西安交通大学半导体物理(含MOS器件)

合集下载

西安交通大学招收硕士学位研究生初试参考书目

西安交通大学招收硕士学位研究生初试参考书目
803
测试技术
《机械工程测量与试验技术》机械工业出版社2004年版黄长艺,《机械工程测试技术》机械工业出版社2002年版陈花玲
804
材料科学基础
《材料科学基础》机械工业出版社2006年第二版石德珂
805
工程热物理基础(流体力学或传热学或工程热物理任选一门)
《流体力学》西安交通大学出版社2001年景思睿等,《工程热力学》高等教育出版社2001年沈维道,《传热学》高等教育出版社1998年版陶文铨
707
教育学与运动训练学
《运动训练学》全国体育学院通用教材人民体育出版社2000年田麦久,《教育学》人民教育出版社1999年王道俊等,《运动训练学》人民体育出版社
708
文学概论
《西方文学理论史》高等教育出版社2002年马兴国,《文学理论教程》高等教育出版社1998年童庆炳,《中国古代文学理论批评史》北京大学出版社2001年张少康,
2010年西安交通大学招收硕士学位研究生初试参考书目(复试参考书见招生目录备注栏)
科目代码
科目名称
参考书目
256
日语(二外)
《标准日本语》初级(上、下)2005版,中级(上册)1990版人民教育出版社
257
俄语(二外)
《东方俄语》(1-2册)外语教学与研究出版社2003年9月丁树杞
258
德语(二外)
845
经济学
《微观经济学》(第四版)中国人民大学出版社2000年版平狄克、鲁宾费尔德,《宏观经济学》(第五版)中国人民大学出版社2005年版曼昆
846
管理学基础
《管理学》上海人民出版社2005年高等教育出版社1988年尤叙球、包世华,《结构力学》(上、下册)高等教育出版社(第四版)杨弗康

绪论-半导体器件可靠性物理

绪论-半导体器件可靠性物理

•金铝合金 •管腿腐蚀
•电迁移
•管腿损伤
•铝腐蚀
•漏气
•铝划伤
•外来物引起漏短路
•铝缺口
•绝缘珠裂缝
•台阶断铝 •标志不清
•过电应力烧毁
• 键合缺陷引起的失效:键合颈部损伤、键合强度不够、键合面沾污金-铝合金、
键合位置不当、键合丝损伤、键合丝长尾、键合应力过大损伤硅片。
• 表面劣化机理:钠离子沾污引起沟道漏电、辐照损伤,表面击穿、表面复合引
课程的重点
绪论
是什么? 干什么? 为什么学? 学什么?
绪论
半导体可靠性物理学
产生过程
产生背景
其产生与其他边缘性学科(例如,环境工程学,系统工程学, 生物工程学)一样,是科学技术发展的必然。随着电子系统的
发展,其复杂性和可靠性成了尖锐的矛盾,系统越复杂,所用 元器件越多,失效的概率就越大,即可靠性越不易保证。
绪论
主要的失效机理
指器件失效的实质原因。即引起器件失效的物理或化学过程。
设计问题引 起的缺陷
体内退化 机理
氧化层 缺陷
金属化系 统退化
封装退化 机理
•版图 •工艺方案 •电路和结构
•二次击穿 •CMOS闩锁效应 •中子辐射损伤 •重金属沾污 •材料缺陷
•针孔 •厚度不均匀 •接触孔钻蚀 •介质击穿等
两个概念
研究领域和任务
强调两个概念:器件的失效和退化
在目前许多的文献中,二者是等效的。但严格地讲,二者有区别。
共同之处:器件特性偏离了正常指标
不同之处:失效-更强调出现不正确的器件、电路 功能
本课程中,二者可互相替换。
绪论
半导体可靠性物理学
研究领域、研究任务

半导体物理与材料

半导体物理与材料

E1
允带
Ec
E(K)Energy
E2
禁带
简化为 电 子
能 量
Eg
E3
K
Ev
Eg EC EV
Einstein光电效应实验。我们简单回顾一下。这个实验引入了重 要的一个关系。图1-5c 中的直线的斜率是h/q。因此h可以通过这个实 验测得。Y轴的截止电压由金属的功函数(work function)W决定。 光子(photon)的能量为E=hν,只有当入射光的能量大于W时,才 使电子从金属表面逸出,并产生光电流。
世界GaAs单晶的总年产量已超过200吨(日本1999年的 GaAs单晶的生产量为94吨,InP为27吨),其中以低位错密 度生长的2~3英寸的导电GaAs衬底材料为主。
InP具有比GaAs 更优越的高频性能,发展的速度更快; 但不幸的是,研制直径3英寸以上大直径的InP单晶的关键技 术尚未完全突破,价格居高不下。
半导体电导率的特征:
1、 变化范围很宽; 2、 随温度上升明显; 3、 随掺杂浓度增加(其中少量杂质电离,载
流子浓度剧增),电导率急剧增加); 4、 波长合适的光照射,光激发会使载流子浓
度和电导率增加(这实际上就是半导体的光 电导现象)。
➢ 除了半导体的电导率具有以上几方面特征之外, 许多半导体材料述还有比金属明显得多的温差电效 应、磁电效应和压电效应。此外,半导体的pn结、 金属与半导体的接触、不同种半导体材料的接触 (即异质结)等由界面所表现出来的结特性以及电场 对半导体表面的场效应等也是半导体的一些重要特 性。
The band gap of the most commonly used semiconductors is of order 1eV,for Si,Eg=1.1eV.

半导体物理基础 第六章 MOS

半导体物理基础   第六章   MOS

QS QB qNa xd
2 qNa xd S 2k s 0
(6-5)

(6-6)
6.2 理想MOS电容器
代入(6-44)式解出 x
d
Xd
kS 0 kS 0 2VG 1 C0 2 C0 C0 qkS 0 N a
2 0 12
(6-45)
C 2C 1 qN k VG C0 a S 0
6.2 理想MOS电容器
积累区( VG <0)
MOS系统的电容C基本上等于绝缘体电容 C0。当负偏压的数值逐渐减少时,空间电 荷区积累的空穴数随之减少,并且 QS 随 C也就变小。 平带情况( VG =0)
S
的变化也逐渐减慢, C S 变小。总电容
C FB C0
1 k 0 LD 1 k s x0
(6-1)
掌握载流子积累、耗尽和反型和强反型的概念。 正确画出流子积累、耗尽和反型和强反型四种情况的能带图。 导出反型和强反型条件
6.2 理想MOS电容器
6.2 理想MOS电容器
系统单位面积的微分电容
微分电容C与外加偏压 VG 的关系称为MOS系统的电容—电压特性。
dQM C dVG
(6-1)
S =半导体表面的电场
k0 =氧化物的相对介电常数
k S =半导体相对介电常数
xd =空间电荷区在半导体内部的边界亦即空间电荷区宽度。
外加电压 VG 为跨越氧化层的电压
V0和表面势 S 所分摊:
(6-2)
VG V0 S
6.1 理想MOS结构的表面空S结构内的电位分布
(6-22)
dV0 d s 1 dVG C dQM dQM dQM

半导体物理mos结构课程设计

半导体物理mos结构课程设计

半导体物理mos结构课程设计一、课程目标知识目标:1. 理解半导体的基本性质,掌握半导体材料的分类及特点。

2. 学习MOS(金属-氧化物-半导体)结构的原理,了解其工作方式和应用领域。

3. 掌握MOS电容的特性,了解其在集成电路中的作用。

技能目标:1. 能够运用所学知识分析半导体器件的基本原理。

2. 学会使用相关软件或仪器进行MOS结构的模拟和测试,提高实践操作能力。

3. 能够运用所学知识解决实际问题,培养创新思维和团队合作能力。

情感态度价值观目标:1. 培养学生对半导体物理的兴趣,激发学生探索科学的精神。

2. 增强学生的环保意识,认识到半导体技术在可持续发展中的重要性。

3. 培养学生的团队协作精神,提高沟通与表达能力。

课程性质:本课程为高二年级物理选修课程,以理论教学和实践操作相结合的方式进行。

学生特点:高二学生已具备一定的物理知识基础,具有较强的逻辑思维能力和动手操作能力。

教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力和解决问题的能力。

通过课程学习,使学生能够达到上述课程目标,为后续相关课程打下坚实基础。

二、教学内容1. 半导体物理基础:包括半导体的基本性质、能带理论、杂质和缺陷等概念,重点讲解半导体材料的分类及特点。

教材章节:第一章《半导体物理基础》2. MOS结构原理:介绍MOS结构的组成、工作原理及其在集成电路中的应用。

教材章节:第三章《金属-氧化物-半导体(MOS)结构》3. MOS电容特性:分析MOS电容的C-V特性、阈值电压等参数,探讨其在集成电路中的作用。

教材章节:第三章《金属-氧化物-半导体(MOS)结构》4. 实践操作:利用相关软件或仪器进行MOS结构的模拟和测试,观察MOS 电容的特性,培养学生动手能力和实践操作技能。

教学安排与进度:1. 第一周:半导体物理基础(2课时)2. 第二周:MOS结构原理(2课时)3. 第三周:MOS电容特性(2课时)4. 第四周:实践操作(2课时)教学内容确保科学性和系统性,注重理论与实践相结合,通过以上教学安排,使学生全面掌握半导体物理及MOS结构的相关知识。

半导体物理与器件教学大纲

半导体物理与器件教学大纲

半导体物理与器件(教学大纲)Semiconductor Physics and Devices课程编码:12330540学分:课程类别:专业基础课计划学时: 48 其中讲课: 48 实验或实践: 0 上机:0适用专业:IC设计、电信推荐教材:尼曼(Donald H.Neamen)著,赵毅强,姚素英。

解晓东译,《半导体物理与器件》(第3版),电子工业出版社,2010参考书目:D. A. Neamen,《Semiconductor Physics and Devices: Basic Principles》,清华出版社,2003R. T. Pierret著,黄如等译,《半导体器件基础》,电子工业出版社,2004刘恩科、朱秉升、罗晋生等,《半导体物理学》,西安交通大学出版社,2004黄昆、谢希德,《半导体物理学》,科学出版社,1958曾谨言,《量子力学》,科学出版社,1981谢希德、方俊鑫,《固体物理学》,上海科学技术出版社,1961课程的教学目的与任务本课程是集成电路专业的重要选修课之一。

本课程较全面地论述了半导体的一些基本物理概念、现象、物理过程及其规律,并在此基础上选择目前集成电路与系统的核心组成部分,如双极型晶体管(BJT)、金属-半导体场效应晶体管(MESFET)和MOS场效应晶体管(MOSFET)等,作为分析讨论的主要对象来介绍半导体器件基础。

学习和掌握这些半导体物理和半导体器件的基本理论和分析方法,为学习诸如《集成电路工艺》、《集成电路设计》等后续课程打下基础,也为将来从事微电子学的研究以及现代VLSI与系统设计和制造工作打下坚实的理论基础。

课程的基本要求本课程要求学生掌握半导体物理和半导体器件的基本概念和基本规律,对于基础理论,要求应用简单的模型定性说明,并能作简单的数学处理。

学习过程中,注意提高分析和解决实际问题的能力,并重视理论与实践的结合。

本课程涉及的物理概念和基本原理较多,为了加深对它们的理解,在各章节里都给学生留有一些习题或思考题,这些题目有的还是基本内容的补充。

半导体物理教学大纲

《半导体物理》教学大纲课程名称:半导体物理学英文名称:Semiconductor Physics课程编号:课程类别:专业选修课使用对象:应用物理、电信专业本科生总学时: 48 学分: 3先修课程:热力学与统计物理学;量子力学;固体物理学使用教材:《半导体物理学》刘恩科等主编,电子工业出版社出版一、课程性质、目的和任务本课程是高等学校应用物理专业、电子与信息专业本科生的专业选修课。

本课程的目的和任务是:通过本课程的学习使学生获得半导体物理方面的基本理论、基本知识和方法。

通过本课程的学习要为应用物理与电信专业本科生的半导体集成电路、激光原理与器件、功能材料等后续课程的学习奠定必要的理论基础二、教学内容及要求本课程所使用的教材,共13章,概括可分为四大部分。

第1~5章,晶体半导体的基本知识和性质的阐述;第6~9章归结为半导体的接触现象;第10~12章,半导体的各种特殊效应;第13章,非晶态半导体。

全部课堂教学为48学时,对上述内容作了必要的精简。

10~13章全部不在课堂讲授,留给学生自学或参考,其他各章的内容也作了部分栅减。

具体内容和要求如下:第1章半导体中的电子状态1.半导体的晶格结构和结合性质2.半导体中的电子状态和能带3.半导体中电子的运动有效质量4.本征半导体的导电机构空穴5.回旋共振6.硅和锗的能带结构7.III-V族化合物半导体的能带结构8.II-VI族化合物半导体的能带结构9.Si1-xGex合金的能带10.宽禁带半导体材料基本要求:将固体物理的晶体结构和能带论的知识应用到半导体中,以深入了解半导体中的电子状态;明确回旋共振实验的目的、意义和原理,进而了解主要半导体材料的能带结构。

(限于学时,本章的第7-10节可不讲授,留学生参阅,不作具体要求)。

重点:半导体中的电子运动;有效质量;空穴概念。

难点:能带论的定性描述和理解;锗、硅、砷化镓能带结构第2章半导体中杂质和缺陷能级1.硅、锗晶体中的杂质能级2.III-V族化合物中的杂质能级3.氮化镓、氮化铝、氮化硅中的杂质能级4.缺陷、位错能级基本要求:根据不同杂质在半导体禁带中引入能级的情况,了解其性质和作用,由其分清浅杂质能级(施主和受主)和深能级杂质的性质和作用;了解缺陷、位错能级的特点和作用。

半导体物理与器件-第十章-MOSFET基础(1)(MOS结构-CV特性)


11.2.2反型状态(高频)
加较大的正栅压,使反型层电荷出现,但栅 压变化较快,反型层电荷跟不上栅压的变化, 只有耗尽层电容对C有贡献。此时,耗尽层宽 度乃至耗尽层电容基本不随栅压变化而变化。
C' (inv)
C' (dep)min
tox
ox ox
tox
xdT
f 5 ~ 100Hz
f ~ 1MHz
强反型状态(低频)
加大的正栅压且栅压变化较慢,反型层 电荷跟得上栅压的变化
C' (inv)
Cox
ox
tox
平带 本征
41
10.2 C-V特性
n型与p型的比较
负偏栅压时为堆积模式, 正偏栅压时为反型模式。
p型衬底MOS结构
n型衬底MOS结构
正偏栅压时为堆积模式, 负偏栅压时为反型模式。
42
10.2 C-V特性
Cox
Cox
+2 fp
ms
| Q'SD max | Cox
VFB+2 fp
|QSDmax|=e Na xdT
f (半导体掺杂浓度,氧化层电荷,平带电压,栅氧化层电容)27
10.1 MOS电容 阈值电压:与掺杂/氧化层电荷的关系
P型衬底MOS结构
Q′ss越大,则VTN的绝对值 越大; Na 越高,则VTN的值(带符 号)越大。
栅压频率的影响
43
小节内容
理想情况CV特性
CV特性概念 堆积平带耗尽反型下的概念 堆积平带耗尽反型下的计算
频率特性
高低频情况图形及解释
44
10.2.3固定栅氧化层电荷和界面电荷效应
对MOS的C-V的影响主要有两种: (1)固定栅氧化层电荷 (2)氧化层-半导体界面电荷

西安交大研究生招生目录

加试说明:参考书:《微机原理与接口技术》高等教育出版社,姚燕南等;《信号与线性系统》西安交大出版社1999,阎鸿森等,《信号与系统》(第二版)西安交大出版社1998,刘树棠
02多目标跟踪理论及应用
韩崇昭
朱洪艳
03飞行控制技术及应用
蔡远利
葛思擘
刘小勇
史椸
04探测及制导理论与应用
蔡远利
杨清宇
05航天测控与轨道计算
郑南宁
刘跃虎
袁泽剑
辛景民
薛建儒
张元林
兰旭光
梅魁志
葛晨阳
王飞
刘剑毅
孙宏滨
① 101思想政治理论
② 201英语一
③ 301数学一
④ 811自动控制原理与信号处理
复试说明:复试科目数字信号处理。
加试说明:参考书: <数字信号处理>郑南宁 程洪 编 -北京:清华大学出版社 2007.9第一版
02视觉工程与新型计算系统(计算视频与编码、图形学、新型处理器与数字电视)
高静怀
陈文超
03数字图象、视频分析与处理
牟轩沁
齐春
潘志斌
黄华
赵跃进
刘剑毅
04基于图像/视频的三维重建
黄华
081101控制理论与控制工程
01信息处理与数据融合
李晓榕
赵战略
段战胜
① 101思想政治理论
② 201英语一
③ 301数学一
④ 811自动控制原理与信号处理
复试说明:复试科目微机原理与接口技术、信号与系统。
081001通信与信息系统
01无线通信系统、无线传感器网络、阵列信号处理
殷勤业
蒋延生
王文杰
李盈
邓科

第二章 MOS器件的物理基础


22
2.2 MOS的I/V特性
2.2.4 I/V特性总结:
VDS < VGS − VTH 线性区
红色部分:沟道在源 漏之间连续存在
VDS ≥ VGS − VTH 饱和区
灰色部分:沟道在某点被夹 断,用作恒流源
MOS的I/V特性曲线
CMOS模拟集成电路设计 第二章 MOS器件物理基础
VDS << 2(VGS − VTH ) 深线性区
VG
S
VD
n+ 0 P型衬底
x=L' L
n+
V ( x) = VGS − VTH
V DS ≥ VGS − VTH 时, 反型层在沟道中某点x处被夹断
CMOS模拟集成电路设计 第二章 MOS器件物理基础
Copyright 2011 Zhengran
21
2.2 MOS的I/V特性
当 VDS > VGS − VTH 时,则 VGD = VGS − VDS < VTH ,也就意味着沟道在 漏端不存在。 沟道在x点被夹断,将式(课本2.7)的积分区间换 VGS − VTH ],得到: 为[0,
CMOS模拟集成电路设计
Design of Analog CMOS Integrated Circuits
Feb.2011 郑然 zhengran@
西北工业大学航空微电子中心 教育部嵌入式系统集成工程研究中心
第二章 MOS器件的物理基础
CMOS模拟集成电路设计 第二章 MOS器件物理基础
13
2.2 MOS的I/V特性
四个合理的假设: 一、电流的大小由沟道内移动的电荷决定。 二、沟道中某点垂直于沟道的电场决定了该点移动电荷的 数量。 三、载流子的运动速率与横向电场大小成正比 v = µE。 四、认为 VGS = VTH 时反型层开始形成。 注意:栅极电势和沟道中某点的电势之差决定了该点 垂直于沟道的电场
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档