MRI成像原理

合集下载

核磁共振成像技术原理

核磁共振成像技术原理

核磁共振成像(MRI,磁共振影像)是一种利用原子核在外磁场中的行为来生成高分辨率影像的医学成像技术。

以下是核磁共振成像技术的基本原理:
1. 核磁共振基础:
-原子核中的带电粒子,例如氢原子核(质子),具有自旋。

当这些原子核置于外部磁场中时,它们会产生磁矩,即一个磁场。

在医学成像中,常用的是质子的核磁共振。

2. 激发:
-当磁共振体(通常是人体组织中的水分子)置于强大的外部磁场中时,核磁矩会在外部磁场的作用下产生预cession运动,这是一种旋转运动。

通过应用额外的无线电频率(射频脉冲)来激发这些核磁共振体,使其离开平衡态。

3. 驰豫:
-一旦停止射频激发,核磁矩将重新恢复到平衡态。

这个过程称为核磁共振驰豫。

在这个过程中,核磁矩会释放出能量,产生一个旋转磁场。

4. 信号检测:
-放射出的能量产生的旋转磁场可以被检测。

在MRI中,探测器
会测量这个信号并传递给计算机。

5. 空间编码:
-为了获得空间信息,外加一组梯度磁场。

这些梯度场使得不同位置的核磁体经历不同的共振频率。

通过测量这些频率差异,可以获取关于空间位置的信息。

6. 图像重建:
-计算机将从探测器接收到的信号转换为二维或三维图像。

这涉及到使用数学算法对信号进行处理和图像重建。

总体而言,核磁共振成像技术利用核磁共振现象,通过对核磁体的激发、驰豫和信号检测,结合梯度磁场和计算机处理,实现对人体组织的高分辨率成像。

MRI对软组织有很好的分辨率,而且不涉及使用放射线。

磁共振成像过程及原理

磁共振成像过程及原理

磁共振成像过程及原理
磁共振成像(MRI)是一种非常先进,非侵入性的影像技术,通过
利用强大的磁场、射频脉冲和计算机技术来获取高分辨率、三维和非
侵入性的人体或动物组织结构的图像。

MRI的原理主要基于原子核在强磁场下的行为。

原子核具有自旋角动量,自旋角动量可以看作是原子核本身围绕自身轴线旋转的一种运
动形式。

在强磁场下,几乎所有原子核都会对齐,而且有些原子核在
外加射频电磁波的作用下,会进入高能激发态,这就是核磁共振现象。

在MRI扫描中,人体或动物被放置在一个强磁场中心的区域内。

这个强磁场会使原子核的自旋角动量趋向于沿着磁场方向和反磁场方
向一一对齐。

此时,外加的射频信号会让原子核进入激发态,当磁场
到达恒定状态时(平衡状态),将准备好的强磁场中心向患者的身体
部位引领一个小的旋转力向量,获取正负磁场相互作用中的信息。

其次是接下来的退相干和重建阶段。

在射频信号发出后,系统会
使原子核自旋恢复到原来的位置,在此过程中,控制磁场的脉冲会间
歇性的修改。

然后再次向患者的身体部位加入射频信号,重复上一步操作,重复修改脉冲参数,直到整个图像数据被成功完成。

最后,将收集到的信号传输到计算机中进行处理。

利用计算机对接收到的NMR信号进行数学分析,计算机会利用专用算法对各种谱和图像进行处理和可视化,以生成体部分的详细图像。

MRI的成像分辨率极高,可提供几乎所有生物组织的图像,并且不需要265 X光辐射及其他有害的放射线,所以常用于体检和临床诊断及手术规划操作。

核磁共振成像技术的物理原理及应用

核磁共振成像技术的物理原理及应用

核磁共振成像技术的物理原理及应用核磁共振(NMR)是一种物理现象,它指的是被外加磁场激发了自旋的原子、分子或核子的向外发射能量的过程。

在医学领域,核磁共振成像技术(MRI)是一项重要的诊断工具,它可以帮助医生检测病人的内部结构,比如头部、胸部和肢体等部位。

本文将介绍MRI的物理原理、应用和未来的发展方向。

1. 物理原理在MRI中,磁共振所产生的信号来源于一些在人体内具有自旋的核子,比如氢原子中的质子和碳原子中的核子。

这些核子带有一个自旋量子数,它可以被外加磁场激发或者被核间相互作用激发。

在外加磁场的作用下,旋转时会发生Larmor进动,进动频率与外磁场大小成正比。

磁共振成像就是利用这一原理来获取人体内部的图像。

在成像前,患者需要先进入MRI机中,MRI机则会产生一个强磁场,使患者体内的核子同向排列,使得这些核子共同具有一个自发激发的“共振”状态。

为了进一步增强共振信号的强度,医生会在这个过程中通过向患者体内发射一些射频波,激发核子自发地发出信号,这些信号则由MRI机的探测器接收并处理,从而生成出最终的图像。

2. 应用MRI技术在医学领域有着广泛的应用,对于骨骼、软组织、脑部、心脏、肺部等内部器官扫描都有着良好的应用效果。

比如,MRI可以用来检测中风、脑出血、脑血管瘤等疾病。

在眼科领域中,MRI技术可以用来观察眼球内部的情况,处理虹膜和视网膜等部位的问答。

此外,MRI还具有标本研究方面的应用,可以提供组织影像和实时定位,可用于生物学研究、药物研究和疾病研究等领域。

MRI还被广泛应用于物理和工程学界,如石油勘探领域、新材料的制造等。

3. 未来发展方向MRI技术与人工智能、大数据等领域的结合会是一个有潜力的领域,如利用MRI成像技术的大数据,发掘背景丰富的图像数据,可以应用于疾病预测、疾病治疗等领域。

此外,磁共振技术的发展还提高了其对人类健康的重要性,值得期待的是,在未来几年内,MRI技术会继续得到改进和优化。

MRI成像的原理及临床应用

MRI成像的原理及临床应用

MRI成像的原理及临床应用MRI(磁共振成像)是一种先进的医学影像检查技术,通过利用人体组织中的氢原子在强磁场和无线电波作用下产生的信号来生成高分辨率的图像。

MRI成像原理非常复杂,但简单来说,它利用水分子中的氢原子核(质子)在强磁场中的旋转和无线电波的激发来生成影像。

在医学上,MRI技术已经成为非常重要的诊断工具,广泛应用于各种疾病的检查和诊断。

2.无线电波激发:MRI设备通过发射高频无线电波信号来激发人体组织中的氢原子核。

3.信号接收:激发的质子核在放松过程中会释放出无线电信号,并被接收线圈捕获。

这些信号被电脑转换成图像。

4.信号处理:电脑利用接收到的信号对其进行处理,生成高分辨率的影像,显示人体组织的结构和病变情况。

MRI临床应用:1.诊断脑部疾病:MRI成像在脑部疾病的诊断中具有很高的准确性,可以检测脑卒中、脑肿瘤、脑出血等疾病,并为医生提供详细的解剖结构信息。

2.骨骼和关节疾病:MRI成像可以非常清晰地显示骨骼和关节组织的结构,对骨折、软骨损伤、关节疾病等疾病的诊断和治疗具有重要意义。

3.腹部疾病:MRI成像可以检测腹部内脏器官的异常,如肝脏、胰腺、肾脏、胃肠道等器官的疾病,提供准确的诊断信息。

4.心血管疾病:MRI成像对心脏和血管的结构和功能有很高的分辨率,可以检测心肌梗塞、心肌病变、心腔扩张等心血管疾病。

5.乳腺肿瘤诊断:MRI成像对乳腺肿瘤的早期诊断和定位具有重要意义,可以帮助医生提前发现和治疗乳腺癌等疾病。

6.妇科疾病:MRI成像可以检测子宫、卵巢、输卵管等女性生殖器官的异常改变,用于诊断子宫肌瘤、卵巢囊肿、子宫内膜异位等妇科疾病。

总的来说,MRI成像技术在医学影像学中起着至关重要的作用,为医生提供了高分辨率、非侵入性的影像信息,有助于帮助医生准确诊断疾病、制定有效的治疗方案。

随着技术的不断发展和改进,MRI成像在临床应用中的前景将更加广阔。

mri磁共振成像原理

mri磁共振成像原理

mri磁共振成像原理
MRI成像是利用核磁共振现象的原理,通过对人体组织内的
水分子进行扫描和观察,得到高清晰度的图像。

具体原理如下:
1. 磁性原子核存在自旋,即核具有旋转的特性。

2. 在外加磁场的作用下,核会以不同的方式排列。

正常情况下,核自旋会沿着磁场方向对齐。

3. 在MRI中,通过在病人身上施加一个强大的磁场,使得人
体内的大部分水分子的核自旋方向与磁场方向一致。

4. 随后,施加一系列的辅助磁场,这些磁场的方向会短暂扰乱水分子自旋的排列。

5. 辅助磁场停止后,水分子的自旋会重新按照其能量状态重新排列。

6. 在此过程中,水分子释放出的能量会被探测器捕捉并转换为电信号。

7. 根据这些电信号的不同,MRI系统可以重建出人体内不同
组织的图像。

此外,MRI还可以通过改变辅助磁场的频率和强度,来获取
不同组织的信号。

这样就可以得到不同的对比度,进一步分辨不同组织的结构和功能。

简述MRI成像原理

简述MRI成像原理

简述MRI成像原理
MRI全称为磁共振成像,是一种医学影像学的技术。

其原理基于核磁共振现象,利用强磁场和无线电波对人体进行扫描,产生高清晰度三维图像。

具体实现过程包括以下几个步骤:
1. 构建磁场:在MRI扫描过程中,需要产生非常强的磁场。

通常使用超导磁体,其内部绕有电流,可以产生非常强的磁场。

2. 激发磁共振:在强磁场中,人体内的原子核会对磁场进行反应。

使用无线电波来激发原子核的磁共振,使其发生共振吸收和发射。

3. 接收信号:激发原子核后,其会发出无线电信号。

使用接收线圈来捕获这些信号。

4. 信号处理:通过数学算法对接收到的信号进行处理,可以得到一幅高清晰度的三维图像。

MRI成像原理的优势在于它不会对人体造成辐射,适用于对柔软组织的成像,如脑部、胸部、骨骼等。

同时,MRI成像原理也被广泛应用于医学诊断、科学研究和生物医学工程领域。

- 1 -。

磁共振成像设备的工作原理

磁共振成像设备的工作原理

磁共振成像设备的工作原理磁共振成像(Magnetic Resonance Imaging,MRI)是一种常用于医学诊断的非侵入性扫描技术,它利用磁共振原理,通过对人体组织的磁性物质的成像进行分析,得出病灶位置和病理变化的信息。

下面将详细介绍MRI设备的工作原理。

MRI设备主要由主磁场系统、梯度线圈系统、射频系统和计算机系统组成。

1. 主磁场系统主磁场系统是MRI设备的核心组成部分,它由一个超导磁体构成。

这个超导磁体能产生一个稳定的高强度磁场,通常是1.5T或3T。

这个磁场可以将人体内的水和脂肪等有机分子的原子核(如氢核、氧核等)原子核自旋取向,从而为后续成像提供必要的条件。

2. 梯度线圈系统梯度线圈系统由三个互相垂直的线圈组成,即横向、纵向和轴向梯度线圈。

这些线圈的作用是产生稳定强度和变化频率的梯度磁场,用于在空间上定位图像中不同的区域。

梯度线圈系统的变化频率决定了成像的分辨率,变化强度决定了成像的对比度。

3. 射频系统射频系统由发射线圈和接收线圈组成,它的作用是产生高频电磁场和接收返回的信号。

在成像过程中,射频系统会向人体内部提供一个高频脉冲电磁场,导致人体内的原子核自旋发生能级跃迁。

原子核回到基态时,会发送出一个特定的信号,通过接收线圈接收并传回计算机系统进行处理。

4. 计算机系统计算机系统是MRI设备的控制中心,它负责控制整个设备的运行、数据采集、图像重建和存储。

在成像过程中,计算机会通过梯度线圈和射频线圈产生的信号,对人体内部的原子核进行测量和记录。

然后利用这些数据,通过复杂的数学计算和图像处理算法,生成最终的MRI图像。

具体工作流程如下:1. 开始扫描前,患者需要去除身上的金属物品,因为磁场会对金属产生吸引力和磁化。

2. 患者躺在MRI设备的扫描床上,床会进入主磁场系统中央,电脑通过脚踏开关控制床的位置。

3. 当主磁场系统通电后,会产生一个均匀的磁场。

此时,射频系统会向人体内部发送射频脉冲,使原子核自旋发生能级跃迁。

磁共振成像原理简介

磁共振成像原理简介

磁共振成像原理简介磁共振成像(Magnetic Resonance Imaging ,MRI )是利用原子核在磁场内共振所产生信号经重建成像的一种技术。

在诞生之初被称为核磁共振,但为了避免与核医学成像技术相混淆,并且为了突出这项技术不会产生电离辐射的优点,因此将“核磁共振成像”简称为磁共振成像。

核磁共振是自旋的原子核在磁场中与电磁波相互作用的一种物理现象。

我们知道,原子由原子核和绕核运动的电子组成,其中,原子核由质子和中子组成。

电子带负电,质子带正电,中子不带电。

根据泡里不相容原理,原子核内成对的质子或中子的自旋相互抵消,因此只有质子数和中子数不成对时,质子在旋转中产生角动量,磁共振就是利用这个角动量来实现激发、信号采集和成像的。

用于人体磁共振成像的原子核为氢原子核(1H ),主要原因如下:1、1H 是人体中最多的原子核,约占人体中总原子核数的2/3以上。

2、1H 的磁化率在人体磁性原子核中是最高的。

质子以一定频率绕轴高速旋转,称为自旋。

自旋是MRI 的基础。

自旋产生环路电流,形成一个小磁场叫做磁矩。

在无外磁场情况下,人体中的质子自旋产生的小磁场是杂乱无章的,每个质子产生的磁化矢量相互抵消,因此,人体在自然状态下并无磁性,即没有宏观磁化矢量的产生。

进入主磁场后,人体中的质子产生的小磁场不在杂乱无章,呈有规律排列。

一种是与主磁场平行且方向相同,另一种与主磁场平行但方向相反,处于平行同向的质子略多于平行反向的质子。

从量子物理学角度,平行同向的质子处于低能级,因此受主磁场的束缚,其磁化矢量的方向与主磁场的方向一致;而平行反向的质子处于高能级,因此能够对抗主磁场的作用,其磁化矢量方向与主磁场相反。

由于低能级质子略多于高能级质子,因此在进入主磁场后,人体产生了一个与主磁场方向一致的宏观纵向磁化矢量。

进入主磁场后,无论是处于高能级还是处于低能级的质子,其磁化矢量并非完全与主磁场方向平行,而总是与主磁场有一定的角度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M
3.拉莫尔进动
• 氢质子自旋的同时, 又沿主磁场B0方向作 圆周运动,将质子磁 矩的这种运动称为进 动或旋进。 • 在主磁场中宏观磁矩 像单个质子磁矩那样 作旋进运动,其频率 用larmorg公式表示。
方程
• f=r· B0/2π f:进动的频率 B0:主磁场强度 r:旋磁比(对于每一种原子核 是恒定的常数)
⑴频率编码
• 启动Gz选出被激励的横轴层面后,再启动 Gx,频率编码梯度使得信号共振频率沿X 轴增加,经FT,各点的信号强度描点连线 成沿X轴方向的一维轮廓线,Gx也称读出 梯度。由于人体X轴的各质子群相对位置不 同,在频率编码梯度上有不同的位置,则可 在X轴上分出不同频率质子群的位置。
⑵相位编码
• 90º RF 脉冲停止后 , 因T 1 、T 2 的作用引 起的信号衰减,称为自由感应衰减(FID) FID代表在横向测到的的振荡信号的 演变,将自旋-自旋相互作用及磁场不均 匀所引起的信号衰减时间称作T2*。
9.信号与MR波谱
• 在一个窄频率带的范围内, FID 信号代表叠加 到一起的正玄振荡,用数学方法(傅里叶变换) 可把振幅随时间而变化的函数变成振幅随频率 变化的函数,即 MR 波谱。钟形波的波峰高度 (信号强度)代表质子密度。
6、人体部分组织T1、T2值
几种常见组织在不同场强下的T1,T2及质子密度值 组织 脂肪 白质 灰质 脑脊液 肌肉
T1
0.2T 240 390 490 1400 370 1.0T --620 810 2500 730 1.5T --718 998 3000 860
T2 60 76 91 140 50
质子密度 (%)
9.6 10.6 10.6 10.8 9.3
7、核磁共振的量子物理学简介
• 低能态的质子被激励跃迁为高能态,以 及高能态衰减为低能态均为量子过程。 • 激励射频光子的频率为质子的larmor频 率,后者由主磁场的场强决定,因此高、 低能态的差别与场强成正比。
N
8.磁共振信号
• 90º RF 脉冲使质子群净磁矩 旋进到 XY 平面 , 脉冲停止后 , 横向磁化矢量的变化使得 RF 线圈产生感应电动势 , 这个感应电流即 MR 信号。 由于受到T 1 、T 2 的影响, 该信号以指数曲线形式衰 减 , 称为自由感应衰减 (FID)
5、核磁弛豫
• 射频脉冲停止后,已 吸收能量发生共振的 质子群磁矩释放能量 , 回到原平衡状态的过 程称核磁弛豫(固 有)。弛豫过程用两 个时间来表示,即纵 向弛豫T1 、横向弛 豫T2 。弛豫过程表 现为一种指数曲线。
• T1弛豫是质子群通过释放已吸收的能量以恢 复到原来平衡状态的过程。 • 90°射频脉冲的一个作用是激励质子群使之 在同一方位、同步旋进(相位一致),横向磁 化矢量最大;射频脉冲停止后,质子群同步旋 进变为异步,横向磁化矢量由最大减小到零, 称为去相位。 • 各种正常组织和病变组织的T1、T2是不同的。 正常组织和病变组织氢原子的T1、T2受周围 环境(化学环境或磁环境)的影响,而改变了 氢质子的行为,进而改变了组织所发出的射频 波。
• MRI与CT一样,是人体剖面的数字图像。 • MRI是多参数成像,每个体素的亮度灰阶值 与T1、T2、质子密度以及流动液体参数有关, 而CT只与组织的X线衰减有关。 • 人体不同组织有其各自的T1、T2、质子密度, 这是MRI区分正常与异常以及诊断疾病的基 础。
• 加权像:人们通过调节重复时间TR和 回波时间TE,以得到突出某个组织特 征参数的图像,这种图像被称为加权像 WI。
的90°脉冲构成。
• 反转恢复脉冲序列:先施加以180°脉冲,
再给一个90°脉冲。
磁共振信号强度
三、磁共振成像的基本原理
• 根据larmor定律,在均匀的强磁场中,生物体内的 质子群旋进频率由场强决定且一致的。在主磁场中 附加一个线性梯度磁场,被检体各部位质子群的旋 进频率可因磁场强度不同而有区别,这样可对被检 体某一部位行MR成像;因此,MRI空间定位靠的是梯 度磁场。 • 用于MRI的梯度磁场有三种: ⑴横轴位(GZ)自上至下场强不同的梯度磁场 ⑵矢状位(GX)自右至左场强不同的梯度磁场 ⑶冠状位(GY)自后至前场强不同的梯度磁场
2.相位离散与相位重聚
• 由于断层面有一定的 厚度,将脉冲波形中 心频率作为断层平面 的位置,其上下质子 群的旋进频率有快有 慢,并呈螺旋楼梯的 台阶状散开,引起信 号减弱,为了获得最 大信号强度,采用一 相反极性的梯度磁场, 使该层自旋磁矩相位 重聚。
3.断层平面信号的编码
• 为区别断层面空间一个点的信号需在选 择二维定位,目前MRI用的是频率和象棋 两个编码方法。
90°射频脉冲的作用
• 处于平衡状态的净磁 矩 , 并不能产生MR信 号,该磁矩M在具有 拉莫尔频率的90º RF脉 冲的激励下旋进到XY 平面 , 也即垂直于主磁 场的方向,产生横向 的宏观磁化矢量。() M的方向和大小的变 化取决于射频脉冲的 强度和时间。
180°射频脉冲的作用
• 施加180°射 频脉冲后,质 子群的宏观磁 化矢量与B0平 行,方向相反, 横向磁化矢量 MXY为零。
1.层面选择
• 由于共振频率是磁场强 度的函数,在人体长轴 方向上附加一梯度磁场 Gz,则每一横断面的 共振频率均不一样,层 面厚度取决于磁场梯度 和射频带宽(射频脉冲 其频率并非完全一致, 有一个频率范围)。 梯度场强越高,层厚越 薄 射频脉冲越短,带越宽, MRI层厚有一定限度,一般为3-20mm 层厚越厚
Fo
FT
0
Time
Fo
t
Fo Fo+1/ t
Frequency FT
Fo
t
DF= 1/ t
二、自旋回波序列-SE
180 90 回波 90 180 回波
TE TR
TE:回波时间 TR:重复时间
1、自旋回波序列成像理论
• 由于磁场的不均匀使 90º 脉冲后的宏观净 磁矩很快相位离散, 即去相位;在 TE/2 后 , 施加 180º RF 脉冲使质 子群离散的相位又相 互趋向一致,称为相 位重聚,并出现可测 量的MR信号。
7.K空间
• 伴随数据区域的空 间编码,必须有一 个解码方法来获得 具有一定空间分辨 率的MR图像。不 同的编码方法,图 像品质有很大差异。
2.磁化(原子核在外加磁场中)
• 磁场用磁矩(m)来表示,磁场有其强度、 方向和方位。 • 主或静磁场:外加磁场,用矢量B0表示。
• 将生物组织置于主磁场中,则质子磁矩方 向发生变化,结果是较多的质子磁矩指向 与主磁场方向相同,而较少的质子与B0方 向相反,与B0方向相反的质子具有较高 的位能。常温下,顺主磁场排列的质子数 目较逆主磁场排列的质子稍多(约10-6) 因此,出现与主磁场B0方向一致的净宏 观磁矩M(宏观磁化矢量,MRI研究和讨 论的主要是其变化规律)
PDW
T1WI T2WI
TR PDW T1WI 长 短
TE 短 短
T2WI




FA(翻转角)
• 在梯度回波使用的 是小角度激励。 • MZ(小)>MZ(大) • 小角度激励等效于 长TR。
5、其它序列
• 对比逆转 • 多回波序列:90°脉冲后,连续施加180°脉
冲。
• 部分饱和脉冲序列:有两个以一定时间间隔
4.共振
• 共振现象为能量传递 过程,当驱动者能源 频率与被激励者固有 频率相一致时,就发 生共振现象。 • 在MR成像中,被激励 者是氢质子团,激励 者是射频脉冲。 • 在主磁场中顺主磁场 方向的质子处于低能 态,逆主磁场方Байду номын сангаас的 质子处于高能态。
M
• 在主磁场中,以larmor频率施加射频脉冲,被 激励的质子从低能态跃迁至高能态,出现核磁 共振(只有射频脉冲的频率与质子群的旋进频 率一致时,才能出现共振)。
• 施加垂直于Gx的相位 编码梯度Gy,90º R F停止时,所有核磁处 于同一相位及频率旋进, 此时施加Gy,Y轴上, 不同位置的核磁旋进频 率各异,关闭Gy,各 核磁又以同频旋进,然 而,位置却发生了变化, 并记忆了此时的位置。
4.2D傅里叶变换
• 90º 脉冲后,施加频率编码梯度和相位 编码梯度,即可完成被选层面的空间编 码,Gx和Gy是2D傅里叶变换的基 础。 • 傅里叶变换可将一个混合的FID信号区分 出不同的其不同的频率成分,可将一个 信号的频率(读出)和相位成分区别开。 这样,沿着一个平面的两个垂直方向进 行相位(行)和频率(列)编码,可得 到该层面每个体素的信息。
Lauterbur等
Damadian Mallard Lauterbur Mansfierd
电磁波谱图
1.核磁
• 永磁体:所有物质具有不同程度的磁性 (如铁、镍、钴、钆等),在其周围产 生磁场。 • 电磁:电子流过环形线圈,产生类似磁 铁棒的磁场。
• 质子、中子或质子 和中子数不成对的 原子核,高速自旋 (相当于正电荷在 环形线圈流过)时 产生磁场,称为核 磁。
•人体组织中含有1H、13C、19F、23Na等元素, 有磁性的元素约百余种。 • 现今MRI中研究和使用最多的为1H(氢质 子),原因有:
–1、1H的磁化最高的原子核; –2、1H占人体原子数量的2/3(大部分位于水 和脂肪中)。
• 通常所指的MRI为氢质子的MR图像(或称 质子像)。
不同原子核的MRI特性
长TR 短TE 短TR
短TE
抑制 抑制 提高
抑制
T 1W T 2W T 1W
PDW
T1WI
T 2W
4、T2加权像
• 如何设置参数才能得到T2加权像? 通过抑制组织的质子密度和T1加权特性, 就可以得到T2加权像。
长TR 短TE 短TR 短TE 长TR 长TE 抑制 抑制 提高 抑制 抑制 提高 T 1W T 2W T 1W T 2W T 1W T 2W
相关文档
最新文档