模拟试卷(5)含答案

七年级秋学期期末数学模拟试卷(五)(时间:100分钟满分:100分)一、选择题(每小题2分,共20分)1.-种食品的包装质量标准是“30±0.2”kg,下列几包抽检合格的是( ) A.30.7 kg B.30.5 kg C.30.1 kg D.29.7 kg2.已知水星的半径约为24 400 000 m,该数据用科学记数法表示为( )A.0.244×108 m B.2.44×106 m C.2.44×107 m D.24.4×106 m 3.如图所示是一个几何体表面展开图(字在外表面上),面“江”的对面所写的字是( ) A.我B.爱C.春D.都4.下列各式中,计算正确的是( )A.2x+x=2x2B.153.5°+20°3'=173°33'C.5a2-3a2=2 D.2x+3y=5xy5.下列说法:①有理数中,0的意义仅表示没有;②整数包括正整数和负整数;③正数和负数统称有理数;④0是最小的整数;⑤负分数是有理数.其中正确的个数( ) A.1 B.2 C.3 D.56.对于下列说法,正确的是( )A.过一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.测量某学生的跳远成绩,正确做法的依据是“两点之间,线段最短”D.不相校的两条直线叫做平行线7.如图,数轴上的点A,B分别对应实数a,b,下列结论中正确的是( )A.a>b B.a>b C.-a<b D.a+b<08.如图,点A,O,B在一条直线上,∠1是锐角,则∠1的余角是( )A.12∠2-∠1 B.12∠2-32∠1C.12(∠2-∠1)D.∠1+∠29.某书店推出以下购书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,打九折;③一次性购书超过200元,打八折,如果王明同学一次性购书共付款162元,那么王明所购书的原价为( )A.180元B.202.5元C.180或202.5元D.180或200元10.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,….若m 3分裂后,其中有—个奇数是103,则m 的值是( )A .9B .10C .11D .12二、填空题(每小题3分,共18分)11.若单项式2xy m -1与-x 2n -3y 3的和仍是单项式,则m +n 的值是_______.12.若3x -+(y +2)2=0,则y x 为_______.13.若x 2-2x =3,则代数式2x 2-4x +3的值为_______.14.下图表示1张餐桌和6张椅子(每个小半圆代表1张椅子,一人一椅),若按这种方式摆放30张餐桌可供_______人同时坐下就餐.15.如图所示是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为_______.16.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.三、解答题(共62分)17.(6分)计算:(1)23112133434-+-+; (2)()()201411233---÷-+-.18.(6分)解下列方程:(1)()3412x -=; (2)3153126x x +--=-.19.(8分)先化简再求值:520+2(-3y3z-2x)-4(-x-32y3z),其中x,y,z满足下列方程●●●.圆点部分是被周亮不小心用墨水污染的条件,可是汤灿同学却认为不要那部分条件也能求出正确答案,你同意汤灿同学的说法吗?请你通过计算解释原因.(1)你的判断是_______;(填“同意”或“不同意”)(2)原因:20.(8分)回答下列问题:(1)如图所示的甲、乙两个平面图形分别能折成什么几何体?(2)由多个平面围成的几何体叫做多面体,若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v-e的值,你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.21.(8分)(1)由大小相同的小立方块搭成的几何体如图,请在下图的方格中画出该几何体的俯视图和左视图;(2)用小立方块重新搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则搭建这样的新几何体最少要_______个小立方块,最多要_______个小立方块;(3)如图是老师每天在黑板上书写用的粉笔,请画出图示粉笔的俯视图.22.(8分)古运河是扬州的母亲河,为打造古运河风光带,现有一项河道整治任务由A 、B 两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成,现在A 工程队单独做6天后,B 工程队加入,两队合做完成剩下的工程,问A 工程队一共做了多少天?(1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下:万颖:1116161624x ⎛⎫⨯++ ⎪⎝⎭刘寅:()11611624y y +-= 根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x 、y 表示的意义,然后在方框中补全万颖同学所列的方程:万颖:x 表示_______,刘寅:y 表示_______,万颖同学所列不完整的方程中的方框内应填_______;(2)求A 工程队一共做了多少天.(写出完整的解答过程)23.(8分)已知同一平面内∠AOB =90°,∠AOC =60°.(1)填空:∠COB =_______;(2)若OD 平分∠BOC ,OE 平分∠AOC ,则∠DOE 的度数为_______°;(3)试问在(2)的条件下,如果将题目中∠AOC =60°改成∠AOC =2α(α<45°),其他条件不变,你能求出∠DOE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(10分)已知:线段AB =20 cm .(1)如图①,点P 沿线段AB 自A 点向B 点以2 cm/s 的速度运动,点P 出发2s 后,点Q 沿线段BA 自B 点向A 点以3 cm/s 的速度运动,问再经过几秒后P ,Q 相距5 cm?(2)如图②,AO =4 cm ,PO =2 cm ,∠POB =60°,点P 绕着点O 以60度/s 的速度逆时针旋转1周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若P ,Q 两点能相遇,求点Q 运动的速度.参考答案一.1.C 2.C 3.D 4.B 5.A 6.B 7.C 8.C 9.C 10.B二.11.6 12.-8 13.9 14.12215.30 16.72三、17.(1)-18.(2)-318.(1)3x-12=12,3x=24,x=8.(2)3(3x+1)-(5x-3)=-6,9x+3-5x+3=-6,9x-5x=-6-3-3,4x=-12.x=-3.19.(1)同意(2)汤灿同学的说法正确.20.(1)甲是长方体,乙是五棱锥.(2)规律:顶点数+面数-棱数=2.(3)2221.(1)如图:(2)57 (3)俯视图如图:22.(1)A,B两工程队合做的天数(或者B工程队做的天数)A工程队一共做的天数 1 (2)12天.23.(1)150°或30°(2)45(3)①45°.②45°.24.(1)相距5 cm.(2)9 m/s或2.8 m/s.。
数学数学人教版七年级上册数学期末模拟试卷及答案

数学数学人教版七年级上册数学期末模拟试卷及答案一、选择题1.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b2.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 3.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+= D .6352x x --=4.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯ B .31.0410-⨯ C .41.0410-⨯ D .51.0410-⨯ 5.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+66.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 7.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .78.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1 C .(-1)n -1x 2n +1 D .(-1)n x 2n +19.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1 10.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =11.15( ) A .1,2B .2,3C .3,4D .4,512.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 169________ 17.计算:()222a-=____;()2323x x ⋅-=_____.18.因式分解:32x xy -= ▲ .19.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).20.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 21.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 22.方程x +5=12(x +3)的解是________. 23.已知代数式235x -与233x -互为相反数,则x 的值是_______. 24.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题25.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.26.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.27.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.28.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.29.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级数学期末模拟试卷(1-5)

七年级数学期末模拟试卷(一)班级 姓名 座号一、精心选一选,你一定能选对!(每小题只有一个正确答案,每小题2分,共20分)1、在211-,1.2,-2,0 ,-(-2)中,负数的个数有( )A 、2个B 、3个C 、4个D 、5个 2、如图所示,则下列判断正确的是( )A 、a b +>0B 、a b +<0C 、ab >0D 、a b < 3、小明做了以下4道计算题: ①2008(1)2008-= ② 011--=() ③111236-+=- ④11122÷-=-() 请你帮他检查一下,他一共做对了( )A 、 1题B 、 2题C 、 3题D 、 4题 4、下列说法中,正确的是( )A 、相交的两条直线叫做垂直。
B 、经过一点可以画两条直线。
C 、平角是一条直线。
D 、两点之间的所有连线中,线段最短。
5、小丽制作了一个对面图案均相同的正方体礼品盒(如下图所示),则这个正方体礼品盒的平面展开图可能是。
( )A B C D6、下列事件中,是必然事件的是( )A 、打开电视机,正在播放新闻。
B 、母亲的年龄比儿子的年龄大。
C 、通过长期努力学习,你会成为数学家。
D 、下雨天,每个人都打着伞。
7、如图,∠AOB=180°,OD 、OE 分别是∠AOC 和∠BOC 的平分线,则与线段OD 垂直的射线是( )A 、OAB 、OC C 、OED 、OB8、某校七(1)班的全体同学最喜欢的球类运动用图所示的统计图来表示,下面说法正确的是( ) A 、从图中可以直接看出喜欢各种球类的具体人数; B 、从图中可以直接看出全班的总人数; C 、从图中可以直接看出全班同学一学期来喜欢各种球类的变化情况; D 、从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系。
9、根据如图提供的信息,可知一个杯子的价格是( ) A 、51元 B 、35元 C 、8元 D 、7.5元10、观察下列算式:1234567822242821623226421282256========⋅⋅⋅⋅⋅⋅, , , , , , , ,根据上述算式中的规律,你认为20082的末位数字是( ) A 、2 B 、 4 C 、 6 D 、 8二、你能填得又快又准吗?(每小题2分,共10分) 11、-2的倒数是12、用“>”或“<”填空:-3 -513、一个数的绝对值是4,则这个数是14、如图,OC 平分∠AOB ,若∠BOC=28°32′,则∠AOB= 15、方程2x -m = 5中,当x = 1时,m = 三、请你来算一算、做一做,千万别出错哟!(每小题6分,共30分)16、 1108(2)()2--÷-⨯- 17、3)2()413181()24(-++-⨯-18、解方程:()()315131-=+--x x 1211102.06.015.003.025.0-+=-+x x xO BE CD图A C BO19、先化简,再求值:22963()y x y x -++- 其中123x y =-=-,20、如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:(4分)主视图 左视图四、解答题(21.22每小题8分共16分)21、已知:线段AB =6厘米,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长。
数学人教版(七年级)初一上册数学期末模拟测试题及答案

数学人教版(七年级)初一上册数学期末模拟测试题及答案一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .123.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒4.-2的倒数是( ) A .-2B .12- C .12D .25.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯ C .66.04810⨯ D .60.604810⨯ 6.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-27.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .68.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣2 9.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣110.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对11.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠212.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()A.设B.和C.中D.山13.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于()A.15°B.25°C.35°D.45°14.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有()A.45人B.120人C.135人D.165人15.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN 的长度为()cm.A.2 B.3 C.4 D.6二、填空题16.在灯塔O处观测到轮船A位于北偏西54︒的方向,同时轮船B在南偏东15︒的方向,∠的大小为______.那么AOB17.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N M F
E
D
C
B
A
七年级数学上册期末考试模拟试题
数学试卷
一、选择题
1.右图为张先生家的一张存折的一部分, 从图中可知,截止2009年1月3日, 此张存折还结余( )
A .2300元 B.500元 C.4100元 D.1800元 2.0.5-的相反数是( )
A.0.5
B.-0.5
C.-2 D.2 3.下列说法正确的是( )
A.23vt -
的系数是-2 B .23
3ab 的次数是6次 C .5
x y +是多项式 D.21x x +-的常数项为1
4.四川汶川发生里氏8.0级地震后,半月内,社会各界纷纷向灾区捐款约43 681 000 000元人民币。
这笔款额用科学计数法表示(保留两个有效数字)正确的是( )
A.10
4.310⨯ B. 9
4.410⨯ C. 10
4.410⨯ D.11
0.4410⨯ 5.已知关于x 的方程432x m -=的解是x=m,则m 的值是( )
A.2 B.-2 C.2或7 D.-2或7 6.下列变形中,不正确的是( )
A.()a b c d a b c d ++-=++- B.()a b c d a b c d --+=-+- C.()a b c d a b c d ---=--- D.()a b c d a b c d +---=+++ 7.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在
M 、N 的位置,且∠MFB=1
2
∠M FE.则∠M FB=( )
A.30°B.36°C .45°D.72°
8.一个无盖的正方体盒子的平面展开图可以是下列图形中的( )
A .只有图① B.图①、图② C.图②、图③ D.图①、图③
9.已知 2
(1)25a +=,且0a <,3214a b +++=,且0ab >,则a b +=( )
A.-19 B.-9 C.13 D .3
10.下列说法:①若a 为有理数,则a -表示负有理数;②()2
2
a a =-;③若a
b >,则2
2
a b >;④若0a b +=,则3
3
0a b +=.其
中正确的个数有( )
A.1个
B.2个 C.3个 D.4个 11.某个体商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件盈利25%,另一件亏本25%,则在这次买卖中,他( )
A.不赚不赔
B.赔12元 C.赔18元 D.赚18元 12.如图,∠AOB 为角,下列说法:①∠AOP=∠BOP ;②∠AOP=
1
2
∠AOB ; A
③∠AOB=∠A OP+∠B OP;④∠A OP =∠BO P=
1
2
∠AO B.其中能说明射线OP 一定是∠AOB 的平分线的有( )
A.①②
B.①③④
C.①④ D .只有④ 二、填空题
13.写出3
2
2x y -的一个同类项_______________________.
14.已知∠AOC=60°,∠AOB ︰∠A OC=2︰3,则∠BOC 的度数是______________.
15.今年七月,为迎接奥运圣火在武汉传递,某校在汉口江滩广场举行了“我爱奥运,祝福圣火”的万人签名活动。
学校在广场上摆放了一些长桌用于签名,每张桌子单独摆放时,可以容6人同时签名,(如图1,每个小圆弧代表一个签名的位置),按图2的方式摆放两张长桌可以容纳10人同时签名,若按这种方式摆放8张桌子(如图3),这8张桌子可以同时容纳的签名人数是_________________
.
图3
图2
图1
⋅⋅⋅
16.若定义一种新的运算,规定ab ad bc c d
=-,且
1123
x --与1
4-互为倒数,则x =_________.
三、解答题
17.(本题6分)计算:()243
1(2)453⎡⎤-+-÷⨯--⎣⎦
18.(本题10分)解方程. (1)3541x x +=+ (2)
3157
146
x x ---=
19.(本题8分)先化简,后求值.
(1)化简:()()
22222212a b ab ab a b +--+-
(2)当()2
21320b a -++=时,求上式的值.
(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?
21.(本题8分)已知方程564m m -=的解也是关于x 的方程()234x n --=的解. (1)求m、n 的值;
(2)已知线段AB=m ,在直线AB 上取一点P,恰好使AP
n PB
=,点Q 为PB 的中点,求线段AQ 的长.
22.(本题10分)市政府要求武汉轻轨二七路段工程12个月完工。
现由甲、乙两工程队参与施工,已知甲队单独完成需要16个月,每月需费用600万元;乙队单独完成需要24个月,每月需费用400万元。
由于前期工程路面较宽,可由甲、乙两队共同施工。
随着工程的进行,路面变窄,两队再同时施工,对交通影响较大,为了减小对解放大道的交通秩序的影响,后期只能由一个工程队施工.工程总指挥部结合实际情况现拟定两套工程方案:
①先由甲、乙两个工程队合做m 个月后,再由甲队单独施工,保证恰好按时完成. ②先由甲、乙两个工程队合做n 个月后,再由乙队单独施工,也保证恰好按时完成. ⑴求两套方案中m 和n的值;
⑵通过计算,并结合施工费用及施工对交通的影响,你认为该工程总指挥部应该选择哪种方案?
23.(本题10分)如图1,点O为直线AB 上一点,过点O作射线OC,使∠BOC=120°.将一直角三角形的直角顶点放在点O
处,一边OM在射线OB 上,另一边ON 在直线A B的下方.
(1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在∠BOC 的内部,且恰好平分∠B OC ,问:直线ON 是否平分∠A OC?请说明理由;
(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角∠AOC ,则t 的值为 (直接写出结果);
(3)将图1中的三角板绕点O 顺时针旋转至图3,使ON 在∠AOC 的内部,请探究:∠AOM 与∠N OC 之间的数量关系,
B
A
并说明理由.
24.(本题12分)如图,已知数轴上有三点A、B 、C,A B=1
2
A C,点C对应的数是200.(1)若
B C=300,求点A 对应的数;
(2)在(1)的条件下,动点P 、Q分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P、Q、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足M R=4RN(不考虑点R 与点Q 相遇之后的情形);
(3)在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E、D两点同时出发向左运动,点P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q在从是点D运动到点A 的过程中,3
2
QC-A M的值是否发生变化?若不变,求其值;若不变,请说明理由.
参考答案 A B
N
M
O C
图2
A
-800
200
C O N
M
C
B
A
图3
--
二、填空题
13.32
2x y (答案不唯一) 14.100°或20° 15.34 16.-1 三、解答题
17. 7 . 18.(1)4x = (2)1x =-. 19.原式=2
1a b -=1. 20.(1)250元(2)全球通. 21.(1)6m =,2n = (2)9或5. 22.(1)6m =,8n =(2)总费用均为9600元,选择方案①. 23.(1)平分(2)40秒或10秒 (3)∠AOM-∠NO C=30°. 24.(1)-400 (2)60秒 (3)不变,值为300.。