abaqus 模拟裂纹技术总结解析
ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现1.1 扩展有限元方法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。
在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。
针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。
另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。
除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。
ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。
由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度;3.自适应的网格是不被支持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。
基于ABAQUS的货叉三维裂纹应力强度因子有限元分析

基于ABAQUS的货叉三维裂纹应力强度因子有限元分析货叉是一种常用于起重机械的重要零件,承受着大量的动态和静态荷载。
在使用过程中,货叉可能会受到裂纹的影响,从而降低其强度和安全性。
因此,对货叉的裂纹应力强度因子进行分析是非常必要的。
裂纹应力强度因子是评估裂纹尖端应力场的参数,它可以用来判断裂纹的扩展情况以及材料的断裂行为。
基于ABAQUS的有限元分析可以用来计算货叉在裂纹尖端处的应力强度因子。
该分析要求以下几个步骤:1. 建立货叉的三维有限元模型:模型要包括真实的几何形状和材料性质。
可以使用ABAQUS提供的建模工具,如Part模块和Assembly模块,来构建模型。
此外,还需考虑货叉的边界条件和加载方式。
2.设置裂纹:在模型中引入裂纹,它可以是表面裂纹或体内裂纹。
可以使用ABAQUS提供的功能来创建裂纹和裂纹前沿。
3.划分网格:为了计算裂纹应力强度因子,需要划分网格并分配单元类型和单元属性。
合理的网格划分可以提高计算精度和效率。
4.应用荷载:根据实际情况,在模型中施加与实际工作状况相对应的荷载。
荷载类型可以包括静态荷载、动态荷载或者其他较为复杂的荷载。
5.运行分析:设置好所有必要的计算参数后,可以运行分析并计算货叉的裂纹应力强度因子。
6.结果分析:根据计算结果,可以评估货叉中裂纹的状态和扩展情况。
一般来说,如果裂纹应力强度因子超过了材料的断裂韧性,则裂纹有可能扩展,从而降低货叉的强度和安全性。
在进行有限元分析时,需要注意模型的合理性和准确性。
同时,还应考虑到材料的非线性特性和可能的影响因素,以获得较为准确的分析结果。
总之,基于ABAQUS的货叉三维裂纹应力强度因子有限元分析可以用来评估货叉中裂纹的状态和扩展情况,为提高货叉的安全性和可靠性提供科学依据。
ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元⽅法模拟裂纹实现ABAQUS平台的扩展有限元⽅法模拟裂纹实现1.1 扩展有限元⽅法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。
在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采⽤ABAQUS/STANDARD中使⽤奇异渐进函数。
针对移动的裂纹问题,在XFEM中,有⼀种⽅法基于traction-separation cohesive behavior,即使⽤虚拟节点连续⽚段法进⾏移动裂纹建模,ABAQUS/STANDAR D 中⽤于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。
另外⼀种cohesive segments method (粘性⽚段⽅法)可⽤于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展⼀次需要通过⼀个完整单元,避免尖端应⼒奇异性。
除此之外,ABAQUS为拥护提供了⾃定义⼦程序,来满⾜不同建模的需要。
ABAQUS/STANDARD中的任意⼒学本构模型均可⽤来模拟扩展裂纹的⼒学特性。
由于XFEM采⽤的形函数在求解过程中,很容易造成逼近线性相关,极⼤的增加了收敛难度,到⽬前为⽌,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了⼤量简化,因此⽤ABAQUS 扩展有限元模拟裂纹扩展时,有⼀些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每⼀个增量步的裂纹转⾓不允许超过90度;3.⾃适应的⽹格是不被⽀持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。
裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
利用ABAQUS模拟裂纹.ppt

理论 LEFM Damage
技术方法 debond
cohesive element
collapse element
XFEM
应用类型
脆性断裂
韧性断裂
理 论
1.线弹性断裂力学 (LEFM)
模 型
2.基于牵引分离规则的损伤力学 (damage base traction-separation laws)
基于abaqus模拟热障涂层裂纹的 技术与方法
提纲
• 背景及目的 • abaqus简介 • abaqus中四种模拟裂纹技术的简介及实例 • 下一步计划
背景及目的
• 研究方向:CMAS对热 障涂层失效的影响。
• CMAS主要是影响热障 涂层应力和温度分布, 从而影响热障涂层脱落 速度。
• 热障涂层脱落主要是由 热障涂层中的裂纹状况 决定。
xfem在abaqus中的操作步骤实例结果开裂前开裂后不一定要设置预置裂纹裂纹可沿任意路径扩展不能输出裂纹扩展过程中的能量释放率特点结论由于热障涂层的裂纹大部分是脆性裂纹研究中能量释放率是一个重要的参考指标同时考虑操作过程难易情况因此选择abaqus中的debond技术来模拟cmas对热障涂层中裂纹的扩展的影响下一步计划用abaqus建立覆盖有cmas的热障涂层物理模型将物理模型转化为数值模型实现模型中裂纹的扩展thankyouforyourlistening
abaqus 技术
1.debond 2.cohesive element 3.collapes element 4.XFEM
1. debond
在abaqus中的操作步骤:
在分析步 之前设置 initial condition
Abaqus裂纹模拟心得(Contour Integral不是XFEM)

Abaqus裂纹模拟心得(Contour Integral不是XFEM)最近由于项目需要,做了一些裂纹相关的模拟,在此把一些心得体会贴到论坛上与大家分享,如有不当之处,欢迎大家指正!本帖主要侧重于介绍裂纹定义过程中各个选项的意义,具体的操作过程论坛里已经有高手做了很好的教程,至于断裂力学理论推荐大家看一下沈成康写的《断裂力学》一书。
裂纹的定义和输出需要用到interaction模块和step模块:一、Interaction模块1.1 预制裂纹(步骤:菜单/special/crack/assign seam)注意:并不是作裂纹分析都要定义seam,如果你的裂纹不是一条缝,而是一个缺口,则不需要assign seam,直接走下一步(定义裂纹)就行。
1.2 创建裂纹(步骤:菜单/special/crack/create,type:contour integral)—crack front:crack front是用来定义第一围线积分的区域,2D下我们可以选择包围裂尖点的面,3D则选择包围裂尖线的面;另外还有一种定义crack front的方法,就是直接选择裂尖点(2D)或裂尖线3D),用这个方法定义crack front不需要再定义下一步的crack tip/line,比较简便,两种方法算出的结果没有明显的差别,其实只是影响积分路线的问题,但是J 积分值是路径无关的,看个人喜好吧—crack tip/line:这个比较好理解就是裂尖点(2D)或线(3D),如果我们在上一步中用方法二定义crack front,这一步就直接跳过了—crack extension direction(定义裂纹扩展方向):这里定义的其实是一个虚拟的裂纹扩展方向,定义了这个参考方向后,我们才能通过输出的角度判断裂纹扩展方向,可以通过两种方法:o q vector:输入一个方向,用来作为计算裂纹的扩展方向的参考方向;o normal to crack plane:crack plane表示裂纹的对称面(当裂纹在一个平面内时,可能需要分开定义多个裂纹),这种方法下我们只需定义裂纹面的法线方向,通过(t表示裂纹尖端的切线), 会在每个节点得出一个q方向(如下图);o 注意:q的方向对输出的应力强度因子,J积分等都会有影响,一般情况下,q最好在裂纹平面内,且垂直于裂尖线的切线,否则算出的应力强度因子,J积分值等等在不同围线积分中会差别较大。
abaqus混凝土裂缝计算

abaqus混凝土裂缝计算摘要:一、引言二、abaqus软件介绍三、abaqus混凝土裂缝计算方法1.材料模型的选择2.边界条件和加载设定3.后处理分析裂缝四、结论正文:一、引言随着我国基础设施建设的快速发展,混凝土结构的工程应用越来越广泛。
在混凝土结构中,裂缝是一个常见的问题,它不仅影响美观,还可能影响结构的性能和使用寿命。
因此,对混凝土裂缝进行准确预测和控制具有重要意义。
本文将介绍如何使用abaqus软件进行混凝土裂缝计算。
二、abaqus软件介绍Abaqus是一款强大的有限元分析软件,广泛应用于各种工程领域。
它具有丰富的材料模型库,可以为用户提供多种分析功能,包括线弹性分析、非线性分析、热力学分析等。
三、abaqus混凝土裂缝计算方法1.材料模型的选择在abaqus中,混凝土的材料模型通常选择为C3D8。
此外,还需要定义混凝土的强度、弹性模量、泊松比等参数。
对于钢筋,可以选择C3D20或C3D20R模型,并定义钢筋的强度、弹性模量等参数。
2.边界条件和加载设定在建立模型之后,需要设置模型的边界条件。
对于固定边界,可以设置固定约束;对于转动约束,可以设置旋转约束。
在设置加载条件时,应根据实际工况选择合适的加载类型,如位移加载、力加载等。
3.后处理分析裂缝在abaqus中,可以通过后处理工具对模型进行分析。
在后处理中,可以查看混凝土和钢筋的应力、应变分布,以及裂缝的产生和发展情况。
此外,还可以通过输出裂缝的分布图、最大宽度等参数,以便对裂缝进行进一步分析。
四、结论使用abaqus软件进行混凝土裂缝计算,可以为实际工程提供有效的分析手段。
通过对材料模型、边界条件和加载条件的设置,可以模拟混凝土结构在各种工况下的裂缝发展情况。
《2024年基于ABAQUS的裂纹扩展仿真软件及应用》范文

《基于ABAQUS的裂纹扩展仿真软件及应用》篇一一、引言随着科技的不断进步,工程领域对材料性能的精确模拟和预测提出了更高的要求。
裂纹扩展作为材料失效的重要形式之一,其仿真研究在工程领域具有极高的价值。
ABAQUS是一款广泛应用于工程仿真分析的大型有限元软件,其在裂纹扩展仿真方面具有显著的优势。
本文将介绍基于ABAQUS的裂纹扩展仿真软件的开发及应用,以期为相关领域的研究提供参考。
二、ABAQUS裂纹扩展仿真软件的开发1. 软件开发背景及目标ABAQUS裂纹扩展仿真软件的开发旨在为工程领域提供一种高效、准确的裂纹扩展仿真工具。
该软件可实现对各种材料裂纹扩展过程的精确模拟,为材料性能的预测和优化提供有力支持。
2. 软件架构及功能该软件基于ABAQUS平台进行开发,采用有限元方法对裂纹扩展过程进行模拟。
软件具备以下功能:(1)材料模型:提供多种材料模型,如弹性、塑性、蠕变等,以满足不同材料仿真需求。
(2)网格划分:支持自动网格划分和手动调整,确保仿真结果的准确性。
(3)边界条件:可设置多种边界条件,如位移、力等,以满足仿真需求。
(4)裂纹扩展模拟:采用扩展有限元法(XFEM)对裂纹扩展过程进行模拟,实现高精度、高效率的仿真分析。
(5)后处理:提供丰富的后处理功能,如应力、应变、裂纹扩展路径等结果的查看和输出。
三、ABAQUS裂纹扩展仿真软件的应用1. 航空航天领域在航空航天领域,该软件可对飞机、火箭等航空航天器的结构进行裂纹扩展仿真分析,为结构设计和优化提供有力支持。
同时,该软件还可对航空航天材料进行性能预测和评估,为材料的选择和改进提供依据。
2. 汽车制造领域在汽车制造领域,该软件可对汽车零部件的裂纹扩展过程进行仿真分析,为汽车的结构设计和安全性能评估提供支持。
此外,该软件还可用于汽车新材料的研究和开发,为汽车制造业的创新发展提供技术支持。
3. 土木工程领域在土木工程领域,该软件可对建筑、桥梁、隧道等结构的裂纹扩展过程进行仿真分析,为结构的安全性和耐久性评估提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论
技术方法 debond
应用类型
LEFM cohesive element
脆性断裂
Damage
collapse element
韧性断裂
XFEM
理 论 模 型
1.线弹性断裂力学 (LEFM) 2.基于牵引分离规则的损伤力学 (damage base traction-separation laws)
开裂前:
开裂后:
特点: • • • • 适合模拟脆性或韧性裂纹 能输出裂纹扩展时的能量释放率 不一定要设置预置裂纹 只能沿预定裂纹扩展路径扩展
3. Collapes element
在abaqus中的操作步骤:
设置预制 裂纹的扩 展方向, 裂纹尖端 的奇异性 参数
实现 裂纹 扩展 模拟
实例:
开裂前:
开裂前:
开裂后:
特点: • 需预置裂纹和裂纹扩展路径 • 只适合于模拟脆性裂纹 • 能输出裂纹扩展时的能量释放率
2. Cohesive element
在abaqus中的操作步骤:
建立一个 连接两个 部件的part
给part设定 cohesive属 性断裂准则 和厚度
实现 裂纹 模拟
实例:
结果:
目的:通过对各种软件和技术的分析和实验找出适合于模 拟热障涂层裂纹的软件和技术
Chen X. Surface & Coatings Technology, 2006, 200: 3418-3427.
abaqus简介
• abaqus能提供从热障涂层建模到有限元计 算这整个过程所需的软件支持 • abaqus最擅长于动态非线性分析 • abaqus操作简单,使用方便
1.debond 2.cohesive element 3.collapes element 4.XFEM
abaqus 技术
1. debond
在abaqus中的操作步骤:
在分析步 之前设置 initial condition
在分析步 中设置 debond的 条件
实现 裂纹 扩展 模拟
实例:
结果:
基于abaqus模拟热障涂层裂纹的 技术与方法
时
间:2012年11月27日来自提纲• • • • 背景及目的 abaqus简介 abaqus中四种模拟裂纹技术的简介及实例 下一步计划
背景及目的
• 研究方向:CMAS对热 障涂层失效的影响。 • CMAS主要是影响热障 涂层应力和温度分布, 从而影响热障涂层脱落 速度。 • 热障涂层脱落主要是由 热障涂层中的裂纹状况 决定。 • 有限元是将实际情况和 理论联系起来最有效的 工具之一。
结论
由于热障涂层的裂纹大部分是脆 性裂纹,研究中能量释放率是一个重 要的参考指标,同时考虑操作过程难 易情况,因此选择abaqus中的debond技 术来模拟CMAS对热障涂层中裂纹的 扩展的影响。
下一步计划
用abaqus建立覆盖有CMAS的热障涂层物 理模型 将物理模型转化为数值模型 实现模型中裂纹的扩展
开裂后:
特点: • • • • • 参数设置复杂 需预置裂纹 裂纹可沿任意路径扩展 可模拟韧性或脆性裂纹 裂纹扩展距离有限
4. XFEM
在abaqus中的操作步骤:
设置断裂 准则和预 值裂纹
模拟裂纹 开裂和扩 展
实例:
结果:
开裂前:
开裂后:
特点: • 不一定要设置预置裂纹 • 裂纹可沿任意路径扩展 • 不能输出裂纹扩展过程中的能量释放率