fick定律
菲克定律应用

1 扩散动力学方程——菲克定律1.1 菲克第一定律 1.1.1宏观表达式1858年,菲克(Fick )参照了傅里叶(Fourier )于1822年建立的导热方程,建立定量公式。
在t ∆时间内,沿x 方向通过x 处截面所迁移的物质的量m ∆与x 处的浓度梯度成正比:t A xCm ∆∆∆∝∆ 即 )(xCD Adt dm ∂∂-=根据上式引入扩散通量概念,则有:xCDJ ∂∂-=(7-1)图7-1 扩散过程中溶质原子的分布式(7-1)即菲克第一定律。
式中J 称为扩散通量,常用单位是mol /()2s cm ⋅;xC∂∂浓度梯度; D 扩散系数,它表示单位浓度梯度下的通量,单位为2cm /s 或s m /2; 负号表示扩散方向与浓度梯度方向相反见图7-2。
1.1.2微观表达式微观模型:设任选的参考平面1、平面2上扩散原子面密度分别为n 1和n 2,若n 1=n 2,则无净扩散流。
假定原子在平衡位置的振动周期为τ,则一个原子单位时间内离开相对平衡位置跃迁次数的平均值,即跃迁频率Γ为τ1=Γ (7-2)由于每个坐标轴有正、负两个方向,所以向给定坐标轴正向跃迁的几率是Γ61。
设由平面l 向平面2的跳动原子通量为J 12,由平面2向平面1的跳动原图7-2 溶质原子流动的方向与浓度降低的方向相一致图7-3 一维扩散的微观模型子通量为J 21Γ=11261n J (7-3)Γ=22161n J (7-4) 注意到正、反两个方向,则通过平面1沿x 方向的扩散通量为 ()212112161n n J J J -Γ=-= (7-5) 而浓度可表示为 δδnn C =⋅⋅=11 (7-6) 式(7-6)中的1表示取代单位面积计算,δ表示沿扩散方向的跳动距离(见图7-3),则由式(7-5)、式(7-6)得 ()dxdCDdx dC C C C C J -=Γ-=-Γ-=-Γ=21221161)(6161δδδ (7-7) 式(7-7)即菲克第一定律的微观表达式,其中261δΓ=D (7-8) 式(7-8)反映了扩散系数与晶体结构微观参量之间的关系,是扩散系数的微观表达式。
菲克定律

包括两个内容:(1)早在1855年,菲克就提出了:在单位时间内通过垂直于扩散方向的单位截面积律是在第一定律的基础上推导出来的。
菲克第二定律指出,在非稳态扩散过程中,在距离x处,浓度随时间的变化率等于该处的扩散通量随距离变化率的负值,费克第一定律早在1855年,菲克就提出了:在单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(称为扩散通量Diffusion flux,用J表示)与该截面处的浓度梯度(Concentration gradient)成正比,也就是说,浓度梯度越大,扩散通量越大。
这就是菲克第一定律,它的数学表达式如下: (1)式(1)中, D称为扩散系数(m²/s),C为扩散物质(组元)的体积浓度(原子数/m³或kg/m³),dC/dx 为浓度梯度,―–‖号表示扩散方向为浓度梯度的反方向,即扩散组元由高浓度区向低浓度区扩散。
扩散通量J的单位是kg / m^2·s。
在三维情况下,有如下形式公式:其中,J为扩散通量,为一个三维向量场,D为扩散系数,为一个二阶张量,C为浓度,为一个数量场,▽为梯度算子。
扩散系数(Diffusion coefficient)D是描述扩散速度的重要物理量,它相当于浓度梯度为1时的扩散通量,D值越大则扩散越快。
对于固态金属中的扩散,D值都是很小的,例如,1000℃时碳在γ-Fe 中的扩散系数D仅为10m^2/s数量级。
费克定律里的稳态扩散和非稳态扩散费克第一定律只适应于J和C不随时间变化——稳态扩散(Steady-state diffusion)的场合(见下图)。
对于稳态扩散也可以描述为:在扩散过程中,各处的扩散组元的浓度C只随距离x变化,而不随时间t变化,每一时刻从前边扩散来多少原子,就向后边扩散走多少原子,没有盈亏,所以浓度不随时间变化。
实际上,大多数扩散过程都是在非稳态条件下进行的。
非稳态扩散(Nonsteady-state diffusion)的特点是:在扩散过程中,J随时间和距离变化。
fick定律全

(有浓度变化)
➢(2)根据扩散方向
下坡扩散:原子由高浓度处向低浓度处进行的扩散。 上坡扩散:原子由低浓度处向高浓度处进行的扩散。
➢(3)根据是否出现新相
原子扩散:扩散过程中不出现新相。 反应扩散:有新相形成的扩散过程。
➢ (4)按原子的扩散方向分: 体扩散:在晶粒内部进行的扩散 短路扩散:表面扩散、晶界扩散、位错扩散等 短路扩散的扩散速度比体扩散要快得多
三、铸锭的均匀化处理
均匀化退火时溶质浓 度分布示意图如下:
铸锭枝晶偏析及均匀化 退火时的溶质浓度分布变化
设溶质浓度沿x方向为正弦曲线分布, 周期为2π, 则曲线上任一点(x)的初始 浓度C可表示为:
扩散过程的初始条件为
由扩散第二方程,可求得其正弦解为
上式表明,均匀化扩散过程中正弦曲线峰值的衰减情况。若用 表示枝晶偏析峰值衰减的程度
析、均匀化退火、冷变形后的回复和再结晶、固态相变、化学热处 理、烧结、氧化、蠕变等等。
扩散:由构成物质的微粒(离子、原子、分子)的热运动而产生的 物质迁移现象称为扩散。扩散的宏观表现是物质的定向输送。
扩散的分类
➢ (1)根据有无浓度变化
自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(纯金属或固溶体的晶粒长大)(无浓度变化)
则上式可写为
影响衰减程度的主要因素是枝晶间距l0/2、D、t
(减少偏析的措施??课堂讨论)
四、扩散方程的误差函数解
1、半无限长棒中的扩散模型
实际意义?
低碳钢的渗碳处理,材料的原始含碳量为C0,热处理时外界条件保 证其表面的碳含量始终维持在CP(碳势),经过一段时间后,求材料 的表面附近碳含量的情况。
fick定律ppt课件

(有浓度变化)
➢(2)根据扩散方向
下坡扩散:原子由高浓度处向低浓度处进行的扩散。 上坡扩散:原子由低浓度处向高浓度处进行的扩散。
.
➢(3)根据是否出现新相
原子扩散:扩散过程中不出现新相。 反应扩散:有新相形成的扩散过程。
➢ (4)按原子的扩散方向分: 体扩散:在晶粒内部进行的扩散 短路扩散:表面扩散、晶界扩散、位错扩散等 短路扩散的扩散速度比体扩散要快得多
析、均匀化退火、冷变形后的回复和再结晶、固态相变、化学热处 理、烧结、氧化、蠕变等等。
扩散:由构成物质的微粒(离子、原子、分子)的热运动而产生的 物质迁移现象称为扩散。扩散的宏观表现是物质的定向输送。
.
扩散的分类
➢ (1)根据有无浓度变化
自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(纯金属或固溶体的晶粒长大)(无浓度变化)
.
2、无限长棒中的扩散模型
实际意义?
将溶质含量不同的两种材料焊接在一起,因为浓度不同,在焊接处 扩散进行后,溶质浓度随时间会发生相应的变化。
.
3、扩散方程的误差函数解
.
.
.
4、半无限长棒扩散方程的误差函数解
解为:
定义函数:
误差函数性质
一维半无限长棒中扩 散方程误差函数解:
.
高斯误差函数
高斯误差函数
若用体积浓度(c)的变化率表示积存速率, 则??
.
如果D是常数,上式可写为
.
三维情况,设在不同的方向扩散系数为相等的常数, 则扩散第二方程为:
适用条件: 非稳态扩散: C/t≠0 或 J/x≠0
.
三、扩散方程的应用
[详解]菲克定律
![[详解]菲克定律](https://img.taocdn.com/s3/m/2deccacc7e192279168884868762caaedc33ba5c.png)
7.1 扩散定律(1)7.1.1 菲克第一定律(Fick’s First Law)扩散过程可以分类为稳态和非稳态。
在稳态扩散中,单位时间内通过垂直于给定方向的单位面积的净原子数(称为通量)不随时间变化,即任一点的浓度不随时间变化。
在非稳态扩散中,通量随时间而变化。
研究扩散时首先遇到的是扩散速率问题。
菲克(A. Fick)在1855年提出了菲克第一定律,将扩散通量和浓度梯度联系起来。
菲克第一定律指出,在稳态扩散(即)的条件下,单位时间内通过垂直于扩散方向的单位面积的扩散物质量(通称扩散通量)与该截面处的浓度梯度成正比。
为简便起见,仅考虑单向扩散问题。
设扩散沿x轴方向进行(图7-1),菲克第一定律的表达式为(7-1)式中:J为扩散通量(atoms/(m2·s)或kg/(m2·s));D为扩散系数(m2/s);为浓度梯度(atoms/(m3·m)或kg/(m3·m)) (图7-2为浓度梯度示意图);“-”号表示扩散方向为浓度梯度的反方向,即扩散由高浓度向低浓度区进行。
此方程又称为扩散第一方程。
当扩散在稳态条件下应用(7-1)式相当方便。
7.1.2 菲克第二定律(Fick’s Second Law)实际上,大多数重要的扩散是非稳态的,在扩散过程中扩散物质的浓度随时间而变化,即dc/dx≠0。
为了研究这种情况,根据扩散物质的质量平衡,在菲克第一定律的基础上推导出了菲克第二定律,用以分析非稳态扩散。
在一维情况下,菲克第二定律的表达式为(7-2)式中:为扩散物质的体积浓度(atoms/m3或kg/m3);为扩散时间(s);为扩散距离(m)。
(7-2)式给出c=f(t,x)函数关系。
式(7-2)又称为扩散第二方程。
由扩散过程的初始条件和边界条件可求出(7-2)式的通解。
利用通解可解决包括非稳态扩散的具体扩散问题。
7.1.3 扩散方程的求解1. 扩散第一方程扩散第一方程可直接用于描述稳定扩散过程。
菲克定律应用

1 扩散动力学方程——菲克定律1.1 菲克第一定律 1.1.1宏观表达式1858年,菲克(Fick )参照了傅里叶(Fourier )于1822年建立的导热方程,建立定量公式。
在t ∆时间内,沿x 方向通过x 处截面所迁移的物质的量m ∆与x 处的浓度梯度成正比:t A xCm ∆∆∆∝∆ 即 )(xCD Adt dm ∂∂-=根据上式引入扩散通量概念,则有:xCDJ ∂∂-=(7-1)图7-1 扩散过程中溶质原子的分布式(7-1)即菲克第一定律。
式中J 称为扩散通量,常用单位是mol /()2s cm ⋅;xC∂∂浓度梯度; D 扩散系数,它表示单位浓度梯度下的通量,单位为2cm /s 或s m /2; 负号表示扩散方向与浓度梯度方向相反见图7-2。
1.1.2微观表达式微观模型:设任选的参考平面1、平面2上扩散原子面密度分别为n 1和n 2,若n 1=n 2,则无净扩散流。
假定原子在平衡位置的振动周期为τ,则一个原子单位时间内离开相对平衡位置跃迁次数的平均值,即跃迁频率Γ为τ1=Γ (7-2)由于每个坐标轴有正、负两个方向,所以向给定坐标轴正向跃迁的几率是Γ61。
设由平面l 向平面2的跳动原子通量为J 12,由平面2向平面1的跳动原图7-2 溶质原子流动的方向与浓度降低的方向相一致图7-3 一维扩散的微观模型子通量为J 21Γ=11261n J (7-3)Γ=22161n J (7-4) 注意到正、反两个方向,则通过平面1沿x 方向的扩散通量为 ()212112161n n J J J -Γ=-= (7-5) 而浓度可表示为 δδnn C =⋅⋅=11 (7-6) 式(7-6)中的1表示取代单位面积计算,δ表示沿扩散方向的跳动距离(见图7-3),则由式(7-5)、式(7-6)得 ()dxdCDdx dC C C C C J -=Γ-=-Γ-=-Γ=21221161)(6161δδδ (7-7) 式(7-7)即菲克第一定律的微观表达式,其中261δΓ=D (7-8) 式(7-8)反映了扩散系数与晶体结构微观参量之间的关系,是扩散系数的微观表达式。
fick定理

按照老师给我的那篇论文,我觉得fick定理就是用来解决土壤呼吸的相应的计算,那么接下来是我找的一些关于fick定理相应的资料,我截了一点我觉得相应重要的,我能看懂的。
菲克定律,是描述物质扩散现象的宏观规律,菲克(Fick)于1855年发现的。
有两个内容:(1)早在1855年,菲克就提出了:在单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(称为扩散通量Diffusion flux,用J表示)与该截面处的浓度梯度(Concentration gradient)成正比,也就是说,浓度梯度越大,扩散通量越大。
这就是菲克第一定律。
(2)菲克第二定律是在第一定律的基础上推导出来的。
菲克第二定律指出,在非稳态扩散过程中,在距离x处,浓度随时间的变化率等于该处的扩散通量随距离变化率的负值。
有两个式子。
式(1)中, D称为扩散系数(m²/s),C为扩散物质(组元)的体积浓度(原子数/m³或kg/m³),dC/dx为浓度梯度,“–”号表示扩散方向为浓度梯度的反方向,即扩散组元由高浓度区向低浓度区扩散。
扩散通量J的单位是kg / m^2·s。
下一个这个是在三维的情况下。
其中,J为扩散通量,为一个三维向量场,D为扩散系数,为一个二阶张量,C为浓度,为一个数量场,▽为梯度算子。
扩散系数(Diffusion coefficient)D是描述扩散速度的重要物理量,它相当于浓度梯度为1时的扩散通量,D值越大则扩散越快。
对于固态金属中的扩散,D值都是很小的,例如,1000℃时碳在γ-Fe中的扩散系数D仅为10m^2/s数量级。
Fick定理里面的稳态扩散和非稳态扩散。
那么我们那个项目中测量土壤呼吸的是非稳态扩散。
因为他的J和C是随着时间变化的。
然后他还有其他比较复杂的公式。
如费克第二定律是在第一定律的基础上推导出来的。
费克第二定律指出,在非稳态扩散过程中,在距离x处,浓度随时间的变化率等于该处的扩散通量随距离变化率的负值,即将代入上式,得这就是费克第二定律的数学表达式。
fick扩散定律 公式

fick扩散定律公式Fick扩散定律是描述物质在浓度梯度下扩散的定律。
它是化学和物理学领域中非常重要的一条定律,广泛应用于研究物质的传输过程和扩散现象。
该定律的公式为:J = -D * (∂C/∂x)其中,J表示扩散通量,D表示扩散系数,C表示浓度,x表示空间坐标。
扩散是物质在浓度梯度作用下从高浓度区域向低浓度区域传输的过程。
根据Fick扩散定律,扩散通量与浓度梯度成正比,与扩散系数成反比。
这意味着,在相同浓度梯度下,扩散通量越大,物质的扩散速率越快;而在相同扩散系数下,浓度梯度越大,扩散通量也越大。
Fick扩散定律的应用非常广泛。
在生物学中,我们可以利用Fick 扩散定律来研究细胞膜的透过性和物质的跨膜运输。
例如,通过测量溶质在细胞膜两侧的浓度变化,可以计算出扩散系数,从而了解物质在细胞膜中的传输速率。
在化学工程中,Fick扩散定律也被广泛应用于研究不同物质在多孔介质中的传质过程。
通过控制扩散系数和浓度梯度,可以实现物质在多孔介质中的选择性传输,从而实现分离和纯化的目的。
例如,通过控制气体在吸附剂中的扩散速率,可以实现气体的分离和纯化。
Fick扩散定律还在环境科学和材料科学等领域有重要应用。
在环境科学中,我们可以利用Fick扩散定律来研究地下水中有害物质的扩散和迁移,从而评估地下水污染的风险。
在材料科学中,Fick扩散定律可以用于研究材料中杂质的扩散行为,从而改善材料的性能和稳定性。
总结起来,Fick扩散定律是描述物质在浓度梯度下扩散的重要定律。
它的应用范围广泛,可以帮助我们研究和理解物质的传输过程和扩散现象。
通过掌握和应用Fick扩散定律,我们可以更好地设计和优化化学反应、生物过程、环境工程和材料科学等领域中的相关过程,从而推动科学技术的发展和进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生时不同位置的浓度梯度也不一样,扩散物质的通量也不
一样。 在某一dt的时间段,扩散通量是位置和时间的函数J(x,t)。
单向扩散体的微元体模型 在扩散棒中取两个垂直于 X 轴、 相距为dx的平面1, 2,其面积 均为 A ,两平面之间夹着一个 微小的体积元A· dx。
扩散与材料生产和使用中的物理过程有密切关系,例如:凝固、偏
析、均匀化退火、冷变形后的回复和再结晶、固态相变、化学热处
理、烧结、氧化、蠕变等等。 扩散:由构成物质的微粒(离子、原子、分子)的热运动而产生的 物质迁移现象称为扩散。扩散的宏观表现是物质的定向输送。
扩散的分类
(1)根据有无浓度变化
x xM
dC d x M C
C2
C1
xM dC 0
1 dxM C D(C ) C1 xM dC 2t dC C
C2
A1
A
C CM
C1
B
0M 0
xMLeabharlann 适用条件: 非稳态扩散: C/t≠0 或 J/x≠0
三、扩散方程的应用
1、稳态扩散
•一厚度为d的薄板的扩散
板内任一处的浓度??
•贮氢容器 氢在金属中扩散极快,当温度较高、压强较大 时,用金属容器储存H2极易渗漏。 (1)列出稳态下金属容器中的H2通过器壁扩散的 第一方程
(2)说明方程的含义
扩
概述
散
• §1 菲克定律及应用 • §2 扩散热力学理论
• §3 扩散原子理论
• §4 代位扩散(置换扩散) • §5 短路扩散 • §6 反应扩散 • §7 影响扩散系数的因素
概
扩散现象:
述
在房间的某处打开一瓶香水,慢慢在其他地方可以闻到香味. 在清水中滴入一滴墨水,在静止的状态下可以看到它慢慢的扩散。 在固体材料中也存在扩散,并且它是固体中物质传输的唯一方式。
C
dC C1 xdC t C1 d( D dx )
C C
dC dC dC D D D C1 xdC dx C dx C1 dx C
by boundary condition
=0
1 dx C D xdC 2t dC C C1
5、无限长棒扩散方程的误差函数解
解
为:
利用高斯误差函数
一维无限长棒中扩散 方程误差函数解:
请注意:x=0时,C(x,t)=?
6、扩散方程的误差函数解应用
例1:有一20钢齿轮气体渗碳,炉温为927℃,炉气氛使工件表面含碳 量维持在0.9%C,这时碳在铁中的扩散系数为D=1.28x10-11m2s-1,试计 算为使距表面0.5mm处含碳量达到0.4%C所需要的时间?
解:根据题意,可以用半无限长棒的扩散来解 :
例2:上例中处理条件不变,把碳含量达到0.4%C处到表面的距离作为渗层
深度,推出渗层深度与处理时间之间的关系,层深达到1.0mm则需多少时间?
解:因为处理条件不变
在温度相同时,扩散系数也相同, 因此渗层深度与处理时间之间的关系:
因为x2/x1= 2,所以t2/t1= 4,这时的时间为
③尺寸:b↑
2、非稳态扩散
扩散方程在渗碳过程中的应用 钢的渗碳是将钢(低碳钢,成分为CO)置于具有足够
碳势的介质中加热到奥氏体状态并保温,在表面与心 部间形成一个碳浓度梯度层的处理工艺。
为了分析渗碳过程,可将渗碳工件简化为一根碳浓 度为C0的半无限长钢棒
Fe-Fe3C 相 图 左 下 角 及 渗 碳 层 中的碳浓度(质量分数)分布
Cx - 距表面x处的浓度
三、铸锭的均匀化处理
均匀化退火时溶质浓 度分布示意图如下:
铸锭枝晶偏析及均匀化 退火时的溶质浓度分布变化
设溶质浓度沿 x方向为正弦曲线分布, 周期为 2π, 则曲线上任一点 (x) 的初 始浓度C可表示为:
扩散过程的初始条件为
由扩散第二方程,可求得其正弦解为
上式表明,均匀化扩散过程中正弦曲线峰值的衰减情况。若用 表示枝晶偏析峰值衰减的程度
由质量平衡关系得: 输入物质量 - 输出物质量 = 积存物质量 若以单位时间计算,则 物质输入速率 - 物质输出速率 = 物质积存速率 积存速率
单向扩散体的微元体模型
若用体积浓度(c)的变化率表示积存速率,
则??
如果D是常数,上式可写为
三维情况,设在不同的方向扩散系数为相等的常数,
则扩散第二方程为:
自扩散:原子经由自己元素的晶体点阵而迁移的扩散。 (纯金属或固溶体的晶粒长大)(无浓度变化) 互扩散:原子通过进入对方元素晶体点阵而导致的扩散。 (有浓度变化)
(2)根据扩散方向
下坡扩散:原子由高浓度处向低浓度处进行的扩散。
上坡扩散:原子由低浓度处向高浓度处进行的扩散。
(3)根据是否出现新相
原子扩散:扩散过程中不出现新相。 反应扩散:有新相形成的扩散过程。
渗层中碳浓度(C)与渗层深度(x)及时间(t)有什么关系呢?
初始条件:t=0时,x≥0,C= C0 边界条件:t>0时,若x=0,则C= CS, 若x → ∞, 则C=C0 由此可求出第二方程的特解为
上式即为碳钢渗碳方程
若在脱碳气氛中,则脱碳层中距离表面x处的碳浓度
式中 C0 - 钢的原始浓度;
则上式可写为 影响衰减程度的主要因素是枝晶间距l0/2、D、t (减少偏析的措施??课堂讨论)
四、扩散方程的误差函数解
1、半无限长棒中的扩散模型
实际意义?
低碳钢的渗碳处理,材料的原始含碳量为C0,热处理时外界条件保 证其表面的碳含量始终维持在CP(碳势),经过一段时间后,求材料 的表面附近碳含量的情况。
为溶质原子的浓度梯度
D称为扩散系数,单位??
负号表示物质总是从浓度高处向浓度低的方向迁移
适用条件:稳态扩散(C/t=0)
菲克第一定律可直接用于处理稳态扩散问题,此
时浓度分布不随时间变化 (C/t=0) ,确定边界
条件后,按公式很容易求解。
二、菲克第二定律
当物质分布浓度随时间变化时,由于不同时间在不同位置
(4)按原子的扩散方向分:
体扩散:在晶粒内部进行的扩散
短路扩散:表面扩散、晶界扩散、位错扩散等 短路扩散的扩散速度比体扩散要快得多
§1
菲克定律
• 菲克第一定律
• 菲克第二定律
• 扩散方程的应用
• 扩散方程的误差函数解
一、菲克第一定律
菲克(A.Fick)在1855年总结出的,数学表达式为:
J为扩散通量。即:单位时间通过垂直于扩散方向的单位面积的扩 散物质通量,单位是
at t 0 C C1 C C2
for x 0 for x 0
2
x Let t
C dC x dC dC ( ) ( ) t d 2t t d 2t 2t d
3
4
C dC 1 dC 1 x d x t d t C d 1 dC 1 d dC (D ) (D ) (D ) x x d d t d x t d
2、无限长棒中的扩散模型
实际意义?
将溶质含量不同的两种材料焊接在一起,因为浓度不同,在焊接 处扩散进行后,溶质浓度随时间会发生相应的变化。
3、扩散方程的误差函数解
4、半无限长棒扩散方程的误差函数解
解为:
定义函数:
高斯误差函数
误差函数性质 一维半无限长棒中扩 散方程误差函数解:
高斯误差函数
put 4 and 5 in 1
( 5)
dC 1 d dC - (D ) 2t d t dt d
C 1 C dC C dC C d( D ) 1 2 1 d
For points in C-x curve, t = const
1 1 2 t
1 2t
0
b
C外
DdC DH k p内 - p外 b
C内
J DH
C外 -C内 b
单位面积由扩散造成的逸失量(逸失速度)
JA DH Ak
(2) 上式表明
P 外 内 P b
JA与DH 、A、k 成正比 与b成反比 随 P 内 增大
(3)减少逸失措施?? ①形状:A↓。使用球形容器,以使容积 一定条件下,A达最小 ②选材:利用DH、k值小的金属,如Dγ<Dα
34268s = 9.52hr
Concentration Dependence of D —— Matano Method
1、D-C dependence
2、Matano method
C C (D ) t x x
D D(C )
D
1
0 C
Determine D by C-x curve in geometrical method:
(3)提出减少氢扩散逸失的措施
(1) 令容器表面面积为A,壁厚为b,内外压强为P内 ,P外 氢在金属容器中的扩散系数为DH。 氢在金属中溶解度与其压强的平方根成正比,即
。
C内 = k
在稳态下
P 内 P 外
A
b
P外
C外 = k
DH
P内
dC Dx Jdx = -DdC J = -D
Jdx