四结构和性能的关系分析PPT课件
合集下载
材料科学与工程方法论—4. 材料结构、性能与表征的因果关系

E tg (MPa)
3、材料的性能
陶瓷强度的测定: a. 弯曲强度:三点弯曲或四点弯曲方法; b. 抗拉强度:测定时技术上有一定难度,常用弯曲 强度代替,弯曲强度比抗拉强度高 20~40%; c. 抗压强度:远大于抗拉强度,相差10倍左右,特 别适合于制造承受压缩载荷作用的 零部件。
2、材料的结构
b. 实际的晶体结构
◆点缺陷:是一种在三维空间各个方向上尺寸都很小,尺寸范围
约为一个或几个原子间距的缺陷。如空位 ( 正常晶格结点上,未 被原子占有而空着的位臵 )、间隙(不占有正常的晶格位臵,而处 在晶格间隙中的多余原子 )、臵换原子(臵换晶格结点上的原子, 占据正常结点)。
空位
臵换原子
用化学式表示。Mg2Si
电子化合物:不遵守原子价规律,服从电子浓度规律; 间隙化合物:过渡族金属元素与C、N、H、B等原子半径较
小的非金属元素形成的化合物。
显微组织:材料中各相及更微观组元 (化学或几何学的)的形
貌及含量所构成的图象。(显微镜下所观察到的金属中的各种晶 粒的大小、形态和分布)
2、材料的结构
2、材料的结构
(2) 非金属的晶体结构
a. 陶瓷的组织结构: 陶瓷: 是由金属和非金属的无机化合物所构成的多晶固体物
质,实际上是各种无机非金属材料的总称。
晶体结构:以离子键为主的离子晶体(呈晶态) 以共价键为主的共价晶体(呈非晶态) 组织:晶相:是主要组成相。
(主晶相、次晶相、第三晶相) 材料的性能取决于主晶相。
高分子材料:以高分子化合物为主要组分的材料。高分子化合物是分子中 含原子数很多,分子量很大的物质。高分子亦称大分子,高 分子化合物又称高聚物或聚合物。 结构: 大分子链的组成:非金属或非金属元素组成。 大分子链的构型:即高聚物结构单元的排列顺序和连接方式。 大分子链的形态: 线型结构:整个分子呈细长线条状
高分子材料的结构及其性能PPT(36张)

态。 此时,只有比链段更小的结构单元如链节、侧基等能够运动。 受外力作用时,只能使主链的键长和键角有微小的改变,外力去除后形变能迅速回复,这 是一种普弹性状态。
B、高弹性 随着温度的升高,当T>Tg 时,分子的动能增加,使链段的自由旋转成为可能,此时,试
样的形变明显增加,在这一区域中,试样变成柔软的弹性体,称为高弹态。 高弹态时,弹性模量显著降低,外力去除后,变形量可以回复,有明显的时间依赖性。由
如图16-7,在间同立构高聚物中, 原子或原子团会交替分布在主链两侧; 在全同立构高聚物中,原子或原子团 则全部排列在主链同一侧;而在无规立构高聚物中,主链两侧原子分布是随机的。
这种化学成分相同,但由于不对称取代基沿分子主链分布不同的现象,就叫做 高分子的立体异构现象。
2、大分子链的构象及柔性 高聚物结构单元是通过共价键重复连接形成线型大分子,共价键的特点是键能
2、单体 高分子化合物是由低分子化合物通过聚合反应获得。
组成高分子化合物的低分子 化合物称作单体。所以我们经 常说,高分子化合物是由单体 合成的,单体是高分子化合物 的合成原料。如图16-2,聚乙 烯是由乙烯(CH2=CH2)单 体聚合而成的。 高分子化合物的相对分子质 量很大,主要呈长链形,因此 常称作大分子链或者分子链。 大分子链极长,可达几百纳米以上,而截面一般小于1nm。
物,简称高聚物材料,是以高分子化合物为主要组分的有机 材料,可分为天然高分子材料和人工合成高分子材料两大类。 天然高分子材料包括如蚕丝、羊毛、纤维素、油脂、天然橡 胶、淀粉和蛋白质等。 人工合成高分子材料包括如塑料、合成橡胶、胶粘剂和涂料 等。工程上使用的主要是人工合成的高分子材料。
一、高聚物的基本概念 1、高聚物和低聚物 高分子化合物是指相对分子质量很大的化合物,其相对分子质量在5000
B、高弹性 随着温度的升高,当T>Tg 时,分子的动能增加,使链段的自由旋转成为可能,此时,试
样的形变明显增加,在这一区域中,试样变成柔软的弹性体,称为高弹态。 高弹态时,弹性模量显著降低,外力去除后,变形量可以回复,有明显的时间依赖性。由
如图16-7,在间同立构高聚物中, 原子或原子团会交替分布在主链两侧; 在全同立构高聚物中,原子或原子团 则全部排列在主链同一侧;而在无规立构高聚物中,主链两侧原子分布是随机的。
这种化学成分相同,但由于不对称取代基沿分子主链分布不同的现象,就叫做 高分子的立体异构现象。
2、大分子链的构象及柔性 高聚物结构单元是通过共价键重复连接形成线型大分子,共价键的特点是键能
2、单体 高分子化合物是由低分子化合物通过聚合反应获得。
组成高分子化合物的低分子 化合物称作单体。所以我们经 常说,高分子化合物是由单体 合成的,单体是高分子化合物 的合成原料。如图16-2,聚乙 烯是由乙烯(CH2=CH2)单 体聚合而成的。 高分子化合物的相对分子质 量很大,主要呈长链形,因此 常称作大分子链或者分子链。 大分子链极长,可达几百纳米以上,而截面一般小于1nm。
物,简称高聚物材料,是以高分子化合物为主要组分的有机 材料,可分为天然高分子材料和人工合成高分子材料两大类。 天然高分子材料包括如蚕丝、羊毛、纤维素、油脂、天然橡 胶、淀粉和蛋白质等。 人工合成高分子材料包括如塑料、合成橡胶、胶粘剂和涂料 等。工程上使用的主要是人工合成的高分子材料。
一、高聚物的基本概念 1、高聚物和低聚物 高分子化合物是指相对分子质量很大的化合物,其相对分子质量在5000
高分子材料(力学性能) ppt课件

三、粘弹性
§5.1 力学性能
三、粘弹性
§5.1 力学性能
2、动态粘弹性 (滞后)
• 滞后:一定温度下,受交变的应力,形变随时
间的变化跟不上力随时间的变化
应力周期性变化:σ=σ 0 Sin ω t 应变:ε =ε 0 Sin(ω t +δ )
落后一相位角
结果:产生滞后圈--能耗
(机械能(弹性能)--热能) ----力学损耗
如何§解5.决1 ?力学性能
1、特征
➢涂料涂装时流挂问题如何 解决?
1) 粘度大;分子量越大,粘度越大;分布越宽,粘度越大;
2) 流动机理:分子重心相对位移,是由链段的相继跃迁实 现的
3) 伴有高弹形变---具有粘弹性
现象:出口膨大、爬杆效应、融体破裂
一、高聚物的流动性 ???
§5.1 力学性能
4)是一假塑性流体:
运动单元高度取向(m 不为零)
1、拉伸过程 (非晶、结晶高聚物)
C 断裂:
脆性断裂:没有屈服,断裂面光滑;
§5.1 力学性能
四 屈服、强度与断裂
韧性断裂:出现屈服后的断裂,断裂面粗糙。
T < Tb 时: σB <σY ---脆性断裂
1、拉伸过程 (非晶、结晶高聚物)
2) 结晶高聚物的应力~应变曲线
1、拉伸过程 (非晶、结晶高聚物) §5.1 力学性能
四 屈服、强度与断裂
注意: • 使用时υ趋于很小---长期强度,其远远小于所测值 ,
例:PVC: σB(1000h)=1/2σB (测) • Tb、Tg测定时,是在一定时间尺度下,
( υ比较小,时间长) 实际受力时(特别是在冲击力时)往往υ很高, 例:PVC 的Tb= - 50度,T使> - 30 ~ -15度
聚合物的结构与性能 ppt课件

一级结构近程结构一级结构近程结构结构单元的化学组成连接顺序立体构型以及支化交联等结构单元的化学组成连接顺序立体构型以及支化交联等二级结构远程结构二级结构远程结构高分子链的形态构象以及高分子的大小分子量高分子链的形态构象以及高分子的大小分子量链结构链结构聚集态结构三级结构聚集态结构三级结构晶态非晶态取向态液晶态及织态等
分子量和分子量分布是影响材料性能的因素之一。
高分子链的内旋转现象
分子主链中单键的内旋转是导致高分子链呈卷曲构象的原
因,内旋转愈是自由,蜷曲的趋势就愈大。称这种不规则地蜷曲的 高分子链的构象为无规线团。 1. 高分子在ห้องสมุดไป่ตู้动时C—C单键可以绕轴旋转,称为内旋转。 2. 由于单键内旋转而产生的分子在空间的不同形态称为构象。 内旋转完全自由的碳—碳单键是不存在的,当碳键带有的原子或基 团充分接近时,外层电子云将产生排斥力,使之不能接近,使旋转 时消耗一定能量。 △E是顺式构象与反式构象间的位能差,称为位垒。顺式构象位能 最高,反式构象位能最低(最稳定),因为基团距离愈大,排斥作 用愈小,故反式位能最低,顺式最不稳定。
• “太阳当空照,花儿对我笑,小鸟说早早早……”
高聚物的特点(与小分子物质相比)
高分子是由很大数目(103——105 数量级)的结构单 元组成的,每一个结构单元相当于一个小分子
一般高分子的主链都有一定的内旋转自由能,可 以使主链弯曲而具有柔性
高分子结构具有不均一性 各结构单元间的相互作用对其聚集态结构和物理
i+1 i
第四章 聚合物的结构与性能
高分子链的运动是以链段为单元的,是蠕动。 高分子链在分子内旋转作用下可采取各种可能的形态,如 取不同的构象,如伸直链、无规线团、折叠链、螺旋链等。
高分子链的构象
分子量和分子量分布是影响材料性能的因素之一。
高分子链的内旋转现象
分子主链中单键的内旋转是导致高分子链呈卷曲构象的原
因,内旋转愈是自由,蜷曲的趋势就愈大。称这种不规则地蜷曲的 高分子链的构象为无规线团。 1. 高分子在ห้องสมุดไป่ตู้动时C—C单键可以绕轴旋转,称为内旋转。 2. 由于单键内旋转而产生的分子在空间的不同形态称为构象。 内旋转完全自由的碳—碳单键是不存在的,当碳键带有的原子或基 团充分接近时,外层电子云将产生排斥力,使之不能接近,使旋转 时消耗一定能量。 △E是顺式构象与反式构象间的位能差,称为位垒。顺式构象位能 最高,反式构象位能最低(最稳定),因为基团距离愈大,排斥作 用愈小,故反式位能最低,顺式最不稳定。
• “太阳当空照,花儿对我笑,小鸟说早早早……”
高聚物的特点(与小分子物质相比)
高分子是由很大数目(103——105 数量级)的结构单 元组成的,每一个结构单元相当于一个小分子
一般高分子的主链都有一定的内旋转自由能,可 以使主链弯曲而具有柔性
高分子结构具有不均一性 各结构单元间的相互作用对其聚集态结构和物理
i+1 i
第四章 聚合物的结构与性能
高分子链的运动是以链段为单元的,是蠕动。 高分子链在分子内旋转作用下可采取各种可能的形态,如 取不同的构象,如伸直链、无规线团、折叠链、螺旋链等。
高分子链的构象
混凝土的组成、结构和性能的关系PPT课件

混凝土的组成、结构 和性能的关系
精选ppt课件2021
1
正确认识和科学理解混凝土
1、按照材料科学的观点正确 认识混凝土:
材料科学的观点认为: 材料的组成 决定其结构和性能,改变其组成和结构, 可以随之改变其性能。
精选ppt课件2021
2
2、按照混凝土的生命周期规律 科学理解混凝土:
根据混凝土的制备工艺、 早期养护过程、 性能成熟过程、 工作环境、 性能衰退过程, 这一混凝土的生命周期规律理解混凝土。
精选ppt课件2021
15
• 磨细矿渣:
矿渣具有组成优势和结构优势。矿 渣的潜在活性较高,粉磨到一定细度后, 水化活性较高,对水泥强度贡献大;自 分散性能好,在混凝土中有物理减水作 用;在较大的掺量范围内都有较稳定的 性能。
矿渣的弱势是难磨,将其磨到比表 面积380m2/kg以上非常困难,电耗较高, 须选择有效的助磨剂 。
精选ppt课件2021
5
硬化混凝土的相组成
• 硬化后的混凝土可以分为: • 水泥基相(水泥水化产物) • 分散粒子(集料、未水化部分) • 界面过渡层 • 这是组成混凝土结构的三要素。
精选ppt课件2021
6
胶凝材料
胶凝材料是制备混凝土的根本材料,
胶凝材料 的特点是对砂、石等集料有较
强的粘结能力。
根据工程性质的不同要求,还有一 系列特性水泥:如快硬水泥、抗硫酸盐 水泥、大坝水泥等在一些特殊工程中应 用。
精选ppt课件2021
8
集料
•
按集料形成的条件分为:天然和人造
•
按集料容重分为:超轻质(保温隔热材
料如球型珍珠岩)、轻质、结构用轻质、正
常重、特重(防辐射 重晶石)
精选ppt课件2021
1
正确认识和科学理解混凝土
1、按照材料科学的观点正确 认识混凝土:
材料科学的观点认为: 材料的组成 决定其结构和性能,改变其组成和结构, 可以随之改变其性能。
精选ppt课件2021
2
2、按照混凝土的生命周期规律 科学理解混凝土:
根据混凝土的制备工艺、 早期养护过程、 性能成熟过程、 工作环境、 性能衰退过程, 这一混凝土的生命周期规律理解混凝土。
精选ppt课件2021
15
• 磨细矿渣:
矿渣具有组成优势和结构优势。矿 渣的潜在活性较高,粉磨到一定细度后, 水化活性较高,对水泥强度贡献大;自 分散性能好,在混凝土中有物理减水作 用;在较大的掺量范围内都有较稳定的 性能。
矿渣的弱势是难磨,将其磨到比表 面积380m2/kg以上非常困难,电耗较高, 须选择有效的助磨剂 。
精选ppt课件2021
5
硬化混凝土的相组成
• 硬化后的混凝土可以分为: • 水泥基相(水泥水化产物) • 分散粒子(集料、未水化部分) • 界面过渡层 • 这是组成混凝土结构的三要素。
精选ppt课件2021
6
胶凝材料
胶凝材料是制备混凝土的根本材料,
胶凝材料 的特点是对砂、石等集料有较
强的粘结能力。
根据工程性质的不同要求,还有一 系列特性水泥:如快硬水泥、抗硫酸盐 水泥、大坝水泥等在一些特殊工程中应 用。
精选ppt课件2021
8
集料
•
按集料形成的条件分为:天然和人造
•
按集料容重分为:超轻质(保温隔热材
料如球型珍珠岩)、轻质、结构用轻质、正
常重、特重(防辐射 重晶石)
材料物理性能与力学性能PPT课件

3. 弹性模量的影响因素
弹性模量是构成材料的离子或分子之间键合强度的主 要标志,凡是影响键合强度的因素均能影响弹性模量。 如:键合方式、晶体结构、化学成分、微观组织、温 度、加载方式和速度等。
第22页/共119页
1)键合方式和原子结构 共价键、离子键、金属键----较高 分子键----较弱 原子半径越大,E越小
5)温度----温度升高,E降低 特例:橡胶。其弹性模量随温度升高而增加。
第25页/共119页
6)加载条件和负荷持续时间 加载方式、速率和负荷持续时间对金属材料、陶瓷材料 影响很小。 对于高分子聚合物,负荷时间延长,E下降。
第26页/共119页
4、比例极限和弹性极限
p
Fp A0
Fp:比例极限对应的应力 A0 :试棒的原始截面面积
第39页/共119页
第四节 塑性变形及其性能指标
一、塑性变形机理 定义:材料微观组织的相邻部分产生永久性位移,并不 引起材料破裂的现象。 1:金属材料的塑性变形机理:滑移、孪生 滑移系越多,塑性越好
复习: 滑移:晶体的一部分对于另一部分沿一定晶面和晶向发生相对
滑动,滑动后原子处于新的稳定位置。 滑移通常沿晶体中原子密度最大的晶面和晶向发生。
第6页/共119页
五、本课程学习注意问题:
预备知识:材料力学和金属学方面的基本理论知识。 理论联系实际:是实用性很强的一门课程。某些力学性能指
标根据理论考虑定义,而更多指标则按工程实用 要求定义。 重视实验: 通过实验既可掌握力学性能的测试原理,又可 掌握测试技术,了解测试设备,进一步理解所 测的力学性能指标的物理意义与实用意义。 做些练习: 加深理解――巩固所学的知识。
消除方法:进行较大塑性变形;再结晶退火
结构与性质的关系分析

环境科学领域:通过 研究地球内部结构来 预测地质活动,如地 震、火山等,有助于 灾害防控和资源开发 。
结构与性质在工程设计中的应用
建筑结构:利用材料的性质和结构的设计,实现建筑的稳定性和功能性 机械设计:通过合理设计机械部件的结构,提高机械的性能和效率 化学工程:利用物质的性质和化学反应机理,优化化学反应过程和产物分离提纯 航空航天:利用高强度材料和轻量化设计,实现飞行器的轻巧、高速和安全
结构优化性质:通过改变物质的微观结构,可以优化其性质,如提高稳定 性、降低毒性等,为新材料的研发提供可能。
结构与性质相互关联:结构与性质之间存在密切的关联,深入理解这种关 系有助于更好地应用物质性质,推动科技进步。
结构与性质相互作用的机制
结构决定性质:化学键、分子轨道等微观结构对物质的物理和化学性质产生决定性影响。
结构与性质研究将更加注重人才培养:随着结构与性质研究的不断深入和跨学科合 作的需要,未来将更加注重人才培养,为该领域的发展提供更多优秀的人才。
THANK YOU
汇报人:XX
科技发展对结构与性质的研究 提出更高要求和挑战
结构与性质在社会发展中的影响
结构与性质在材料科学中的重要性 结构与性质在生物医学领域的应用前景 结构与性质在能源和环境领域的发展趋势 结构与性质在信息技术领域的创新方向
结构与性质在经济发展中的影响
结构与性质对经济发展的影响:随着科技的不断进步,新的结构与性质 不断涌现,对经济发展产生深远影响。
展。
结构与性质在科学研究中的应用
化学领域:通过研究 分子结构来预测和解 释物质的性质,有助 于新材料的开发和药 物的设计。
生物学领域:蛋白质 的结构与功能关系密 切,对结构的研究有 助于理解生物过程的 机制。
结构与功能的相互关系

结构与功能的相互关系在机械设计中的应用
5
机械设计中的结构与功能关系
结构与功能的关系:结构决定功能,功能影响结构
机械设计中的结构与功能关系:通过优化结构来实现功能的最大化
机械设计中的结构与功能关系的应用:如汽车发动机、飞机翅膀等
机械设计中的结构与功能关系的重要性:对于提高机械性能、延长使用寿命等方面具有重要意义
机械结构:如齿轮、链条等,需要根据其传动功能和耐磨需求进行设计
电子结构:如电路板、芯片等,需要根据其信号处理功能和集成度需求进行设计
结构与功能的相互关系在生物体中的体现
3
生物体的结构与功能关系
生物体结构与功能的适应性
生物体的结构与其功能相适应,以适应环境变化
生物体的结构变化会影响其功能,如基因突变、细胞分化等
功能变化对结构的影响
功能变化可能对结构的材料和制造工艺提出新的要求
功能变化可能导致结构需要调整
功能变化可能影响结构的稳定性和可靠性
功能变化可能影响结构的维护和维修方式
实例分析
添加标题
添加标题
添加标题
添加标题
生物结构:如骨骼、肌肉等,需要根据其生理功能和运动需求进行设计
建筑结构:如桥梁、房屋等,需要根据其承载能力和使用需求进行设计
建筑设计中的结构与功能关系的影响:良好的结构与功能关系可以提高建筑的使用寿命和舒适度,同时也可以降低建筑的维护成本和能耗。
建筑结构与功能的相互影响
建筑结构对功能的影响:不同的建筑结构会影响建筑的使用功能和空间布局。
建筑功能对结构的影响:不同的建筑功能需求会导致不同的建筑结构设计。
建筑结构与功能的协调:在建筑设计中,需要协调建筑结构与功能的关系,以实现最佳的建筑效果。
5
机械设计中的结构与功能关系
结构与功能的关系:结构决定功能,功能影响结构
机械设计中的结构与功能关系:通过优化结构来实现功能的最大化
机械设计中的结构与功能关系的应用:如汽车发动机、飞机翅膀等
机械设计中的结构与功能关系的重要性:对于提高机械性能、延长使用寿命等方面具有重要意义
机械结构:如齿轮、链条等,需要根据其传动功能和耐磨需求进行设计
电子结构:如电路板、芯片等,需要根据其信号处理功能和集成度需求进行设计
结构与功能的相互关系在生物体中的体现
3
生物体的结构与功能关系
生物体结构与功能的适应性
生物体的结构与其功能相适应,以适应环境变化
生物体的结构变化会影响其功能,如基因突变、细胞分化等
功能变化对结构的影响
功能变化可能对结构的材料和制造工艺提出新的要求
功能变化可能导致结构需要调整
功能变化可能影响结构的稳定性和可靠性
功能变化可能影响结构的维护和维修方式
实例分析
添加标题
添加标题
添加标题
添加标题
生物结构:如骨骼、肌肉等,需要根据其生理功能和运动需求进行设计
建筑结构:如桥梁、房屋等,需要根据其承载能力和使用需求进行设计
建筑设计中的结构与功能关系的影响:良好的结构与功能关系可以提高建筑的使用寿命和舒适度,同时也可以降低建筑的维护成本和能耗。
建筑结构与功能的相互影响
建筑结构对功能的影响:不同的建筑结构会影响建筑的使用功能和空间布局。
建筑功能对结构的影响:不同的建筑功能需求会导致不同的建筑结构设计。
建筑结构与功能的协调:在建筑设计中,需要协调建筑结构与功能的关系,以实现最佳的建筑效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特鲁德模型的基本假设 II
碰撞是电子突然改变速度的瞬时事件,正 如硬橡皮球从固定的物体上反弹回来一样, 它是由于运动中的电子碰到不可穿透的离 子实而反弹所造成的。
运动电子的轨迹
特鲁德模型的基本假设 III
单位时间内电子发生碰撞的几率是 1/。这 里的时间 称为驰豫时间 (或平均自由时
间),它意味着一个电子在前后两次碰撞之
nk
B
c
u T
3 2
nk
B
也就是说:金属的比热与温度无关。
2. 索末菲理论
索末菲理论的出发点是:金属中电子的运动具有 波粒二象性。电子的波长可以表示为
h / mv
通常采用波矢 k 来描述电子的运动,k 定义为
k 2 2 mv h
先来讨论一维的情况
电子被束缚在金属晶体内运动,就好像处在 一个很深的势箱中。晶体试样的长度 L 就是势箱 的边界。
(r) Aeikr
考虑到势箱的深度应该大大超过电子的动能,因此 电子在边界以外出现的几率为零。这一边界条件可 以写成
(X L) (X )
4.1 能带理论
材料按电性能分类: 导体、半导体、绝缘体
导 体 纯金属的电阻率在108 ~ 107 m 金属合金的电阻率为107 ~ 105 m
半导体 电阻率为103 ~ 10+5 m 绝缘体 电阻率为10+9 ~ 10+17 m
电阻率的大小取决于材料的结构。
我们从金属开始
在材料电性能研究中,金属处于相当特殊 的地位
v l
ne2l
mv
❖ 只有电子的平均自由程与材料结构有关;平均自由 程是电子在两次碰撞之间的平均运动距离
❖ 碰撞 (电子的散射) 导致导体发热
❖ 散射分为两类:与温度有关的热振动散射和与温度 无关的缺陷散射
❖ 热振动散射的平均自由程约为100个原子间距
❖ 在所有缺陷中,杂质对电阻率影响最大,0.1%的掺 杂就能产生显著的效果。
物理学家曾经为以下两个问题绞尽脑汁
金属为什么容易导电? 金属为什么是良好的热导体?
4.1.1 金属电子论概念
1897 年, 汤姆逊 (J.J. Thomson) 首先发 现了金属中电子的存在
1900 年,特鲁德 (P. Drude) 提出了一个 关于金属的简单模型
最后,索末菲 (A.J.W. Sommerfeld) 提出 了金属电子论
在这个势箱中,电子运动的动能为:
E 1 mv 2 h 2 k 2
2
8 2 m
k 2 2 mv h
E 1 mv 2 h 2 k 2
2
8 2 m
即电子的动能与波矢之间呈抛物线关系。
电子运动的薛定锷方程为 (r) 为电子的波函数
h 2 2 (r) E (r) 8 2 m
我们直接给出这个方程的解
价电子层:电子数 量为 Z
特鲁德模型认为:这些传导电子构成自由电 子气系统,可以用运动学理论进行处理
每摩尔金属元素包含有 6.022 1023 个原 子;每立方厘米金属具有的摩尔数为 D / A;每 个原子提供 Z 个传导电子,因此每立方厘米金 属中传导电子的数量为
n N 6.022 1023 ZD
V
A
特鲁德模型的基本假设 I
在没有发生碰撞时,电子与电子、电子与 离子之间的相互作用可以忽略。在无外场 作用时,电子作匀速直线运动;在外场作 用下,电子的运动服从牛顿定律。
忽略了电子与电子之间相互作用的近似称为 独立电子近似
忽略了电子与离子之间相互作用的近似称为 自由电子近似
所以这样假设称为独立自由电子近似
E j
其中 为金属的电阻率。
根据特鲁德模型即可解释这一现象。
设金属导体中每单位体积中含有 n 个自由电子, 其平均运动速度为 v平均,则电流密度为
j nev平均
考虑一个自由电子,从上次碰撞发生起,可有 t 时
间行程。如果无外场作用,其速度为 v0,在外电场 作用下,碰撞后将立即附加一个速度 eEt / m,也
特鲁德模型
当金属原子凝聚在一起形成金属时, 原来孤立原子封闭壳层内的电子 (芯电子) 仍然能够紧紧地被原子核束缚着,它们和 原子核一起在金属中构成不可移动的离子 实;而原来孤立原子封闭壳层外的电子 (价电子) 则可以在金属中自由地移动。
孤立原子示意图
原子核:具有电荷 eZa
芯电子层:电子 数量为 Za Z
但是,特鲁德模型在解释金属的比热、磁 化率等方面则出现了困难。
特鲁德模型的局限性举例
金属的比热
特鲁德模型把金属电子处理为经典的理想气体,
遵循波尔兹曼统计规律:每个电子有 3 个自由度,
每个自由度对应平均能量为 kBT / 2。令 u 为内能密
度,则
u
3 2
nk BT
相应地,金属的比热为
c
u T
3 2
纯铜的电阻率随温 度的变化关系曲线
m ne 2
v l
❖在低温时,电阻率通常很小
❖温度升高后,电阻率随温度的变化基本上呈线性: 温度越高,电阻率越大
❖当然,对这一现象的解释不是特鲁德模型能够完 成的。
特鲁德模型可以很好地解释欧姆定律,此 外,在解释金属热导与电导之间的联系、 金属电子的驰豫时间和平均自由程等方面 也取得了成功。
间平均而言将有 时间的行程。驰豫时间
与电子的位置和速度无关。
特鲁德模型的基本假设 IV
电子和周围环境达到热平衡仅仅是通过碰 撞实现的,碰撞前后电子的速度毫无关联, 方向是随机的,其速率是和碰撞发生处的 温度相适应的。
特鲁德模型的应用举例
金属的直流电导
根据欧姆定律,金属导体的电流密度 j 和施加在导体上的电场强度 E 成正比,即:
就是说,该电子的速度将为
v
v0
eEt m
一个电子的运动速度为
v
v0
eEt m
所有电子的平均运动速度为
v平均
v0 n
eEt mn
v平均
eE
m
j nev平均
j
ne 2
m
E
这就是欧姆定律
关于金属的电阻率
j
ne 2
m
E
E j ne 2
v l
m
ne 2
m ne 2
第四章 结构与性能的关系
经典的化学结构理论指出,物质的内部 结构完全决定了它的典型的化学和物理性能。 因此,探索晶体的结构与性能之间的关系是 材料科学中重要的基础性研究课题之一。
本章推荐参考书
曾兆华,杨建文编,材料化学,化学工业出版社 C.Kittel著,项金钟,吴兴惠译,固体物理导论,
化学工业出版社