数学中考题型(第25题)动点几何题型讲解

合集下载

历年中考数学动点问题题型方法计划归纳

历年中考数学动点问题题型方法计划归纳

动点问题题型方法概括动向几何特色----问题背景是特别图形,考察问题也是特别图形,殊的关系;剖析过程中,特别要关注图形的特征(特别角、特别图形的性质、图形置。

)动点问题向来是中考热门,近几年考察研究运动中的特别性:等腰相像三角形、平行四边形、梯形、特别角或其三角函数、线段或面积的最值。

下边就此问题的常有题型作简单介绍,解题方法、重点给予点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线y3x6与坐标轴分别交于A、B4从O点出发,同时抵达A点,运动停止.点Q沿线段OA运动,速度点P沿路线O→B→A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之(3)当48时,求出点P的坐标,并直接写出以点O、P、Q为S5四个极点M的坐标.yBPxO Q A提示:第(2)问按点P到拐点B全部时间分段分类;2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC(1)求⊙O的直径;(2)若D是AB延伸线上一点,连结CD,当BD长为多少时,CD(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动从B点出发沿BC方向运动,设运动时间为t(s)(0 t 2),连结EF为直角三角形.注意:第(3)问按直角地点分类议论C CFEA AB AO B D O图(1)图(2)图(面积最小?并求出最小值及此时PQ的长.注意:发现并充足运用特别角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。

二、4、(2009特别四边形边上动点年吉林省)如下图,菱形ABCD的边长为6厘米,B始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A C以2厘米/秒的速度沿 A B C D的方向运动,当点Q运动到同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC方厘米(这里规定:点和线段是面积为O的三角形),解答以下问题:(1)点P、Q从出发到相遇所用时间是秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时3)求y与x之间的函数关系式.D CPBA Q轴于点H.(1)求直线AC的分析式;(2)连结BM,如图 2,动点P从点A出发,沿折线ABC方向以 2点C匀速运动,设△PMB的面积为S(S 0),点P的运动时间为数关系式(要求写出自变量t的取值范围);3)在(2)的条件下,当t为什么值时,△MPB与△BCO互为余角,并线AC所夹锐角的正切值.yAHB yA H BMOx MCxO C图(1)2)问按点P到拐点B所用时间分段分类;注意:第(图(2)第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运∠MPB=∠ABM的两种状况,求出t值。

中考数学动点问题专题讲解

中考数学动点问题专题讲解

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠AEDCB 图2A3(2)3(1)ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. ABCO 图8HC动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

中考动点题解题思路

中考动点题解题思路

中考动点题解题思路中考动点题是数学中的一种题型,主要考察学生对于动点运动轨迹和运动规律的理解和应用能力。

这类题目通常会给出一个动点在二维平面上的运动过程或条件,并要求学生回答有关该动点运动的问题,如到达某一位置的时间、速度、加速度等。

下面将结合具体的例题,从问题的分析、解题思路和方法、以及注意事项三个方面详细探讨中考动点题的解题思路。

一、问题的分析在解动点题之前,学生首先要对问题进行分析,确定动点的运动过程或条件。

通常可以从题目中找到以下几点信息:1.动点的运动方式:动点是直线运动还是曲线运动,是匀速运动还是变速运动;2.动点的起始条件:动点开始的位置、速度或其他相关条件;3.动点的运动过程:动点在规定的时间内或规定的条件下的运动情况。

二、解题思路和方法1.画图辅助分析:将问题中的相关信息用图形表示出来,有助于更好地理解问题和分析解题思路。

可以根据问题的要求,画出动点在平面上的运动轨迹图或示意图,标注出起始位置、终止位置、运动方向等信息。

2.分析运动过程:根据问题中给出的动点运动过程或条件,分析动点在不同时间或条件下的运动状况,如位置的变化、速度的变化、加速度的变化等。

通过对运动过程的分析,可以找到解题的关键点。

3.应用运动公式求解:根据动点的运动方式和相关条件,利用数学中的运动公式来求解问题。

常用的运动公式有:物体在匀速直线运动中的位移公式、速度公式和时间公式;物体在匀变速直线运动中的位移公式、速度公式和加速度公式等。

根据题目所给的条件和要求,选择合适的公式进行计算,得到问题所求的答案。

4.根据图像和运动规律推理解答:有时候,问题中给出的信息比较复杂,难以直接利用运动公式来求解。

这时候可以通过观察图像和分析运动规律来得到解题的思路。

可以利用图像中的形状、对称性、周期性等特点,运用数学推理和逻辑推理的方法,得到问题所求的答案。

三、注意事项1.注意运动方式和条件的特殊性:有些题目中给出的动点运动方式或条件比较特殊,需要特别注意。

中考数学动点问题专题讲解

中考数学动点问题专题讲解

P B
义域.
F

EO
A
(3)当 BF=1 时,求线段 AP 的长.
解:(1)连结 OD.
D
根据题意,得 OD⊥AB,∴∠ODA=90°,∠ODA=∠DEP. 又由 OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE∽△ C

EO
A
AEP.
3(2)
(2) ∵ ∠ ABC=90 ° ,AB=4,BC=3, ∴ AC=5. ∵ ∠ ABC= ∠
5
8
②若 EP 交线段 CB 于点 F,如图 3(2), 则 CF=2.
类似①,可得 CF=CE.
∴5- 8 x =2,得 x 15 .
5
8
可求得 y 6 ,即 AP=6.
综上所述, 当 BF=1 时,线段 AP 的长为 2 或 6. 三、应用求图形面积的方法建立函数关系式
例 4(2004 年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC= 2 2 ,⊙A 的半径为 1.若点 O 在 BC 边上
F
当 E 点在 AB 边上运动时,渗透入圆与圆的位置关系(相切
问题)的存在性的研究形成了第二小题,加入直线与圆的位置
E
关系(相切问题)的存在性的研究形成了第三小题.区分度测
4
B
D
C
量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解. [区分度性小题处理手法]
1.直线与圆的相切的存在性的处理方法:利用 d=r 建立方程.
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;
分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是

中考数学动点问题专题讲解(22页)

中考数学动点问题专题讲解(22页)

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式.例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.!2222233621419x x x MH PH MP +=-+=+=HM NG PO!AB图1xy∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;}(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,:又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.[(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.AEDCB 图2AC 3(2)¥EC 3(1)根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, (∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . *∵AH OC S AOC⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . A!BCO 图8HC此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

中考数学常见题型几何动点问题

中考数学常见题型几何动点问题

中考数学压轴题型研究(一)——动点几何问题例1:在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积;(2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。

如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC 的面积的一半?(3)在第(2)问题前提下,P ,Q 两点之间的距离是多少?例2: ()已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A →B → C →E 运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,(1)写出y 与x 的关系式 (2)求当y =13时,x 的值等于多少?例3:如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( )A .32B .18C .16D .10ACB By例4:直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.例6:如图(3),在梯形ABCD 中,906DC AB A AD ∠==∥,°,厘米,4DC =厘米,BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运动,动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC 的长;(2)当t 为何值时,PC 与BQ 相互平分;图(3)BC PQBA MN(3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式,求t 为何值时,y 有最大值?最大值是多少?二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。

中考数学动点问题专题讲解

中考数学动点问题专题讲解

中考数学动点问题专题讲解中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

CE=.(1)如果∠BAC=30°,∠DAE=105°,试确定与之间的函数解析式;(2)如果∠BAC的度数为,∠DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.解:(1)在△ABC中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°,∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°,∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC,∴,∴,∴.(2)由于∠DAB+∠CAE=,又∠DAB+∠ADB=∠ABC=,且函数关系式成立,∴=,整理得.当时,函数解析式成立.例3(2005年·上海)如图3(1),在△ABC中,∠ABC=90°,AB=4,BC=3.点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E.作EP⊥ED,交射线AB于点P,交射线CB于点F.(1)求证:△ADE∽△AEP.(2)设OA=,AP=,求关于的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP的长.解:(1)连结OD.根据题意,得OD⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP,∴△ADE∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3,∴AC=5.∵∠ABC=∠ADO=90°,∴OD ∥BC,∴,,∴OD=,AD=.∴AE==.∵△ADE∽△AEP,∴,∴.∴().(3)当BF=1时,①若EP交线段CB的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP,∴∠PDE=∠PEC.∵∠FBP=∠DEP=90°,∠FPB=∠DPE,∴∠F=∠PDE,∴∠F=∠FEC,∴CF=CE.∴5-=4,得.可求得,即AP=2.②若EP交线段CB于点F,如图3(2),则CF=2.类似①,可得CF=CE.∴5-=2,得.可求得,即AP=6.综上所述,当BF=1时,线段AP的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC中,∠BAC=90°,AB=AC=,⊙A 的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,△AOC 的面积为.(1)求关于的函数解析式,并写出函数的定义域.(2)以点O为圆心,BO长为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积.解:(1)过点A作AH⊥BC,垂足为H.∵∠BAC=90°,AB=AC=,∴BC=4,AH=BC=2.∴OC=4-.∵,∴().(2)①当⊙O与⊙A外切时,在Rt△AOH中,OA=,OH=,∴.解得.此时,△AOC的面积=.②当⊙O与⊙A内切时,在Rt△AOH中,OA=,OH=,∴.解得.此时,△AOC的面积=.综上所述,当⊙O与⊙A相切时,△AOC的面积为或.专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

中考数学动点问题专题讲解(22页)

中考数学动点问题专题讲解(22页)

中考动点专题之邯郸勺丸创作所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变更能力的考查从变换的角度和运动变更来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变更,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变更情况,需要理解图形在分歧位置的情况,才干做好计算推理的过程。

在变更中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学实质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操纵、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包含空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,掌控方向.只的这样,才干更好的培养学生解题素养,在素质教育的布景下更明确地体现课程尺度的导向.本文拟就压轴题的题型布景和区分度丈量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变更过程中量与量之间的变更规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变更,引起未知量与已知量间的一种变更关系,这种变更关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度坚持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x=,GP y=,求y关于x的函数解析式,并写出函数的定义域(即自变量x的取值范围).(3)如果△PGH是等腰三角形,试求出线段PH的长.B 解:(1)当点P在弧AB上运动时,OP坚持不变,于Py是线段GO 、GP 、GH 中,有长度坚持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中,22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中, .∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验,6=x 是原方程的根,且符合题意.②GP=GH 时,2336312=+x ,解得0=x . 经检验,0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,BD=,x CE=y .(1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CEAB =,∴11x y =, ∴xy 1=.(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立.例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP. (2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠A3(2)3(1)ADO=90°, ∴OD ∥BC, ∴53x OD=,54x AD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AEADAP AE =, ∴x x yx 585458=. ∴x y 516=(8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4. ∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°,∠FPB=∠DPE,∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2.②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述,当BF=1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时,ABCO 图8H△AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x .此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x .此时,△AOC 的面积y =21274=-.综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题布景是特殊图形,考查询题也是特殊图形,所以要掌控好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)在整个运动过程中,所形成的△PEF的面积存在最大值,
当△PEF的面积最大时,求线段BP的长;
(3)是否存在某一时刻t,使△PEF是直角三角形?若存在,
请求出此时刻t的值,若不存在,请说明理由。
A
A
线段运动与四边形问题(特殊平行四边形的判定)
E
F
H
线段运动与函数的综合(二次函数求面积最大值) B
DP C B
C
线段运动与存在性问题(分类思想)
X 广东2015 25.如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与
LOGO
Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=
∠ADC=90°∠CAD=30°,AB=BC=4cm.
(1)填空:AD=_________ (cm),DC=_____________(cm);

,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.
(1)填空:点B的坐标为____________ ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;
若不存在,请说明理由;
(3)①求证:
;②设
,矩形BDEF的面积为y,求关于y的函数关系式
(可利用①的结论),并求出的最小值。
请插入图片
3 作用:考查学生在学习数学中对 动态问题的认识和理解。
4 意义:培养学生在“分类讨论、数形结合、 方程与函数等”数学思想的形成。
5 题型出现的形式: 点动、线动、面动过程中求角、线段、 面积、函数极值问题, 或判定三角形、四边形的形状, 或存在性等问题。
PART ONE
02
以铜为镜,可以正衣冠
动 点 问 题
----数学中考题型(第25题)解题策略之分享
CONTENTS 目录
1 题型背景说明 2 广东中考回顾 3 解题策略分享 4 动态问题小结
PART ONE
01
题型背景说明
题型位置及比分 题型呈现的意义
题型体现的作用 题型出现的形式
LOGO
1 中考动点题型出在最后的第25题
2 考试分数9分,占据近8%的比例, 特征:“一简”“二繁”“三折”
以人为镜,可以明得失
以史为镜,可以知兴退
LOGOX 广东2013Fra bibliotekLOGO
25题.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,
∠FDE=90°,DF=4,DE=.将这副直角三角板按如题25图(1)所示位置摆放,点B与点F重
合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平
点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直
线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB.AC.AD于点E、F、
H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0)。
(1)当t=2时,连接DE.DF,求证:四边形AEDF为菱形;
线段运动与四边形问题(判断四边形形状)
线段运动过程中,判断线段的位置关系 与数量关系(三角形全等的应用)
线段运动与函数综合(二次函数最值问题的考查)
X 广东2017
25.如题25图,在平面直角坐标系中,O为原点,四边形ABCD是矩形,点A、C的坐标分
别是

,点D是对角线AC上一动点(不与A、C重合),连结BD,
旋转与点运动的综合
1、通过旋转求角的大小 (旋转的性质、等边三角形判定)
2、求线段的长度(面积法、比例法) 3、动点与 函数综合应用(三角函数、一次函数、二次函数)
在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.
“点”在路线上运动求线段长度 (勾股定理或三角函数知识)
点动时,求点到线段的距离(三角函数知识) 点动与函数的综合运用(数形结合与方程思想)
X 广东2016
25.如图12,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将 通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP. (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形? (2)请判断OA、OP之间的数量关系和位置关系,并加以证明; (3)在平移变换过程中,设y= SOPB ,BP=x(0≤x≤2),求y与 x之间的函数关系式,并求出y的最大值.
“点”在线段上运动 1、求点的坐标
2、点动与存在性问题(等腰三角形的知识)
分类思想
3、动点与线段的关系及函数的综合应用(三角形相似知识)
X 广东2018
25.已知,Rt△OAB,∠OAB=900,∠ABO=300,斜边OB=4,将Rt△OAB绕点O顺时针旋转 600,如题图25-1,连接BC. (1)填空:∠OBC = ———— °; (2)如题图25-1,连接AC,作OP⊥AC,垂足为P,求OP的长度; (3)如题图25-2,点M、N同时从O点出发,在△OBC边上运动,M 沿路 O C B 径匀 速运动,N沿 O B C 路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为 1.5单位/秒,点 N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x 为何值时y取得最大值?最大值为多少?
(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上
沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结
MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);
(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),
行移动,当点F运动到点A时停止运动.
(1)如题25图(2),当三角板DEF运动到点D与点A重合时,设EF与BC
交于点M,则∠EMC=______度;
(2)如题25图(3),在三角板DEF运动过程中,当EF经过点C时,
求FC的长;
(3)在三角板DEF运动过程中,设BF= x ,两块三角板重叠部分面积为,
求与的函数解析式,并求出对应的取值范围.
三角形运动求角(三角形外角定理)
三角形运动求线段长度(相似三角形性质)
三角形运动与函数的综合运用
分类思想、建模思想、数形结合思想
X 广东中考2014
LOGO
25. 如题25-1图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,点P从
相关文档
最新文档