燃料电池的分类及发展

合集下载

燃料电池简介

燃料电池简介

2007-2011全球燃料电池发电功率(根据地区划分)
单位:MW
资料来源:Fuel Cell Today
2010年全球各技术类型燃料电池发展状况
根据出货量划分
PEMFC:质子交换膜燃料电池 S O F C:固体氧化物燃料电池 A F C:碱性燃料电池
资料来源:Fuel Cell Today
根据发电功率划分
质子交换膜燃料电池PEMFC
• 质子交换膜燃料电池的关键材料与部件为:1)电催化剂;2)电 极(阴极与阳极);3)质子交换膜;4)双极板。 • 质子交换膜燃料电池的工作温度约为80℃。在这样的低温下, 电化学反应能正常地缓慢进行,通常用每个电极上的一层薄的 白金进行催化。 • 每个电池能产生约0.7伏的电,足够供一个照明灯泡使用。驱 动一辆汽车则需要约300伏的电力。为了得到更高的电压,将 多个单个的电池串联起来便可形成人们称做的燃料电池存储器。 • 质子交换膜燃料电池PEMFC 以其工作温度低、启动快、能量 密度高、寿命长、重量轻、无腐蚀性、不受二氧化碳的影响, 能量来源比较广泛等优点特别适宜作为便携式电源、机动车电 源和中、小型发电系统。可以考虑用来发展燃料电池汽车 (FCEV)。
……
燃料电池的发展现状
燃料电池可提供多样化的能源解决方案,将来极有可能替代传统的电 源供应装置,如电池、内燃机。燃料电池的应用及其广泛,从家庭供 电供热、移动电子设备供电到汽车动力推进系统。 根据燃料电池的应用方式,一般分为移动型(Portable)、固定型 (Stationary)、交通运输型(Transport); 2010年,全球燃料电池总出货量同比增长40%,达到了创历史记录 的23万套,其中,移动型燃料电池约占总出货量的95%。值得注意的 是,2010年全球销售的燃料电池中有超过97%使用的是PEMFC,即 质子交换膜燃料电池技术,该类型燃料电池被认为最适合应用于新能 源汽车。

新型燃料电池的发展和应用

新型燃料电池的发展和应用

新型燃料电池的发展和应用随着环境污染不断恶化,人们对于环保技术的需求也越来越高。

新型燃料电池应运而生,被视作一种高效环保的新型能源,并被广泛应用于交通、能源等领域。

本文将从以下几个方面阐述新型燃料电池的发展和应用。

一、新型燃料电池的概念和分类新型燃料电池(fuel cell)是一种可利用化学反应(一般指氢气与氧气的反应)直接产生电能的电化学器件。

它采用清洁能源直接转化为电能,属于一种新型化学能源转化技术。

根据燃料电池质子传导膜的类型和使用的燃料种类的不同,新型燃料电池可分为多种类型,常见的主要包括质子交换膜燃料电池(PEMFC)、固体氧化物燃料电池(SOFC)、碱性燃料电池(AFC)等。

二、新型燃料电池的发展历程和现状新型燃料电池起源于19世纪,但是直到20世纪60年代,它才逐渐成为一个被重视的领域。

自2000年以来,新型燃料电池技术得到了快速发展。

燃料电池的应用已经从以前的空间站和卫星逐渐扩展到地面交通、能源储备和微型电子设备等众多领域。

目前,燃料电池技术已经成为科学研究的热门方向,各大国际汽车厂商也相继推出了利用燃料电池驱动的汽车,以满足人们对于清洁能源的需求。

三、新型燃料电池的应用领域1.交通领域:新型燃料电池可以直接将氢气和氧气转化为电能,并产生水和氧气作为废料。

这种技术在交通领域中非常有前途,因为它既清洁又高效,可以用于燃料电池车辆的动力源。

目前,全球范围内已经推出了多个品牌、多类别的燃料电池汽车,它们都能在超过700公里的距离内驱动。

2.能源储备领域:燃料电池还可以在能源储备领域中扮演重要的角色。

例如,利用太阳能等可再生能源将水分解成氢气和氧气,储存氢气,然后将其用作燃料,直接产生电能并释放水。

这种方法可以将多余的能源储存下来,在特定时间和场合直接转换成电能供应使用。

3.微型电子设备领域:燃料电池还可以用于微型电子设备的供电。

这种设备适用于实验、储备电源等场合,可以通过填充燃料电池的微型燃料电池板来得到所需的电源。

燃料电池概念

燃料电池概念

燃料电池概念引言:- 燃料电池(FuelCell)被认为是一种清洁、高效、可持续的能源技术,被广泛应用于交通运输、能源供应和环境保护领域。

本文将介绍燃料电池的概念、原理、类型、应用以及未来发展方向。

一、燃料电池的概念:- 燃料电池是一种将化学能直接转化为电能的能量转换装置,通过氧化剂与还原剂间电化学反应来产生电力。

其核心原理是利用氢气或其他可燃气体与氧气相结合,通过电化学反应产生电能,并以水和热能为副产品。

二、燃料电池的工作原理:- 燃料电池的工作原理基于两个半反应:氧化半反应和还原半反应。

氧化半反应发生在氧化剂(通常是氧气)的一侧,其中氧分子分解成氧离子。

还原半反应发生在还原剂(如氢气)的一侧,其中氢离子经过反应产生电子和水。

通过将两个半反应结合在一起,燃料电池能够将化学能转化为电能。

三、燃料电池的类型:- 燃料电池根据不同的电解质和工作温度,可以分为不同类型:质子交换膜燃料电池(PEMFC)、固体氧化物燃料电池(SOFC)、碱性燃料电池(AFC)等。

每种类型的燃料电池都有其特定的优点和适用场景,例如PEMFC适合用于交通工具和移动设备,而SOFC适合用于电力供应和大型工业设备。

四、燃料电池的应用:- 燃料电池被广泛应用于各个领域,包括交通运输、能源供应和环境保护等。

在交通运输领域,燃料电池驱动的电动汽车可以提供零排放、长续航里程和快速加注等优势。

在能源供应领域,燃料电池可以作为替代传统燃料的可再生能源,提供可靠的电力供应。

在环境保护领域,燃料电池可以减少有害气体排放,降低温室气体的影响。

五、燃料电池的未来发展:- 随着技术的进步和成本的降低,燃料电池有望在未来得到更广泛的应用。

研究人员正在努力改进燃料电池的效率、稳定性和可靠性,以满足不同领域和应用的需求。

同时,开发更便捷、经济的氢气储存和分配系统也是未来发展的研究重点。

结论:- 燃料电池作为一种清洁、高效、可持续的能源技术,拥有广泛的应用前景。

生物燃料电池的发展与应用前景

生物燃料电池的发展与应用前景

生物燃料电池的发展与应用前景生物燃料电池是一种将生物质材料转化为电能的装置,它包括生物质转化系统和电化学反应系统。

生物燃料电池技术具有环保、可持续性、高效节能等特点,因此受到了广泛关注。

未来,生物燃料电池技术将在各个领域得到广泛应用,如电力、环保、交通运输和照明等领域。

一、生物燃料电池发展历史生物燃料电池技术已有超过50年的历史。

20世纪50年代初,美国加利福尼亚大学的斯大林团队第一次报道了生物燃料电池。

之后,欧洲和日本等国家的科学家都开始研究生物燃料电池技术。

20世纪80年代,科学家们开始关注燃料电池的工业化应用,为大规模生产生物燃料电池做出了贡献。

二、生物燃料电池的分类生物燃料电池主要分为微生物燃料电池和酶燃料电池两种类型。

微生物燃料电池是利用微生物将有机物质转化为电能的装置,其中最常用的微生物为细菌和真菌。

酶燃料电池是利用酶将有机物质转化为电能的装置,其中最常用的酶为葡萄糖氧化酶和酒精脱氢酶。

三、生物燃料电池的优缺点生物燃料电池技术具有很多优点。

首先,生物燃料电池可以利用可再生的生物质材料来产生电能,如食品浆渣、蔗渣、动物粪便等。

其次,生物燃料电池不会产生有害气体和废水等环境污染物。

最后,生物燃料电池效率高,可以在低温下工作,且稳定性较好。

当然,生物燃料电池也存在一些缺点。

首先,生物质材料的水分和杂质含量会影响电池的发电效率。

其次,目前生物燃料电池的发电效率较低,与传统电池相比还有差距。

四、生物燃料电池的应用前景未来,生物燃料电池将在多个领域得到广泛应用。

其中,交通运输领域是生物燃料电池的重要应用方向之一。

生物燃料电池可以用于汽车、飞机、轮船等交通工具的动力系统,能够减少对石油的依赖,降低排放量,提高能源利用效率。

此外,生物燃料电池还可以用于电力和照明领域。

生物燃料电池可以直接转换生物质能源为电能,既环保又高效。

另外,生物燃料电池还可以用于远程地区或灾区的电力供给,解决能源不足问题。

总之,生物燃料电池技术具有广阔的应用前景。

燃料电池的研究进展综述

燃料电池的研究进展综述

燃料电池的研究进展综述⼀. 燃料电池简介1.定义燃料电池(Fuel Cells)是⼀种不需要经过卡诺循环的电化学发电装置,能量转化率⾼。

燃料和空⽓分别送进燃料电池,电就被奇妙地⽣产出来。

它从外表上看有正负极和电解质等,像⼀个蓄电池,但实质上它不能“储电”⽽是⼀个“发电⼚”。

由于在能量转换过程中,⼏乎不产⽣污染环境的含氮和硫氧化物,燃料电池还被认为是⼀种环境友好的能量转换装置。

由于具有这些优异性,燃料电池技术被认为是21世纪新型环保⾼效的发电技术之⼀。

随着研究不断地突破,燃料电池已经在发电站、微型电源等⽅⾯开始应⽤。

2.基本结构燃料电池的基本结构主要是由四部分组成,分别为阳极、阴极、电解质和外部电路。

通常阳极为氢电极,阴极为氧电极。

阳极和阴极上都需要含有⼀定量的电催化剂,⽤来加速电极上发⽣的电化学反应,两电极之间是电解质。

图1.燃料电池基本结构⽰意图3.分类⽬前燃料电池的种类很多,其分类⽅法也有很多种。

按不同⽅法⼤致分类如下:(1)按运⾏机理来分类:可分为酸性燃料电池和碱性燃料电池;(2)按电解质的种类来分类:有酸性、碱性、熔融盐类或固体电解质;图2.燃料电池分类详细介绍(3)按燃料的类型来分类:有直接式燃料电池和间接式燃料电池;(4)按燃料电池⼯作温度分:有低温型(低于200℃);中温型(200-750℃);⾼温型(⾼于750℃)。

4.原理燃料电池的⼯作原理相对简单,主要包括燃料氧化和氧⽓还原两个电极反应及离⼦传输过程。

早期的燃料电池结构相对简单,只需要传输离⼦的电解质和两个固态电极。

当以氢⽓为燃料,氧⽓为氧化剂时,燃料电池的阴阳极反应和总反应分别为:阳极:H2 → 2H++2e-阴极:1/2 O2+2H++2e-→H2O总反应:H2+1/2O2 →H2O其中,H2通过扩散达到阳极,在催化剂作⽤下被氧化成和e-,此后,H通过电解液到达阴极,⽽电⼦则通过外电路带动负載做功后也到达阴极,从⽽与O2发⽣还原反应(ORR)。

燃料电池的应用与发展

燃料电池的应用与发展

燃料电池的应用与发展近年来,燃料电池(Fuel Cell)作为一种高效、环保的新能源技术,备受人们的关注。

燃料电池跟传统的化石燃料发电方式相比,更加环保和高效,能源利用效率可达50%以上。

目前燃料电池的应用涉及交通、能源、家庭等众多领域,已经逐步成为替代传统化石燃料的重要选择。

本文探讨燃料电池的应用和发展,以及未来的发展趋势。

一、燃料电池的基本原理及分类燃料电池是指在电化学反应中以氢气或其他可燃气体为燃料,通过催化剂催化氢气与氧气发生电化学反应,将化学能转化为电能的一种新型电源。

燃料电池按燃料类型分为直接甲醇燃料电池、质子交换膜燃料电池、固体氧化物燃料电池等几种。

质子交换膜燃料电池(PEMFC)是目前应用最为广泛的一种燃料电池,它的优势是能够高效地将氢气转化为电能,而且排放的是纯净的水,不会对环境造成污染,同时也适用于多种应用场景。

二、燃料电池在交通方面的应用交通是燃料电池应用领域的重要部分,它被认为是将燃料电池技术推向社会应用的关键一步。

图书馆吧彩票燃料电池汽车主要是通过将氢气与空气产生化学反应来产生电能,从而驱动汽车。

燃料电池汽车的优点在于其排放的物质是水,不存在传统燃料车辆产生的二氧化碳、二氧化硫、硝化物等有害气体。

同时,燃料电池汽车续航能力强,充氢时间短,而且使用寿命长,目前已经成为全球新能源汽车的主流之一。

尽管燃料电池汽车的价格和配套设施仍有待提高,但它的未来发展前景十分广阔。

三、燃料电池在能源方面的应用燃料电池除了在汽车领域的应用外,在能源领域也有广泛的应用。

燃料电池发电采用燃料电池技术进行发电,其特点是效率高、排放物质少,不受地理限制,是一种具有很大发展前景的清洁能源。

目前,燃料电池在小型应用装备、军事领域、民用发电等领域的应用也逐渐增多,展示了其在未来能源领域的广阔应用前景。

四、燃料电池在家庭方面的应用燃料电池可以成为家庭能源的备用电源,对于无电区域或者突发情况下的停电也有很好的应用前景。

燃料电池技术的现状与发展趋势

燃料电池技术的现状与发展趋势

燃料电池技术的现状与发展趋势随着环境污染问题的日益严重,人们对清洁能源的需求越来越强烈。

燃料电池作为一种非常干净的能源转换技术,近年来备受关注。

本文将介绍燃料电池技术的现状,并探讨其未来的发展趋势。

第一章燃料电池技术的概述燃料电池是一种将化学能转化为电能的先进技术,与传统的燃动式发电机不同,燃料电池利用氢气或可燃气体和氧气的电化学反应来产生电能。

燃料电池具有高能量效率、零污染、声音低等优点,是未来能源转换技术的重要方向之一。

燃料电池通常分为以下几种类型:聚合物电解质膜燃料电池(PEMFC)、固体氧化物燃料电池(SOFC)、碱性燃料电池(AFC)和直接甲醇燃料电池(DMFC)等。

其中,PEMFC是应用最广泛的类型,其应用领域主要为汽车、船舶、机器人等。

第二章燃料电池技术的现状2.1 燃料电池的优点燃料电池具有优异的环保性能,不存在传统燃烧过程中产生的二氧化碳、氮氧化物等有害气体。

燃料电池能够高效转化化学能为电能,其能效比普通燃烧发电高出40%-60%。

同时,燃料电池噪音低、体积小、结构简单,易于维护。

2.2 燃料电池的局限性燃料电池的成本较高,且维护困难。

另外,燃料电池的存储和输运涉及氢气,需要相应的储运设施建设。

在使用过程中,燃料电池还存在耐久性较低、抗污染性较差等问题。

2.3 燃料电池的应用现状目前,燃料电池应用最广泛的领域为汽车,多家汽车厂商已经推出了使用燃料电池的车型。

另外,燃料电池还被应用于船舶、飞机等交通工具,以及家用电器及备用电源等领域。

第三章燃料电池的发展趋势3.1 技术创新随着科技水平的提高,燃料电池技术也在不断更新迭代。

正在研发中的新型燃料电池拥有体积更小、效率更高、更加环保等优点,同时也解决了传统燃料电池中存在的问题,比如能源储存问题、抗污染性等方面的问题。

3.2 产业链完善随着燃料电池应用领域的不断拓展和技术创新,相关产业链已逐渐形成。

燃料电池的生产、储运、市场销售等环节也因此得到了进一步完善。

燃料电池技术发展现状与展望

燃料电池技术发展现状与展望

燃料电池技术发展现状与展望近年来,随着对环境保护和可再生能源的需求日益增加,燃料电池技术成为了热门话题。

燃料电池是一种通过将氢气和氧气转化为电能的技术,不仅可以代替传统的化石燃料,同时也可以减少环境污染和气体排放。

本文将探讨燃料电池技术的发展现状和未来展望。

一、燃料电池的种类目前,常见的燃料电池主要有 PEMFC、SOFC、PAFC 和 MCFC 等。

PEMFC是最为流行的燃料电池,它使用质子交换膜将氢气和氧气转化为水和电能。

SOFC是一种高温燃料电池,可在高温下使用各种燃料。

PAFC 和 MCFC 燃料电池都是传统的燃料电池类型,它们使用多段反应堆将燃料转化为电能。

二、燃料电池技术的发展现状1. 技术成熟度燃料电池技术已经被证明是可行的,并且已经在一些商业领域得到了广泛应用。

例如,汽车制造商已经开始将燃料电池作为可替代化石燃料的选择。

同时,燃料电池也在船舶、火箭和航空器等领域得到了广泛应用。

2. 成本问题燃料电池的成本仍然是制约其发展的主要因素之一。

尽管燃料电池的成本正在逐渐下降,但是与传统汽车的成本相比仍然较高。

汽车制造商正在努力优化燃料电池的设计,并寻找更便宜的材料来减少成本。

3. 能源密度问题虽然燃料电池可以提供清洁能源和减少污染,但是其能源密度仍然较低。

这意味着需要更多的电池才能提供同样的能量,从而增加了体积和重量。

三、燃料电池技术的未来展望1. 投入更多研究和开发随着对环境保护和可再生能源需求的不断增加,人们将会投入更多的研究和开发资源来改进燃料电池技术。

这将有助于降低燃料电池成本、提高其能源密度和增强其可靠性。

2. 提高燃料电池的效率改进燃料电池的结构和设计可以提高其效率,降低它们的成本。

同样,使用更好的材料也可以提高燃料电池性能和工作效率。

3. 多用途应用燃料电池的多用途应用使其更加具有前途。

这种技术可以在不同的领域使用,包括交通、工业和住房等多个领域。

未来,燃料电池可以成为家庭储能和城市能源系统的重要部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃料电池的分类及发展
1
燃料电池的基本原理
燃料电池的特点 燃料电池的能量转换效率高,不受卡诺效率限制。 清洁、环保。燃料电池不需要锅炉、汽轮机等大型设备、 没有SO x、NO x气体和固体粉尘的排放。 可靠性和操作性良好,噪声低。 所用燃料广泛,占地面积小,建厂具有很大灵活性。
2
12
▪ 20世纪90年代以来,众多汽车生产商都在研究使 用低温燃料电池作为汽车动力的可行性。由于低温碱 性燃料电池存在易受CO2毒化等缺陷,使其在汽车上 的应用受到限制,因此,除少数机构还在研究碱性燃 料电池外,大多数汽车厂商和研究机构都在质子交换 膜燃料电池(PEMFC)和直接甲醇燃料电池(DMFC) 上寻求突破。然而PEMFC和DMFC都以贵金属Pt为主 催化剂,一旦PEMFC和DMFC达到真正的批量生产阶 段,将被迫面临Pt的匮乏。碱性燃料电池可以不采用 贵金属作催化剂,如果采用CO2过滤器或碱液循环等 手段去除CO2,克服其致命弱点后,用于汽车的碱性 燃料电池将具有现实意义。因此,碱性燃料电池领域 近年的研究重点是CO2毒化解决方法和替代贵金属的 催化剂。
2. 按电解质的种类不同,有酸性、碱性、熔融盐类或固体电解质 2.1碱性燃料电池(AFC)、 2.2质子交换膜燃料电池(PEMFC) 2.3磷酸燃料电池(PAFC)、 2.4熔融碳酸盐燃料电池(MCFC)、 2.5固体氧化物燃料电池(SOFC)、
3. 按燃料类型分。 3.1氢燃料电池 3.2甲烷燃料电池 3.3甲醇燃料电池 3.4乙醇燃料电池
燃料电池的组成和工作原理 燃料电池的基本组成:阳极、阴极、电解质和外 电路。燃料电池中的电解质有不同的种类。
图10-3 燃料电池的基本单元
3
燃料电池的工作原理(以氢氧磷酸型电池为例)
(1)氢气在阳极催化剂的作用下,发生下列阳极反应:
H 2 2H 2e
(2)氢离子穿过电解质到达阴极。电子则通过外电路及负
(3)某些碳氢化合物,如甲醇等,渗透率较高,不 适合用作直接甲醇燃料电池(DMFC)的质子交换 膜。
19

20
质子交换膜燃料电池的应用
▪ 质子交换膜燃料电池发电作为新一代发电技术,其广 阔的应用前景可与计算机技术相媲美。经过多年的基 础研究与应用开发,质子交换膜电源和小型质子交换膜燃料电池移动电源已达 到产品化程度,中、大功率质子交换膜燃料电池发电 系统的研究也取得了一定成果。
7
8
2.1碱性燃料电池(AFC)
2.1.1 碱性染料电池简介
▪ 碱性燃料电池是该技术发展最快的一种电池,主要为空间 任务,包括航天飞机提供动力和饮用水。
▪ ▪
负极反应: 2H 2 4OH 4H 2O 4e

正极反应: O2 2H 2O 4e 4OH

碱性燃料电池的工作温度大约80℃。因此,它们的启
即每一单电池的发电电压理论上限为1.23V。接有负载时输出
电压取决于输出电流密度,通常在0.5~1V 之间。将多个单电
池层叠组合就能构成输出电压满足实际负载需要的燃料电池堆
(简称电堆)。
14
15
PEMFC的电极常被称 为膜电极组件,它是 指质子交换膜和其两 侧各一片多孔气体扩 散电极(涂有催化剂 的多孔碳布)组成的 阴、阳极和电解质的 复合体。
6
燃料电池可依据其工作温度、所用燃料的 种类和电解质类型进行分类。按照工作温度, 燃料电池可分为高、中、低温型三类。按燃料 来源,燃料电池可分为直接式燃料电池(如直接 甲醇燃料电池),间接式燃料电池(如甲醇通过重 整器产生氢气,然后以氢气为燃料电池的燃料) 和再生类型进行分类。依据电解质的不同,可 将燃料电池分为碱性燃料电池(AFC)、磷酸 型 燃 料 电 池 ( PAFC ) 、 熔 融 碳 酸 盐 燃 料 电 池 (MCFC)、固体氧化物燃料电池(SOFC)及 质子交换膜燃料电池(PEMFC)等。
▪ 两电极的反应分别为:

阳极(负极):2H2-4e=4H+

阴极(正极):O2+4e+4H+=2H2O

注意所有的电子e都省略了负号上标。由于质子交换膜只能
传导质子,因此氢质子可直接穿过质子交换膜到达阴极,而电
子只能通过外电路才能到达阴极。当电子通过外电路流向阴极
时就产生了直流电。以阳极为参考时,阴极电位为1.23V。也
▪ 采用质子交换膜燃料电池氢能发电将大大提高重要装 备及建筑电气系统的供电可靠性,使重要建筑物以市 电和备用集中柴油电站供电的方式向市电与中、小型 质子交换膜燃料电池发电装置、太阳能发电、风力发 电等分散电源联网备用供电的灵活发供电系统转变, 极大地提高建筑物的智能化程度、节能水平和环保效 益。
21
载也达到阴极。在阴极催化剂的作用下,生成水反应式为:
2H


2e

1 2
O2

H 2O
(3)综合起来,氢氧燃料电池中总的电池反应为:
2H 2 O2 2H 2O
伴随着电池反应,电池向外输出电能。只要保持氢气和氧气
的供给,该燃料电池就会连续不断地产生电能。
4
燃料电池中的催化作用
燃料电池中的电催化作用是用来加速燃料电池化学反应中 电荷转移的一种作用,一般发生在电极与电解质的分界面 上。
2.3 磷酸燃料电池(PAFC)
2.3.1 磷酸燃料电池工作原理
磷酸燃料电池(Phosphoric Acid Fuel Cell, PAFC)是以浓磷酸为电解质, 以贵金属催化的气体扩散电极为正、负电极的中温型燃料电池。可以在 150~220℃工作。具有电解质稳定、磷酸可浓缩、水蒸气压低和阳极催化 剂不易被CO毒化等优点,是一种接近商品化的民用燃料电池。 ▪ 燃料气体或城市煤气添加水蒸气后送到改质器,把燃料转化成H2、CO和水 蒸气的混合物,CO和水进一步在移位反应器中经触媒剂转化成H2和CO2。 经过如此处理后的燃料气体进入燃料堆的负极(燃料极),同时将氧输送到燃 料堆的正极(空气极)进行化学反应,借助触媒剂的作用迅速产生电能和热能。 ▪ 阳极反应:H2+2e- →2H+ ▪ 阴极反应:1/2O2+2H+ → H2O+2e▪ 总反应: 1/2O2 +H2 → H2O
13
2.2质子交换膜燃料电池(PEMFC)
▪ 2.2.1质子交换膜燃料电池简介
▪ 质子交换膜燃料电池(proton exchange membrane fuel cell,英 文简称PEMFC)是一种燃料电池,在原理上相当于水电解的 “逆”装置。其单电池由阳极、阴极和质子交换膜组成,阳极 为氢燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都 含有加速电极电化学反应的催化剂,质子交换膜作为电解质。 工作时相当于一直流电源,其阳极即电源负极,阴极为电源正 极。
动也很快,但其电力密度却比质子交换膜燃料电池的密度
低十来倍,在汽车中使用显得相当笨拙。不过,它们是燃
料电池中生产成本最低的一种电池,因此可用于小型的固
定发电装置。
▪ 如同质子交换膜燃料电池一样,碱性燃料电池对能污染催 化剂的一氧化碳和其它杂质也非常铭感。此外,其原料不
能含有一氧化碳,因为一氧化碳能与氢氧化钾电解质反应 生成碳酸钾,降低电池的性能。
18
质子交换类膜存在下述缺点:
(1)制作困难、成本高,全氟物质的合成和磺化都 非常困难,而且在成膜过程中的水解、磺化容 易使聚合物变性、降解,使得成膜困难,导致 成本较高;
(2)对温度和含水量要求高,Nafion系列膜的最佳 工作温度为70~90℃,超过此温度会使其含水 量急剧降低,导电性迅速下降,阻碍了通过适 当提高工作温度来提高电极反应速度和克服催 化剂中毒的难题;
▪ 电堆的核心是MEA组件和双极板。MEA是将两张喷涂有Nafion 溶液及Pt催化剂的碳纤维纸电极分别置于经预处理的质子交换 膜两侧,使催化剂靠近质子交换膜,在一定温度和压力下模压 制成。双极板常用石墨板材料制作,具有高密度、高强度,无 穿孔性漏气,在高压强下无变形,导电、导热性能优良,与电 极相容性好等特点。常用石墨双极板厚度约2~3.7mm,经铣 床加工成具有一定形状的导流流体槽及流体通道,其流道设计 和加工工艺与电池性能密切相关。
17
2.2.2 质子交换膜燃料电池优点 ▪ 质子交换膜燃料电池具有如下优点: ▪ 其发电过程不涉及氢氧燃烧,因而不受卡诺循环的限
制,能量转换率高; ▪ 发电时不产生污染,发电单元模块化,可靠性高,组
装和维修都很方便,工作时也没有噪音。所以,质子 交换膜燃料电池电源是一种清洁、高效的绿色环保电 源。 ▪ 质子交换膜燃料电池工作温度低、启动快、比功 率高、结构简单、操作方便等 ▪ 被公认为电动汽车、固定发电站等的首选能源。在燃 料电池内部,质子交换膜为质子的迁移和输送提供通 道,使得质子经过膜从阳极到达阴极,与外电路的电 子转移构成回路,向外界提供电流,因此质子交换膜 的性能对燃料电池的性能起着非常重要的作用,它的 好坏直接影响电池的使用寿命。
图10-19 膜电极结构示意图
16
▪ 电堆由多个单体电池以串联方式层叠组合而成。将双极板与
膜电极三合一组件(MEA)交替叠合,各单体之间嵌入密封件, 经前、后端板压紧后用螺杆紧固拴牢,即构成质子交换膜燃料 电池电堆,如附图所示。叠合压紧时应确保气体主通道对正以 便氢气和氧气能顺利通达每一单电池。电堆工作时,氢气和氧 气分别由进口引入,经电堆气体主通道分配至各单电池的双极 板,经双极板导流均匀分配至电极,通过电极支撑体与催化剂 接触进行电化学反应。
9
图10-8 碱性燃料电池的结构(自由电解质型)
10
2.1.2 AFC的优点是: ▪ ①效率高,因为氧在碱性介质中的还原反应比其
他酸性介质高; ▪ ②因为是碱性介质,可以用非铂催化剂; ▪ ③ 因工作温度低,碱性介质,所以可以采用镍板
相关文档
最新文档