物理化学课程教案-2

合集下载

物理化学课程教案

物理化学课程教案

物理化学课程教案第一篇:物理化学课程教案第十二章化学动力学基础(二)教学目的与要求: 使学生了解和掌握化学反应速率理论发展的动态,两种速率理论的具体的内容,基本思路及其成功和不足之处。

上一章介绍了化学动力学的基本概念,简单级数反应的动力学规律和等征,复杂反应的动力学规律,温度对反应速率的影响以及链反应等,同时还介绍了反应机理的一般确定的方法,在这一章中,主要介绍各种反应的速率理论。

重点与难点: 反应速率理论的基本假定和一些基本概念,基本结论:阈能,势能面,反应坐标,能垒高度,以及阈能,能垒高度等与活化能的关系等。

§12.1 碰撞理论碰撞理论的基本假定碰撞理论认为:(1)发生反应的首要条件是碰撞,可以把这种碰撞看成是两个硬球的碰撞;(2)只有碰撞时相互作用能超过某一临界值时才能发生反应,化学反应的速率就是有效碰撞的次数。

双分子的互碰频率设:要发生碰撞的两个分子是球体,单位体积内A分子的数目为NA,B分子数为NB,分子的直径为dD和dB,则碰撞时两个分子可以接触的最小距离为dAB=(dA+dB)/2。

当A、B两个分子在空间以速度vA,vB运动时,为了研究两个分了的碰撞,通过坐标变换,可以把两个分子的各自的运动变换为两个分子重心的运动(质量为M=mA+mB)和质量为μ=(m1m2)/(m1+m2)的假想粒子以相对速度vr的相对运动。

此时两个分子的运动的能量可以表示为:11112222E=m1v1+m2v2=(m1+m2)vM+μvr2222式中vM为分子的质心的运动速度。

由于分子的质心的运动和分子碰撞无关,可以不予考虑。

而两个分子的平均相对运动速度为vr=碰撞频率为8RTπμ由此可以得到A,B分子的,相同分子之间的碰撞频率为2ZAA=πdA2ZAB=πdAB8RTπμNANB8RTπμ22NA=2πdA A、B 两个分子相互碰撞过程的微观模型几个基本概念:碰撞参数:通过A,B两分子的质心,而与相对速率平行的两条直线的距离RT2NAπMAb称为碰撞参数。

物理化学电子教案—第二章

物理化学电子教案—第二章
体积功。

特别情形:恒压过程 pamb=p=定值
W = - pdV
2.功
设系统为理气,完成下列过程有多种不同途径: (n , p1 , V1 , T ) (n , p2 ,V2 , T )
(1)自由膨胀(free expansion),即气体向真空膨胀
因为 pamb=0 ,Wpam V b0
(2)恒外压膨胀(pamb保持不变)
•热 •功 •热力学能 •热力学第一定律
1.热
热(heat)
系统与环境之间因温差而传递的能量称为
热,用符号Q 表示。 Q的取号:
系统吸热,Q>0;
系统放热,Q<0 。
热不是状态函数,只有系统进行一过程时, 才有热交换。其数值与变化途径有关。
煤含有多少热量,这句话是否正确?
2.功
功(work) 系统与环境之间传递的除热以外的其它能量
热平衡(thermal equilibrium) 系统各部分温度相等。
力学平衡(mechanical equilibrium) 系统各部的压力都相等,边界不再移动。
如有刚壁存在,虽双方压力不等,但也能保持 力学平衡。
热力学平衡态
当系统的诸性质不随时间而改变,则系统 就处于热力学平衡态,它包括下列几个平衡:
ቤተ መጻሕፍቲ ባይዱ
状态函数(state function)——
系统的各种性质,它们均
随状态确定而确定。 如 T, p, V,n
途径 2
又如一定量n的理气
V=nRT/P V= f (T, P) T, P是独立变量
推广 X=f (x, y)
状态 1
• 其变化只与始末态有关,与 (T1,p1)
变化途径无关。

物理化学教案

物理化学教案

物理化学教案教案:物理化学教学目标:1. 理解物理化学的基本概念和原理;2. 掌握物理化学实验的基本操作和技巧;3. 培养学生的科学思维和实验能力;4. 培养学生的团队合作和沟通能力。

教学内容:1. 物理化学的基本概念和分支学科;2. 物理化学的基本原理和定律;3. 物理化学实验的基本操作和技巧;4. 物理化学实验的数据处理和结果分析。

教学步骤:第一课:物理化学概述1. 引入物理化学的概念和意义;2. 介绍物理化学的分支学科和研究内容;3. 讲解物理化学的基本原理和定律。

第二课:物理化学实验基本操作1. 介绍物理化学实验室的基本设备和器材;2. 讲解物理化学实验的基本操作步骤;3. 演示物理化学实验的常见技巧和注意事项。

第三课:物理化学实验数据处理1. 介绍物理化学实验数据的收集和记录方法;2. 讲解物理化学实验数据的处理和分析方法;3. 演示物理化学实验数据处理的常见技巧和方法。

第四课:物理化学实验设计与报告1. 引导学生进行物理化学实验设计;2. 指导学生撰写物理化学实验报告;3. 评价和讨论学生的实验设计和报告。

教学方法:1. 授课讲解:通过讲解物理化学的基本概念、原理和实验操作方法,帮助学生理解和掌握相关知识。

2. 实验操作演示:通过演示物理化学实验的基本操作步骤和技巧,帮助学生掌握实验操作的要领。

3. 实验设计与报告:通过引导学生进行实验设计和撰写实验报告,培养学生的科学思维和实验能力。

评价方法:1. 实验操作评价:评估学生在实验操作中的准确性和技巧;2. 实验数据分析评价:评估学生对实验数据的处理和分析能力;3. 实验设计与报告评价:评估学生的实验设计和报告撰写能力。

教学资源:1. 教材:物理化学教材;2. 实验设备和器材:如量筒、天平、分析天平等;3. 实验化学品:如溶液、固体试剂等;4. 计算机和投影仪:用于展示教学内容和实验演示。

教学辅助工具:1. PowerPoint演示文稿:用于呈现教学内容和实验操作步骤;2. 实验操作视频:用于演示实验操作的基本步骤和技巧;3. 实验数据处理软件:用于演示实验数据的处理和分析方法。

《物理化学教案》

《物理化学教案》

《物理化学教案》word版教案章节:一、引言教案内容:1.1 物理化学的定义1.2 物理化学的研究内容1.3 物理化学的应用领域1.4 教案目标与要求教案章节:二、基本概念教案内容:2.1 物质的量2.2 状态量与状态方程2.3 热力学第一定律2.4 热力学第二定律教案章节:三、化学平衡教案内容:3.1 平衡态的定义3.2 平衡常数3.3 化学反应速率3.4 化学平衡的计算与调控教案章节:四、化学动力学教案内容:4.1 反应速率定律4.2 反应机理与步骤4.3 活化能与活化理论4.4 化学动力学的应用教案章节:五、物质结构与性质教案内容:5.1 原子结构与元素周期表5.2 分子结构与化学键5.3 晶体结构与性质5.4 教案目标与要求教案章节:六、相平衡教案内容:6.1 相与相律6.2 单相系统的相平衡6.3 多相系统的相平衡6.4 相平衡的应用与实例教案章节:七、电解质溶液教案内容:7.1 电解质与非电解质7.2 电解质溶液的导电性7.3 离子强度与离子积7.4 电解质溶液的相平衡与性质教案章节:八、胶体与界面化学教案内容:8.1 胶体的定义与性质8.2 胶体的稳定与聚沉8.3 界面活性剂与界面现象8.4 胶体与界面化学的应用教案章节:九、化学热力学教案内容:9.1 自由能与吉布斯自由能9.2 化学势与化学反应的方向性9.3 热力学与化学平衡的关系9.4 化学热力学的应用教案章节:十、现代物理化学方法教案内容:10.1 核磁共振(NMR)10.2 质谱(MS)10.3 红外光谱(IR)与拉曼光谱10.4 X射线晶体学与电子显微镜重点和难点解析一、物质的量:物质的量的概念及计算是物理化学的基础,理解物质的量的本质、计量单位和换算关系对于后续学习至关重要。

二、状态量与状态方程:状态方程是热力学的基础,理解并能运用状态方程描述系统的状态变化是学习热力学的重要环节。

三、化学反应速率:化学反应速率是化学动力学的基础,掌握反应速率的定义、表达式及其影响因素对于理解化学反应过程非常重要。

物理化学教案完整版

物理化学教案完整版

物理化学教案完整版一、教学内容本节课的教学内容选自人教版《科学》四年级下册第五单元第二课时《风向和风力的观察》。

教材通过实验和观察,让学生了解风向和风力的概念,掌握风向和风力的测量方法。

二、教学目标1. 让学生能够描述风向和风力的概念,知道风向是指风吹来的方向,风力是指风的强度。

2. 学生能够使用风向标和风力计正确测量风向和风力。

3. 培养学生热爱科学,乐于探究的精神。

三、教学难点与重点1. 教学难点:学生能够正确使用风向标和风力计进行测量。

2. 教学重点:让学生通过实验和观察,掌握风向和风力的概念。

四、教具与学具准备1. 教具:风向标、风力计、彩旗、绳子。

2. 学具:学生科学笔记本、笔。

五、教学过程1. 导入:教师通过播放天气预报的视频,引导学生关注风向和风力,激发学生的学习兴趣。

2. 探究风向和风力的概念:教师引导学生通过观察和实验,了解风向和风力的定义。

3. 学习风向标和风力计的使用:教师讲解风向标和风力计的使用方法,并示范操作。

4. 学生实践:学生分组进行实验,使用风向标和风力计测量风向和风力。

6. 课后作业:学生根据实验结果,完成风向和风力记录表。

六、板书设计1. 风向和风力的概念风向:风吹来的方向风力:风的强度2. 风向标和风力计的使用方法风向标:指向风吹来的方向风力计:数字越大,风越大七、作业设计1. 风向和风力记录表日期:____年__月__日风向:____风力:____八、课后反思及拓展延伸1. 教师反思:本节课学生对风向和风力的概念掌握情况良好,但在使用风向标和风力计时,部分学生操作不规范,需要在课后进行个别指导。

2. 拓展延伸:让学生了解风的形成原因,探究风能的利用。

重点和难点解析一、教学内容本节课的教学内容选自人教版《科学》四年级下册第五单元第二课时《风向和风力的观察》。

教材通过实验和观察,让学生了解风向和风力的概念,掌握风向和风力的测量方法。

在教学内容中,需要重点关注风向和风力的定义,以及风向标和风力计的使用方法。

《物理化学教案》

《物理化学教案》

《物理化学教案》一、引言1. 课程目标:使学生掌握物理化学的基本概念、原理和方法,培养学生运用物理化学知识分析和解决实际问题的能力。

2. 教学内容:本章主要介绍物理化学的基本概念、物理学和化学的基本定律,以及物质的状态和相变。

3. 教学方法:采用讲授、讨论、实验相结合的方式进行教学。

二、基本概念1. 物理化学的定义:物理化学是研究物质的性质、状态、变化和能量转化的学科。

2. 物质的量:物质的量是衡量物质含量的基本单位,常用的物质的量有摩尔、克等。

3. 浓度:浓度是描述溶液中溶质含量的一个指标,常用的浓度有摩尔浓度、质量浓度等。

三、物理学和化学的基本定律1. 质量守恒定律:在任何物理化学变化中,系统的总质量始终保持不变。

2. 能量守恒定律:在任何物理化学变化中,系统的总能量始终保持不变。

3. 热力学第一定律:系统的内能变化等于外界对系统做的功加上系统吸收的热量。

4. 热力学第二定律:自然界中的过程总是朝着熵增加的方向进行。

四、物质的状态和相变1. 固态:固态物质具有固定的形状和体积,分子间相互作用力较强。

2. 液态:液态物质具有固定的体积,但没有固定的形状,分子间相互作用力较弱。

3. 气态:气态物质没有固定的形状和体积,分子间相互作用力很弱。

4. 相变:物质在不同条件下,从一种状态转变到另一种状态的过程,如融化、沸腾、升华等。

五、溶液的性质1. 溶液的定义:溶液是由溶剂和溶质组成的均匀混合物。

2. 溶液的浓度:溶液中溶质的含量,常用摩尔浓度、质量浓度等表示。

3. 溶液的渗透压:溶液中溶质浓度差异导致的压力差,用于描述溶液的渗透性质。

4. 溶液的酸碱性:溶液中氢离子(H+)和氢氧根离子(OH-)的浓度,用pH 值表示。

六、化学平衡1. 平衡态的定义:在平衡态下,化学反应的正反两个方向进行的速率相等,系统的浓度、压力、温度等物理量保持不变。

2. 平衡常数:平衡常数是描述化学平衡状态的一个指标,它表示在一定温度下,反应物和物浓度的比值。

《物理化学教案》

《物理化学教案》

《物理化学教案》word版一、教案基本信息1.1 课程名称:物理化学1.2 课时安排:本章共5课时1.3 教学目标:1.3.1 知识目标:使学生了解物理化学的基本概念、原理和规律。

1.3.2 能力目标:培养学生运用物理化学知识解决实际问题的能力。

1.3.3 情感目标:激发学生对物理化学学科的兴趣和热情。

二、教学内容2.1 引言:介绍物理化学的定义、研究对象和意义。

2.2 第一节基本概念:物质的量、状态、相等、平衡等概念的解释。

2.3 第二节物态变化:固态、液态、气态的性质及变化规律。

2.4 第三节化学平衡:平衡常数、反应速率、化学动力学等基本概念。

2.5 第四节溶液:溶液的性质、浓度、稀释、渗透压等概念。

三、教学方法3.1 讲授法:讲解基本概念、原理和规律。

3.2 案例分析法:分析实际问题,引导学生运用物理化学知识解决问题。

3.3 互动教学法:提问、讨论,激发学生的思考和兴趣。

四、教学步骤4.1 引入新课:通过问题或实例,引导学生思考物理化学的重要性。

4.2 讲解基本概念:清晰地讲解本节课的重点概念。

4.3 案例分析:分析实际问题,让学生体会物理化学的应用价值。

4.4 课堂互动:提问、讨论,巩固所学知识。

4.5 总结本节课:回顾所学内容,强调重点和难点。

五、课后作业5.1 完成教材上的练习题,巩固所学知识。

5.2 选择一道实际问题,运用物理化学知识进行分析。

5.3 预习下节课的内容,为课堂学习做好准备。

六、教学评估6.1 课堂问答:通过提问了解学生对物理化学基本概念的理解程度。

6.2 课后作业:检查学生完成作业的情况,评估其对课堂所学知识的掌握。

6.3 单元测试:进行一次单元测试,全面评估学生对本章知识的掌握。

七、教学反思7.1 总结本节课的教学效果,分析存在的问题。

7.2 根据学生的反馈,调整教学方法和策略。

7.3 为下一节课的教学做好准备,确保教学内容的连贯性。

八、拓展阅读8.1 推荐学生阅读与本章内容相关的物理化学教材、论文或科普文章。

物理化学课程教案(完整资料).doc

物理化学课程教案(完整资料).doc

此文档下载后即可编辑第一章热力学第一定律及其应用§2. 1热力学概论热力学的基本内容热力学是研究热功转换过程所遵循的规律的科学。

它包含系统变化所引起的物理量的变化或当物理量变化时系统的变化。

热力学研究问题的基础是四个经验定律(热力学第一定律,第二定律和第三定律,还有热力学第零定律),其中热力学第三定律是实验事实的推论。

这些定律是人们经过大量的实验归纳和总结出来的,具有不可争辩的事实根据,在一定程度上是绝对可靠的。

热力学的研究在解决化学研究中所遇到的实际问题时是非常重要的,在生产和科研中发挥着重要的作用。

如一个系统的变化的方向和变化所能达的限度等。

热力学研究方法和局限性研究方法:热力学的研究方法是一种演绎推理的方法,它通过对研究的系统(所研究的对象)在转化过程中热和功的关系的分析,用热力学定律来判断该转变是否进行以及进行的程度。

特点:首先,热力学研究的结论是绝对可靠的,它所进行推理的依据是实验总结的热力学定律,没有任何假想的成分。

另外,热力学在研究问题的时,只是从系统变化过程的热功关系入手,以热力学定律作为标准,从而对系统变化过程的方向和限度做出判断。

不考虑系统在转化过程中,物质微粒是什么和到底发生了什么变化。

局限性:不能回答系统的转化和物质微粒的特性之间的关系,即不能对系统变化的具体过程和细节做出判断。

只能预示过程进行的可能性,但不能解决过程的现实性,即不能预言过程的时间性问题。

§2. 2热平衡和热力学第零定律-温度的概念为了给热力学所研究的对象-系统的热冷程度确定一个严格概念,需要定义温度。

温度概念的建立以及温度的测定都是以热平衡现象为基础。

一个不受外界影响的系统,最终会达到热平衡,宏观上不再变化,可以用一个状态参量来描述它。

当把两个系统已达平衡的系统接触,并使它们用可以导热的壁接触,则这两个系统之间在达到热平衡时,两个系统的这一状态参量也应该相等。

这个状态参量就称为温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理化学课程教案第一章热力学第一定律及其应用§2. 1热力学概论热力学的基本内容热力学是研究热功转换过程所遵循的规律的科学。

它包含系统变化所引起的物理量的变化或当物理量变化时系统的变化。

热力学研究问题的基础是四个经验定律(热力学第一定律,第二定律和第三定律,还有热力学第零定律),其中热力学第三定律是实验事实的推论。

这些定律是人们经过大量的实验归纳和总结出来的,具有不可争辩的事实根据,在一定程度上是绝对可靠的。

热力学的研究在解决化学研究中所遇到的实际问题时是非常重要的,在生产和科研中发挥着重要的作用。

如一个系统的变化的方向和变化所能达的限度等。

热力学研究方法和局限性研究方法:热力学的研究方法是一种演绎推理的方法,它通过对研究的系统(所研究的对象)在转化过程中热和功的关系的分析,用热力学定律来判断该转变是否进行以及进行的程度。

特点:首先,热力学研究的结论是绝对可靠的,它所进行推理的依据是实验总结的热力学定律,没有任何假想的成分。

另外,热力学在研究问题的时,只是从系统变化过程的热功关系入手,以热力学定律作为标准,从而对系统变化过程的方向和限度做出判断。

不考虑系统在转化过程中,物质微粒是什么和到底发生了什么变化。

局限性:不能回答系统的转化和物质微粒的特性之间的关系,即不能对系统变化的具体过程和细节做出判断。

只能预示过程进行的可能性,但不能解决过程的现实性,即不能预言过程的时间性问题。

§2. 2热平衡和热力学第零定律-温度的概念为了给热力学所研究的对象-系统的热冷程度确定一个严格概念,需要定义温度。

温度概念的建立以及温度的测定都是以热平衡现象为基础。

一个不受外界影响的系统,最终会达到热平衡,宏观上不再变化,可以用一个状态参量来描述它。

当把两个系统已达平衡的系统接触,并使它们用可以导热的壁接触,则这两个系统之间在达到热平衡时,两个系统的这一状态参量也应该相等。

这个状态参量就称为温度。

那么如何确定一个系统的温度呢?热力学第零定律指出:如果两个系统分别和处于平衡的第三个系统达成热平衡,则这两个系统也彼此也处于热平衡。

热力学第零定律是是确定系统温度和测定系统温度的基础,虽然它发现迟于热力学第一、二定律,但由于逻辑的关系,应排在它们的前边,所以称为热力学第零定律。

温度的科学定义是由热力学第零定律导出的,当两个系统接触时,描写系统的性质的状态函数将自动调节变化,直到两个系统都达到平衡,这就意味着两个系统有一个共同的物理性质,这个性质就是“温度”。

热力学第零定律的实质是指出了温度这个状态函数的存在,它非但给出了温度的概念,而且还为系统的温度的测定提供了依据。

§2. 3热力学的一些基本概念系统与环境系统:物理化学中把所研究的对象称为系统环境:和系统有关的以外的部分称为环境。

根据系统与环境的关系,可以将系统分为三类:(1)孤立系统:系统和环境之间无物质和能量交换者。

(2)封闭系统:系统和环境之间无物质交换,但有能量交换者。

(3)敞开系统:系统和环境之间既有物质交换,又有能量交换系统的性质系统的状态可以用它的可观测的宏观性质来描述。

这些性质称为系统的性质,系统的性质可以分为两类:(1)广度性质(或容量性质)其数值与系统的量成正比,具有加和性,整个体系的广度性质是系统中各部分这种性质的总和。

如体积,质量,热力学能等。

(2)强度性质其数值决定于体系自身的特性,不具有加和性。

如温度,压力,密度等。

通常系统的一个广度性质除以系统中总的物质的量或质量之后得到一个强度性质。

热力学平衡态当系统的各种性质不随时间变化时,则系统就处于热力学的平衡态,所谓热力学的平衡,应包括如下的平衡。

(1) 热平衡:系统的各部分的温度相等。

(2) 力学平衡:系统的各部分压力相等。

(3) 相平衡:当系统不上一个相时,物质在各相之间的分配达到平衡,在相的之间没有净的物质的转移。

(4) 化学平衡:当系统中存在化学反应时,达到平衡后,系统的组成不随时间变化。

状态函数当系统处于一定的状态时,系统中的各种性质都有确定的数值,但系统的这些性质并不都是独立的,它们之间存在着某种数学关系(状态方程)。

通常,只要确定系统的少数几个性质,其它的性质就随之而这定。

这样,系统体系的性质就可以表示成系统的其它的性质的函数,即系统的性质由其状态而定,所以系统的性也称为状态函数。

如()系统的状态系统的性质f =当系统处于一定的状态时,系统的性质只决定于所处的状态,而于过去的历史无关,若外界的条件变化时,它的一系列性质也随之发生变化,系统的性质的改变时只决定于始态与终态,而与变化所经历的途径无关。

这种状态函数的特性在数学上具有全微分的特性,可以按照全微分的关系来处理。

状态方程描述系统性质关系的数学方程式称为状态方程式。

状态方程式的获得:系统的状态方程不以由热力学理论导出,必须通过实验来测定。

在统计热力学中,可以通过对系统中粒子之间相互作用的情况进行某种假设,推导出状态方程。

描述一个系统的状态所需要的独立变数的数目随系统的特点而定,又随着考虑问题目的复杂程度的不同而不同。

一般情况下,对于一个组成不变的均相封闭系统,需要两个独立变数可以确定系统的状态,如理想气体的状态方程可以写成()V p f T ,=(1)对于由于化学变化、相变化等会引起系统或各相的组成发生变化的系统,还必须指明各相的组成或整个系统的组成,决定系统的状态所需的性质的数目就会相应增加。

如对于敞开系统,系统的状态可以写成Λ,,,,21n n V p 的函数。

()Λ,,,,21n n V p f T = (2)过程与途径过程:在一定的环境条件下,系统发生了一个状态变化,从一个状态变化到另一个状态,我们称系统发生了一个热力学过程,简称过程。

途径:系统变化所经历的具体路径称为途径。

常见的变化过程有:(1) 等温过程 系统从状态1变化到状态2,在变化过程中温度保持不变,始态温度等于终态温度,且等于环境温度。

(2) 等压过程 系统从状态1变化到状态2,在变化过程中压力保持不变,始态压力等于终态压力,且等于环境压力。

(3) 等容过程 系统从状态1变化到状态2,在变化过程中体积保持不变。

(4) 绝热过程 系统在变化过程中,与环境不交换热量,这个过程称为绝热过程。

如系统和环境之间有用绝热壁隔开,或变化过程太快,来不及和环境交换热量的过程,可近似看作绝热过程。

(1) 环状过程 系统从始态出发,经过一系列的变化过程,回到原来的状态称为环状过程。

系统经历此过程,所有性质的改变量都等于零。

热和功热:热力学中,把由于系统和环境间温度的不同而在它们之间传递的能量称为热(Q )。

(符号的约定:系统吸热为正)热(量)与系统的热冷的概念不同。

在热力学中,除热以外,系统与环境间以其它的形式传递的能量称为功(W )(符号的规定:给系统做功为正)。

热和功不是状态函数,它的大小和过程有关,其微小量用符号“δ”表示。

有各种形式的功:体积功,电功,表面功,辐射功等。

功可以分为体积功和非体积功。

各种功的微小量可以表示为环境对系统施加影响的一个强度性质与其共轭的广度性质的微变量的乘积。

如功的计算式可以表示为:()fe W W Zdz Ydy Xdx dV p W δδδ+=+++=ΛΛ外 (3)上式中Λ,,,,Z Y X p 外表示环境对系统施加的影响的强度性质,而Λdz dy dx dV ,,,则表示其共轭的广度性质的微变。

热和功的单位:焦(J )§2.4 热力学第一定律经过大量的实验证明:确立了能量守恒与转化定律。

热力学第一定律就是包括热量在内的能量守恒与转化定律:热力学第一定律可以表述为:自然界的一切物质都具有能量,能量有各种形式,并且可以从一种形式转化为另一种形式,在转化过程中,能量的总量不变。

能常体系的总能量由下列三部分组成:(1) 系统整体运动的能量(T )。

(2) 系统在外力场中的位能(V )。

(3) 热力学能(U )。

在研究静止的系统时(T = 0),如不考虑外力场的作用(V = 0),此时系统的总能量为热力学能。

系统的热力学能包括了系统中各种运动形式所具有的能量(粒子的平动能,转动能,振动能,电子能,核能……,以及分子之间的位能等)。

当系统和环境交换能量时,系统的热力学能就要发生变化 W Q U U U +=-=∆12 (4) 如果系统发生了一个微小的变化,则有W Q dU δδ+=(5)上边两个式子称为热力学第一定律的数学表达式。

也可以用另一种文字方式表达热力学第一定律:热力学第一定律的文字表述:要想制造一种永动机,它既不依靠外界供给能量,本身的能量也不减少,却不断地对外做功,这是不可能的。

热力学第一定律也可以表述为:第一类永动机是不可能造成的。

关于热力学能的说明: 系统的热力学能包括了系统中的各种粒子运动形式的能量,由于系统中的粒子无限可分,运动形式无穷无尽,所以系统的热力学能的数值也无法知道。

系统中热力学能的变化量可以通过变化过程中的Q 和W 来确定。

系统的热力学能是状态函数(证明):设:系统经途径Ⅰ从B A →,热力学能变化为ⅠU ∆,经途径Ⅱ从B A →,热力学能的变化为ⅡU ∆,假设热力学能不是状态函数,ⅡⅠU U ∆≠∆。

如果使途径Ⅱ改变方向,从A B →,则该过程的热力学能的变化为ⅡU ∆-。

如系统两个变化过程组合成一个循环,A B A ⅡⅠ−→−−→−,则经过这个循环回到原来的状态,系统的热力学能将发生变化ⅡⅠU U ∆-∆,环境同样获得能量)(ⅡⅠU U ∆-∆-,即能量可以生成,第一类永动相可以制成。

这个结论不符合热力学第一定律,所以只有ⅡⅠU U ∆=∆。

∴系统的热力学能的改变量只与始终态有关,而和路径无关,所以系统的热力学能为一状态函数。

系统的热力学能可以表示为 ),,(n P T f U =dp p U dT T U dU T p ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (6)如果把热力学能看作是T ,V 的函数 ),,(n V T f U =dpV U dT T U dU T V ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=显然 V p T U T U ⎪⎭⎫ ⎝⎛∂∂≠⎪⎭⎫ ⎝⎛∂∂§2.5 准静态过程与可逆过程功与过程和热力学能不同,环境对系统所做功的量和系统变化所经历的途经有关。

以图2.2为例来说明做功的过程dV p Adl p dl f W e e -=-=-=外δ (为外压)系统中的气体可以由不同的过程从21V V →,过程不同,环境做功也不相同。

1.自由膨胀 0,01,==e e W p2.外压始终维持恒定 ()122,V V p W e e --=3.多次等外压膨胀 ()12213,'V V V p V p W e e e -∆-∆-=4.无限多次的等外压膨胀124,lnV V nRT dV p W e e -=-=⎰以上的例子说明,功和途径有关由于W Q U -=∆,所以Q 也和途径有关。

相关文档
最新文档