换热器的强度计算

合集下载

换热器强度计算书

换热器强度计算书

换热器强度计算书
换热器强度计算书是一份重要的技术文件,用于评估换热器在设计条件下的结构强度和安全性。

以下是一个简要的换热器强度计算书的示例,供参考:
1. 换热器概述
对换热器的类型、设计条件、主要结构和材料进行描述。

2. 设计规范和标准
列出计算所依据的相关设计规范和标准。

3. 载荷分析
分析换热器在正常操作、停车、检修等不同工况下所承受的载荷,包括压力、温度、重量等。

4. 强度计算
根据载荷分析的结果,采用适当的计算方法(如压力容器设计规范中的计算公式)对换热器的各个部件进行强度计算,包括壳体、封头、接管、法兰等。

5. 结果评估
对强度计算的结果进行评估,判断是否满足设计规范和标准的要求。

如有不满足的情况,提出相应的改进措施。

6. 结论
总结强度计算的结果,明确换热器在设计条件下的结构强度是否满足要求。

7. 附录
包括计算所使用的主要公式、计算过程中的中间结果、材料性能数据等。

需要注意的是,这只是一个示例,实际的换热器强度计算书应根据具体的设计条件和要求进行编制,并由专业的工程师进行审核和签署。

双管板换热器的强度计算

双管板换热器的强度计算

发 生接触便 会产生 严重 或 灾难 性 事 故 的苛 刻操 作 条件 的换热器 。双管板换 热器 型式 有两 种型 式 , 即
固定管板型式 ( 1 和 U型管板 型式 ( 2 。 图 ) 图 )
当量 厚度 大于任 一较厚 管板 的厚 度 , 于 “ 合 管 小 组
板” 的总厚度 。将组 合 管板视 为一 当量厚 度 的 “ 实
自由变 形 。然 后 考 虑 它 们 问 的变 形 协 调 , 成 边 形
拉 伸应 力 。而管 板 中无 应力 产 生 。 ( ) 向作 用 。P 对管 子外 壁径 向作 用 , 管 2径 使
心” 管板 后 , 该换热 器 的受力 即可 按 一般 的 固定 管
板换 热器 进行 考虑 。
图 1 固 定 管 板 形式
双管 板换 热 器按 单 管 板 ( 般 固定 管 板 换 热 一
器 ) 算 的可行性 , 计 可分 析 论证 如 下 。分 析 可从 一
般 的单 管板 换 热 器 的受 力 和 应 力 产 生 机 理 出 发 , 然后考 证 当管板 厚 度 发 生变 化 ( 加厚 时 ) 管 板应 ,
2 固定管 板换 热器 的受力分 析
固定管 板换 热 器 所 受 的 主要 载 荷 有 压 力 : 管
收 稿 日期 :0 9— 5— 0 20 0 2 。
作者简介 : 桑如 苞, , 男 浙江 绍兴人 , 事压 力容 器设 从
计工作 4 5年 , 体 , 压 力容 器 国 家标 准 G 10等 十 退 为 B5
19 年 载 入 《中 国 专 家 大 辞 典 》 联 系 电 话 : 1 99 。 00—
8 77 89 48 4
第2 7卷
桑如 苞等.双 管板换 热器的强度 计算

强度计算说明书-浮头式换热器

强度计算说明书-浮头式换热器


62
H 140
h 40
1
16
2
26
d 27
螺柱规 格 M24
螺柱数 量 44
由《压力容器法兰》选择相关垫片:非金属软垫片 1400-1.0JB/T4704-2000,其相关尺寸为: D=1455mm, d=1405mm, =3mm.
9.3 接管法兰的选择
9.3.1 接管法兰 a、b
选择相同型号的,由于液体的流速为 1.5m/s,即:
t
7.23 9.23 11 12 9.2
7 8 9 10 11
d
n
d C2 n C1 C2
GB151—1999 《管壳式换 热器》
n e
e n C1 C2
t
t
Pc( Di e ) 2 e
75.8
12 13
75.8< [ ]t
沈阳化工大学学士学位毕业设计 计算说明书
14 15
P< [ Pw] 所选封头尺寸 公称直径:1400mm 直边高度:40mm
合格 曲面高度:350mm
九、设备法兰的选择 9.1 管箱接管法兰的选择
按照其条件 DN=1300 mm,设计温度为 99 ℃ 设计压力为 1.76Pa ,由《压力容器法兰》 选择带颈对焊法兰,相关参数如下: 单位(mm) D 1495 D1 1400
=96.5
MPa
合格
[ Pw]
[ Pw]
2[ ]t e KDi 0.5 e
1.26
10
Generated by Foxit PDF Creator © Foxit Software For evaluation only.

换热器的强度计算.

换热器的强度计算.

确定了换热器的结构及尺寸以后,必须对换热器的所有受压元件进行强度计算。

因为管壳式换热器一般用于压力介质的工况,所以换热器的壳体大多为压力容器,必须按照压力容器的标准进行计算和设计,对于钢制的换热器,我国一般按照GB150<<钢制压力容器>>标准进行设计,或者美国ASME标准进行设计。

对于其它一些受压元件,例如管板、折流板等,可以按照我国的GB151<<管壳式换热器>>或者美国TEMA标准进行设计。

对于其它材料的换热器,例如钛材、铜材等应按照相应的标准进行设计。

下面提供一氮气冷却器的受压元件强度计算,以供参考。

该换热器为U 形管式换热器,壳体直径500mm,管程设计压力 3.8MPa ,壳程设计压力0.6MPa 。

详细强度计算如下:1.壳程筒体强度计算2.前端管箱筒体强度计算3.前端管箱封头强度计算4.后端壳程封头强度计算5.管板强度计算6.管程设备法兰强度计算7.接管开孔补强计算计算厚度= = 6.98mm有效厚度 e = n - C 1- C 2= 11.20 mm min = 0.75 mm 结论 满足最小厚度要求重量32.23Kg压力计算最大允许工作压力[ P w ]== 6.06962MPa结论 合格氮气冷却器后端壳程封头计算厚度及重量计算形状系数K == 1.0000计算厚度= = 0.88 mm有效厚度 e = n - C 1- C 2= 6.00 mm mm 最小厚度 min = 0.75 名义厚度 n = 8.00mm 结论 满足最小厚度要求压力计算结论合格旋转刚度无量0.000.2696和0.07130.0000管板厚度或管板应力计算b c0.0管板布管区面积一根换热管管壁 金属横弯刚量直径a型 其系数 系数 系数管箱圆筒材料弹性模量 壳程圆筒材料弹性模量 管板延长部分形成的凸缘宽度 壳体法兰或凸缘厚度三角形排列 正方形排列= 106.81436.43 0.80参数计算0.00按 和 查图得 : = 0.000000 按 和查图得 := 0.0000000.00 0.00 0.00 0.00 0.00MPa MPa mm mm mmmm 2N · mmm系数管板应力校核单位:MPa换热管轴向应力计算及校核: MPa (单位)换热管与管板连接拉脱力校核重量64.89 Kg氮气冷却器管箱法兰强度计算A 1+A 2+A 3=1876 mm 2,大于A ,不需另加补强。

换热器计算思考题及参考答案

换热器计算思考题及参考答案

换热器思考题1. 什么叫顺流?什么叫逆流(P3)?2.热交换器设计计算的主要内容有那些(P6)?换热器设计计算包括以下四个方面的内容:热负荷计算、结构计算、流动阻力计算、强度计算。

热负荷计算:根据具体条件,如换热器类型、流体出口温度、流体压力降、流体物性、流体相变情况,计算出传热系数及所需换热面积结构计算:根据换热器传热面积,计算热交换器主要部件的尺寸,如对管壳式换热器,确定其直径、长度、传热管的根数、壳体直径,隔板数及位置等。

流动阻力计算:确定流体压降是否在限定的范围内,如果超出允许的数值,必须更改换热器的某些尺寸或流体流速,目的为选择泵或风机提供依据。

强度计算:确定换热器各部件,尤其是受压部件(如壳体)的压力大小,检查其强度是否在允许的范围内。

对高温高压换热器更应重视。

尽量采用标准件和标准材料。

3. 传热基本公式中各量的物理意义是什么(P7)?4. 流体在热交换器内流动,以平行流为例分析其温度变化特征(P9)?5. 热交换器中流体在有横向混合、无横向混合、一次错流时的简化表示(P20)?一次交叉流,两种流体各自不混合一次交叉流,一种流体混合、另一种流体不混合一次交叉流,两种流体均不混合6. 在换热器热计算中, 平均温差法和传热单元法各有什么特点(P25、26)?什么是温度交叉,它有什么危害,如何避免(P38、76)?7.管壳式换热器的主要部件分类与代号(P42)?8.管壳式换热器中的折流板的作用是什么,折流板的间距过大或过小有什么不利之处(P49~50)?换热器安装折流挡板是为了提高壳程对流传热系数,为了获得良好的效果,折流挡板的尺寸和间距必须适当。

对常用的圆缺形挡板,弓形切口过大或过小,都会产生流动“死区”,均不利于传热。

一般弓形缺口高度与壳体内径之比为0.15~0.45,常采用0.20和0.25两种。

挡板的间距过大,就不能保证流体垂直流过管束,使流速减小,管外对流传热系数下降;间距过小不便于检修,流动阻力也大。

浅谈换热器设计的一些结构和强度问题

浅谈换热器设计的一些结构和强度问题

浅谈换热器设计的一些结构和强度问题雷 勇 余子豪 中国成达工程有限公司 成都 610041摘要 本文结合标准对换热器的部分常见设计问题(例如防短路挡板的设置位置、防冲板的设置条件、换热器进出口的流通面积计算以及法兰的设计等)进行分析总结,给换热器的工程设计提供一定参考。

关键词 压力容器 换热器 结构设计 强度计算雷勇:高级工程师。

2003年毕业于南京工业大学过程装备与控制工程专业。

主要从事压力容器设计工作。

联系电话:028 65530523,E mail:leiyong@chengda com。

《热交换器》GB/T151-2014[1]是管壳式换热器的设计、制造、检验等方面的通用标准。

本文针对运用该标准进行换热器设计时遇到的部分常见问题进行分析总结,给换热器的工程设计提供一定的参考。

1 防短路结构根据GB/T151-2014要求,短路宽度超过16mm时应设置防短路结构,折流板缺口间距小于6个管心距时设置一对旁路挡板,超过6个管心距时每5~7个管心距增设一对旁路挡板;分程隔板槽背面或U形管式换热器管束中间每隔4~6个管心距设置1根挡管。

为起到防短路的作用,以上挡板均应设置在折流板重叠区,见图1;不应设置在折流板缺口区,见图2。

2 防冲板设置防冲板的作用是防止进入换热器的流体对换热管直接产生冲蚀、腐蚀作用。

通常气液混合物的冲蚀能力比气体或液体的冲蚀能力更强,在气液混合物中,气体的流速比较快,液滴夹杂在气体里对于设备表面冲击力就比较大[2]。

对金属表面产生的磨蚀通常来自于液体或者夹杂着固体的气固混合物。

由于腐蚀流体和金属表面间的相对运动,引起金属的加速破坏或腐蚀,这类腐蚀常与金属表面上的湍流强度有关。

湍流使金属表面液体的搅动比层流时更为剧烈,使金属与介质的接触更为频繁,故通常叫做湍流腐蚀。

湍流腐蚀实际上是一种机械磨耗和腐蚀共同作用的结果[3]。

图1 旁路挡板设在折流板重叠区图2 旁路挡板设在折流板缺口区磨蚀的外表特征是槽、沟、波纹、圆孔和山谷形,还常常显示有方向性。

概述板翅式换热器芯体零件的强度计算

概述板翅式换热器芯体零件的强度计算

概述板翅式换热器芯体零件的强度计算各种在一定温度、压力条件下进行的紧凑式换热器,均应能满足一定的强度要求。

我国两个主要的有关国家标准“钢制压力容器”GB/T150和“钢制管壳式换热器”GB/T151都是针对钢制设备制订的。

其中许多计算方法与美国ASME锅炉及压力容器规范一致或相似。

绝大多数板翅式换热器由铝合金制成,其它类型紧凑式换热器也不局限只用钢材制造。

从原则上讲,由铝合金制成的受压构件的强度完全可以采用钢制压力容器规范上所规定的方法来计算或校核。

1 理论分析通常情况下,换热器的工作压力并不是很高,一般都在低压条件下即0.3~0.7MPa下工作,因此,换热器芯体和封头的设计主要是散热性能和安装要求的设计,一般不进行机械强度的设计。

但是,如果换热器工作在高压或是交变压力的环境下,那么,对换热器芯体和封头的机械强度的设计就不容忽略了,这是因为这两种部件不仅承受着系统工作所带来的内压,而且,封头还会承受与系统安装时接管所带来的外部负荷。

对于可逆式的换热器,其工作时由于流通通道会频繁的进行切换,从而引起了压力的交变,因此,在设计换热器芯体、封头和其他辅助部件时就必须考虑到疲劳效应。

因此,根据“ASME”中的“检查和检验”部分的规定,如果没有合适的强度计算的公式时,可以采用以下规定的任何一种方法进行强度的计算。

一是如果在设计换热器之前没有进行强度计算,那么,在换热器样件生产出来后,应对需要进行强度验算的部件内部通以5倍于设计压力的压缩空气进行强度的试验,如果部件没有产生任何的变形或撕裂等影响产品使用的破坏现象,就证明其强度试验符合设计的要求。

二是在设计换热器的初级阶段就进行换热器的强度计算的时候,如果所选换热器的材料的最小屈服强度σ0.2和最小抗拉强度σb的比值小于0.626时,那么就按照以下的方法进行强度的计算。

设计压力:主机厂规定的换热器的正常工作压力、1.1倍的常用压力、换热器的最高工作压力,取三者之中较大者。

管壳式热交换器设计常见问题全面浅析

管壳式热交换器设计常见问题全面浅析

一、不同结构型式换热器特点
●U形管式换热器
U形管式换热器的型式见下图:
它是在换热器中是唯一适用于高温、高压和高温差的换热器,特点如下: a)以U形换热管尾端的自由浮动解决温差应力,可用于高温差; b)只有一块管板,加之法兰的数量也少,故结构简单而且泄漏点少; c)可以进行抽芯清洗(管程走清洁流体),便于清洗换热管外壁; d)由于弯管Rmim的限制,分程间距宽,故比固定管板换热器排管略少。 e)管程流速太高时,将会对U形弯管段产生严重的冲蚀,影响寿命。 f)换热管泄漏时,除外圈U形管外,不能更换,只能堵管。
参照GB/T151-2014附录B中B3.4 结构参数(P115)
二、管壳式换热器设计参数确定
注意:
固定管板式换热器的计算,在SW6程序中需要输入沿筒体长度 平均温差和换热管沿长度平均温差,这两项为金属壁温。
设计院做工艺计算时会有很详细的计算过程,这两个数据并不难 得到,但对于一般的制造厂,并不具备工艺计算的能力,所以,我 们常采用GB/T151附录B中给出的金属壁温计算方法。
但采用该方法时,需要管壳程两侧流体相关的物性参数,如对流 传热系数,污垢系数等数据,但往往因用户提供的数据有限,用公 式计算会遇到很大的麻烦。
管壳式热交换器 设计常见问题全面浅析
主要内容
管壳式热交换器是工业中应用最为广泛的一种换热器 ,而设计是其质量保证的首要环节,故提高换热器的设 计质量,对于行业发展来说至关重要。
针对管壳式热交换器设计过程中,以下五个方面的常 见问题及注意事项,在此与在座各位同仁进行交流和探 讨。
一、不同结构型式换热器特点
GB/T151-2014给出了管壳式热交换器数据表(表B.1)P116。 设计条件应由委托方以正式书面形式提出,并应有条件提出方的签署。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定了换热器的结构及尺寸以后,必须对换热器的所有受压元件进行强度计算。

因为管壳式换热器一般用于压力介质的工况,所以换热器的壳体大多为压力容器,必须按照压力容器的标准进行计算和设计,对于钢制的换热器,我国一般按照GB150<<钢制压力容器>>标准进行设计,或者美国ASME标准进行设计。

对于其它一些受压元件,例如管板、折流板等,可以按照我国的GB151<<管壳式换热器>>或者美国TEMA标准进行设计。

对于其它材料的换热器,例如钛材、铜材等应按照相应的标准进行设计。

下面提供一氮气冷却器的受压元件强度计算,以供参考。

该换热器为U形管式换热器,壳体直径500mm,管程设计压力3.8MPa,壳程设计压力0.6MPa。

详细强度计算如下:1.壳程筒体强度计算2. 前端管箱筒体强度计算3. 前端管箱封头强度计算4. 后端壳程封头强度计算5.管板强度计算6. 管程设备法兰强度计算7. 接管开孔补强计算氮气冷却器(U形管式换热器)筒体计算计算条件筒体简图计算压力P c0.60MPa设计温度 t100.00︒ C内径D i500.00mm材料16MnR(热轧) ( 板材)试验温度许用应力[σ]170.00MPa设计温度许用应力[σ]t170.00MPa试验温度下屈服点σs345.00MPa钢板负偏差C10.00mm腐蚀裕量C2 1.00mm焊接接头系数φ0.85厚度及重量计算计算厚度δ == 1.04mm有效厚度δe =δn- C1- C2= 7.00mm名义厚度δn= 8.00mm 重量481.06Kg压力试验时应力校核压力试验类型液压试验试验压力值PT = 1.25P = 0.7500MPa压力试验允许通过的应力水平[σ]T[σ]T≤0.90 σs = 310.50MPa 试验压力下圆筒的应力σT = = 31.95MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= = 3.99014MPa 设计温度下计算应力σt = = 21.73MPa[σ]tφ144.50MPa 校核条件[σ]tφ≥σt结论合格氮气冷却器前端管箱筒体计算计算条件筒体简图计算压力P c 3.80MPa设计温度 t100.00︒ C内径D i500.00mm材料0Cr18Ni9 ( 板材)试验温度许用应力[σ]137.00MPa设计温度许用应力[σ]t137.00MPa试验温度下屈服点σs205.00MPa钢板负偏差C10.80mm腐蚀裕量C20.00mm焊接接头系数φ0.85厚度及重量计算计算厚度δ == 8.29mm有效厚度δe =δn- C1- C2= 11.20mm名义厚度δn= 12.00mm 重量75.76Kg压力试验时应力校核压力试验类型液压试验试验压力值PT = 1.25P = 4.7500MPa压力试验允许通过的应力水平[σ]T[σ]T≤0.90 σs = 184.50MPa 试验压力下圆筒的应力σT = = 127.53MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= = 5.10266MPa 设计温度下计算应力σt = = 86.72MPa[σ]tφ116.45MPa 校核条件[σ]tφ≥σt结论合格氮气冷却器前端管箱封头计算计算条件椭圆封头简图计算压力P c 3.80MPa设计温度 t100.00︒ C内径D i500.00mm曲面高度h i125.00mm材料0Cr18Ni9 (板材)试验温度许用应力[σ]137.00MPa设计温度许用应力[σ]t137.00MPa钢板负偏差C10.80mm腐蚀裕量C20.00mm焊接接头系数φ 1.00厚度及重量计算形状系数K = = 1.0000计算厚度δ = = 6.98mm有效厚度δe =δn- C1- C2= 11.20mm最小厚度δmin= 0.75mm名义厚度δn= 12.00mm 结论满足最小厚度要求重量32.23Kg压力计算最大允许工作压力[P w]= = 6.06962MPa 结论合格氮气冷却器后端壳程封头计算计算条件椭圆封头简图计算压力P c0.60MPa设计温度 t100.00︒ C内径D i500.00mm曲面高度h i125.00mm材料16MnR(热轧) (板材)试验温度许用应力[σ]170.00MPa设计温度许用应力[σ]t170.00MPa钢板负偏差C10.00mm腐蚀裕量C2 2.00mm焊接接头系数φ 1.00厚度及重量计算形状系数K = = 1.0000计算厚度δ = = 0.88mm有效厚度δe =δn- C1- C2= 6.00mm最小厚度δmin= 0.75mm名义厚度δn= 8.00mm 结论满足最小厚度要求重量19.61Kg压力计算最大允许工作压力[P w]= = 4.05567MPa 结论合格氮气冷却器管板计算设计条件0.60MPa壳程设计压力3.80MPa管程设计压力100.00︒ C壳程设计温度100.00︒ C管程设计温度8.00mm壳程筒体壁厚12.00mm管程筒体壁厚壳程筒体腐蚀裕量C 1.00mm管程筒体腐蚀裕量 C0.00mm500.00mm换热器公称直径换热管使用场合一般场合管板与法兰或圆筒连接方式 ( a b c d 型 ) a型换热管与管板连接方式 ( 胀接或焊接 ) 焊接材料(名称及类型) 0Cr18Ni970.00mm名义厚度管强度削弱系数0.40刚度削弱系数0.40材料泊松比0.30210.00mm2隔板槽面积换热管与管板胀接长度或焊脚高度l 3.50mm191000.00MPa 设计温度下管板材料弹性模量137.00MPa 设计温度下管板材料许用应力68.50MPa许用拉脱力壳程侧结构槽深h10.00mm 板管程侧隔板槽深h2 4.00mm0.00mm壳程腐蚀裕量0.00mm管程腐蚀裕量材料名称0Cr18Ni9换管子外径d19.00mm2.00mm热管子壁厚管U型管根数n138根换热管中心距 S25.00mm137.00MPa 设计温度下换热管材料许用应力垫片材料软垫片压紧面形式1a或1b垫垫片外径D o565.00mm 片垫片内径D i515.00mm a型垫片厚度δg mm 垫片接触面宽度Ωmm垫片压紧力作用中心园直径D G547.11mm 管板材料弹性模量0.00MPa ( c 型 )管板材料弹性模量0.00MPa ( d 型 )( b d 型 )管箱圆筒材料弹性模量0.00MPa ( b c 型 )壳程圆筒材料弹性模量0.00MPa ( c d 型 )管板延长部分形成的凸缘宽度0.00mm ( c 型)壳体法兰或凸缘厚度0.00mm ( d 型 )管箱法兰或凸缘厚度0.00mm参数计算管板布管区面积三角形排列正方形排列一根换热管管壁金属横截面积= 106.81mm2管板开孔前抗弯刚度b c d 型0.00N·mm管板布管区当量直径436.43mma 型其他系数0.80系数按和查图得 : = 0.000000系数按和查图得 : = 0.000000a d 型= 0b c型0.00a ,c 型= 0b ,d 型0.00a 型= 0其他0.00旋转刚度无量刚系数0.00系数0.2696按和0.07130.0000管板厚度或管板应力计算a 管板计算厚度取、大值61.345mm型管板名义厚度66.000mm管板中心处径向应力= 0MPa = 0MPab c d 布管区周边处径向应力= 0MPa型= 0MPa 边缘处径向应力= 0MPa = 0MPa管板应力校核单位:MPa|σr|r=0=b工况|σr |r=Rt=c|σr|r=R=d|σr|r=0=型工况|σr|r=Rt=|σr|r=R=换热管轴向应力计算及校核: MPa (单位)计算工况计算公式计算结果校核只有壳程设计压力, 管程设计压力=0 : |-1.59|≤合格只有管程设计压力,壳程设计压力=0 : =|6.29|≤合格壳程设计压力,管程设计压力同时作用: |4.69|≤合格换热管与管板连接拉脱力校核拉脱力q3.21 ≤[q]MPa校核合格重量64.89Kg氮气冷却器管箱法兰强度计算设计条件简图设计压力 p 3.800 MPa计算压力 pc 3.800 MPa设计温度 t 100.0 ° C轴向外载荷 F 0.0 N外力矩 M 0.0 N.mm壳材料名称0Cr18Ni9体许用应力137.0 MPa法材料名称#许用[s ]f 137.0 MPa兰应力[s ]tf 137.0 MPa材料名称40Cr螺许用[s ]b 212.0 MPa应力[s ]tb 189.0 MPa栓公称直径 d B 24.0 mm螺栓根径 d 1 20.8 mm数量 n 24 个Di 500.0 Do 660.0垫结构尺寸Db 615.0 D外565.0 D内515.0 δ0 16.0 mm Le 22.5 LA 31.5 h 35.0 δ1 26.0 材料类型软垫片N 25.0 m 2.00 y 11.0 压紧面形状1a,1b b 8.94 DG 547.1 片b0≤6.4mm b= b0 b0≤6.4mm DG= ( D外+D内 )/2b0 > 6.4mm b=2.53b0 > 6.4mm DG= D外 - 2b螺栓受力计算预紧状态下需要的最小螺栓载荷Wa Wa= πbDG y = 169119.0 N操作状态下需要的最小螺栓载荷WpWp = Fp + F = 1127044.1N所需螺栓总截面积 Am Am = max (Ap ,Aa ) = 5963.2 mm2 实际使用螺栓总截面积 AbAb = = 8117.5mm2力矩计算操FD = 0.785pc= 745750.0 N LD= L A+ 0.5δ1= 44.5mm MD= FD LD= 33185876.0N.mm作FG = Fp= 233573.5 N LG= 0.5 ( Db - DG )= 33.9mm MG= FG LG= 7928625.5N.mmMp FT = F-FD= 147150.2 N LT=0.5(LA + d 1 + LG )= 45.7mm MT= FT LT= 6728066.0N.mm外压: Mp = FD (LD - LG )+FT(LT-LG ); 内压: Mp = MD+MG+MT Mp = 47842568.0 N.mm 预紧MaW = 1492550.6 N LG = 33.9 mm Ma=W LG = 50664460.0 N.mm 计算力矩 Mo= Mp 与中大者 Mo=50664460.0N.mm螺栓间距校核实际间距= 80.5mm最小间距56.0 (查GB150-98表9-3)mm最大间距158.4mm形状常数确定89.44 h/ho = 0.4 K = Do/DI = 1.3201.6由K查表9-5得T=1.789 Z =3.694 Y =7.145 U=7.851整体法兰查图9-3和图9-4 FI=0.85944 VI=0.31415 0.00961 松式法兰查图9-5和图9-6 FL=0.00000 VL=0.00000 0.00000 查图9-7 f = 1.06578整体法兰 = 松式法兰 = 0.2由得572246.8 0.0ψ=δf e+1 =1.44 g = y /T = =0.811.59= 0.98 剪应力校核计算值许用值结论预紧状态0.00MPa操作状态0.00MPa输入法兰厚度δf = 46.0 mm时, 法兰应力校核应力性质计算值许用值结论轴向应力158.57MPa=205.5 或=342.5( 按整体法兰设计的任意式法兰, 取 )校核合格径向应力77.96MPa= 137.0校核合格切向应力54.14MPa= 137.0校核合格综合应力= 118.27MPa= 137.0校核合格法兰校核结果校核合格氮气冷却器开孔补强计算接管: a,φ219×16计算方法 : GB150-1998 等面积补强法, 单孔设计条件简图计算压力p c 3.8MPa设计温度100℃壳体型式圆形筒体壳体材料名称及类型0Cr18Ni9 板材壳体开孔处焊接接头系数φ0.85壳体内直径D i500mm壳体开孔处名义厚度δn12mm壳体厚度负偏差 C10.8mm壳体腐蚀裕量C20mm壳体材料许用应力[σ]t137MPa接管实际外伸长度100mm接管实际内伸长度0mm 接管材料0Cr18Ni9接管焊接接头系数1名称及类型管材接管腐蚀裕量0mm 补强圈材料名称补强圈外径mm补强圈厚度mm接管厚度负偏差C1t2mm 补强圈厚度负偏差C1r mm 接管材料许用应力[σ]t137MPa 补强圈许用应力[σ]t MPa开孔补强计算壳体计算厚度δ8.293mm 接管计算厚度δt 2.63mm 补强圈强度削弱系数f rr0接管材料强度削弱系数f r1开孔直径d191mm 补强区有效宽度B382mm 接管有效外伸长度h155.28mm 接管有效内伸长度h20mm 开孔削弱所需的补强面积A1584mm2壳体多余金属面积A1555.2mm2接管多余金属面积A21257mm2补强区内的焊缝面积A364mm2A1+A2+A3=1876 mm2 ,大于A,不需另加补强。

相关文档
最新文档