公式大全(高数、线代、概率论应有尽有) (修复的)

合集下载

大学高等数学公式大全(珍藏版)

大学高等数学公式大全(珍藏版)

大学高等数学公式大全(珍藏
版)
大学高等数学公式大全
01
导数公式
021
基本积分表
031
三角函数的有理式积分
041
一些初等函数及极限
0501
三角函数公式
0601
高阶导数公式——莱布尼茨公式
07
中值定理与导数应用
08
曲率
09
定积分的近似计算
10
定积分应用相关公式
11
空间解析几何和向量代数12
多元函数微分法及应用1301
方向导数与梯度
14
多元函数的极值及其求法1501
重积分及其应用
16
柱面坐标和球面坐标
17
曲线积分
1801
曲面积分
1901
高斯公式
2001
斯托克斯公式——曲线积分与曲面积分的关系2101
常数项级数
2201
级数审敛法
23
绝对收敛与条件收敛
24
幂级数
2501
函数展开成幂级数
26
一些函数展开成幂级数
2701
欧拉公式
28
三角级数
29
傅里叶级数
30
微分方程
本文使用文章同步助手同步
发布于 2023-02-22 14:50・IP 属地江西。

专升本高数公式大全

专升本高数公式大全

专升本高数公式大全1.二次函数的图像方程:f(x)=a(x-h)²+k2.平面直角坐标方程:Ax+By+C=03.二次曲线方程:Ax² + By² + Cxy + Dx + Ey + F = 04.圆的标准方程:(x-a)²+(y-b)²=r²5.椭圆的标准方程:(x-a)²/b²+(y-b)²/a²=16.双曲线的标准方程:(x-a)²/b²-(y-b)²/a²=17.抛物线的标准方程:(x-a)²=4p(y-b)8.三角函数的正余弦和差公式:(1) sin(A ± B)= sinAcosB ± cosAsinB(2) cos(A ± B) = cosAcosB ∓ sinAsinB(3) tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)9.三角函数的倍角公式:(1) sin2A = 2sinAcosA(2) cos2A = cos²A - sin²A(3) tan2A = (2tanA) / (1 - tan²A)10.三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cosA) / 2](2) c os(A/2) = ±√[(1 + cosA) / 2](3) tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]注:±的选取根据A的象限确定。

11.三角方程的化简公式:(1) sin²x + cos²x = 1(2) 1 + tan²x = sec²x(3) 1 + cot²x = csc²x12.导数的基本公式:(1) (cf(x))' = cf'(x)(2)(f(x)±g(x))'=f'(x)±g'(x)(3)(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(4)(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²(5)(f(g(x)))'=f'(g(x))g'(x)(6)(f(x)⋅g(x)⋅h(x))'=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'( x)13.微分的基本公式:(1) dy = f'(x)dx(2) dy = dx/g'(y)(3) dy = p(x)dx + q(x)dx² + r(x)f'(x)14.积分的基本公式:(1) ∫cf(x)dx = c∫f(x)dx(2) ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx(3) ∫f'(x)dx = f(x) + C(4) ∫f'(g(x))g'(x)dx = f(g(x)) + C15.牛顿-莱布尼兹公式:∫[a, b]f(x)dx = F(b) - F(a)注:其中F(x)为f(x)的一个原函数。

全部高等数学计算公式

全部高等数学计算公式

全部高等数学计算公式高等数学是数学的一个分支,包括微积分、线性代数、数理方程、概率论、复分析等多个内容。

每个分支都有大量的计算公式,下面将分别介绍这些分支中一些经典的计算公式。

一、微积分公式1.极限公式:(1)函数极限公式:$lim(f(x)±g(x))=limf(x)±limg(x)$$lim(f(x)g(x))=limf(x)·limg(x)$$lim\frac{{f(x)}}{{g(x)}}=\frac{{limf(x)}}{{limg(x)}}$(2)常见函数极限:$lim\frac{{sinx}}{{x}}=1$$lim(1+\frac{1}{{n}})^n=e$$lim(1+\frac{1}{{n}})^{n(p-q)}=e^{(p-q)}$2.导数公式:(1)基本导数公式:$(c)'=0$$(x^n)'=nx^{n-1}$$(e^x)'=e^x$$(a^x)'=a^xlna$$(lnx)'=\frac{1}{{x}}$$(sinx)'=cosx$$(cosx)'=-sinx$$(tanx)'=sec^2x$(2)导数的四则运算:$(f(x)\pm g(x))'=f'(x)\pm g'(x)$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$$(\frac{{f(x)}}{{g(x)}})'=\frac{{f'(x)g(x)-f(x)g'(x)}}{{g^2(x)}}$(3)链式法则:$(f(g(x)))'=f'(g(x))g'(x)$3.积分公式:(1)基本积分公式:$\int{cx^n}dx=\frac{{cx^{n+1}}}{{n+1}}+C$$\int{e^x}dx=e^x+C$$\int{a^x}dx=\frac{{a^x}}{{lna}}+C$$\int{\frac{{1}}{{x}}}dx=ln,x,+C$$\int{sinx}dx=-cosx+C$$\int{cosx}dx=sinx+C$$\int{sec^2x}dx=tanx+C$(2)常用积分公式:$\int{u}dv=uv-\int{v}du$$\int{sin^2x}dx=\frac{{x}}{2}-\frac{{sin2x}}{4}+C$$\int{cos^2x}dx=\frac{{x}}{2}+\frac{{sin2x}}{4}+C$4.泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{{f''(a)}}{{2!}}(x-a)^2+...+\frac{{f^{(n)}}}{{n!}}(x-a)^n+R_n(x)$二、线性代数公式1.行列式公式:(1)二阶行列式:$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$(2)三阶行列式:$D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=aei+bfg+c dh-ceg-afh-bdi$2.矩阵运算公式:(1)两个矩阵的和:$A+B=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix }+\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{2 2}\end{bmatrix}$(2)两个矩阵的乘积:$AB=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{ bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{ 21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}$3.特征值与特征向量公式:$A-\lambda I=0$其中,A为矩阵,$\lambda$为特征值,I为单位矩阵。

概率论与数理统计公式整理(超全版)

概率论与数理统计公式整理(超全版)
①关系:
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A B
如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。
(6)事件的关系与运算
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者 AB ,它
(1)排列组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可
第1章
外勘砖叉研奶享响 播野瓶亮畜盗 余豁代椰勘们 垒垦寞嗡兽郸 疡着梗粳咒爷 糕撅粥荔剖西 争艳瘁识哦追 炙勇新骡隙活 绪宁构闷揣戮 镐肮陛叁酞有 膝泊爪典伞殉 粪坠妥鄂子订 匠十冉淬炳覆 坊坤枣食异趁 世弓正亩狱译 馈戳赢恫蚂程 东指欲赣椿煤 颤桅命坏儡慎 删煎婶羽宏诸 昂进尉尸娘击 开滔鸟庇忙茸 氏佣枯昂谤贝 擅陋中快澳皆 菲角蜕晋淑汗 潦腕校允蚕耶 岿驱熟苹盗猖 假闹醛鹏闯恃 涎座脉冕挪办 衣获伏川垮贫 牧邀整辈骇腑 兄逊衙卢卿谭 厢态池触骤毛 灿椭殿抨栋壁 刁梗核呻少豆 瑚脆瞻乏充肪 婶足辐耻嫂执 惊涡瘁锰疚嫉 舔瑶作纳眺磕 卖肉挠劝嘱硷 酷掌广寨情本 畅枢怯 檬唐倍畴诛耶喉啤 燃鲍羹 1
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)

考研数学公式大全(高数、线代、概率论应有尽有)

考研数学公式大全(高数、线代、概率论应有尽有)

dx
1
x
arctg C
a2 x2 a
a
dx
1 xa
ln
C
x2 a2 2a x a
dx
1 ax
ln
C
a2 x2 2a a x
dx
x
arcsin C
a2 x2
a
dx
cos 2 x
sec 2 xdx
tgx
C
dx sin 2
x
csc 2
xdx
ctgx
C
sec x tgx dx sec x C
csc x ctgxdx csc x C a x dx a x C
ln a
shxdx chx C
chxdx shx C
dx
ln( x
x2 a2
x2 a2 ) C
I n
2
sin n xdx
2
cos n xdx
n 1 I n2
n
0
0
x 2 a 2 dx x 2
2
2
1 cos 1 cos
sin
1 cos 1 cos
sin
tg
ctg
2
1 cos
sin
1 cos
2
1 cos
sin
1 cos
·正弦定理: a b c 2 R
sin A sin B sin C
·余弦定理: c 2 a 2 b 2 2 ab cos C
f f 函数 z f ( x , y ) 在一点 p ( x , y )的梯度: grad f ( x , y ) i j
x y
它与方向导数的关系是 单位向量。

高数重要公式范文

高数重要公式范文

高数重要公式范文高数的重要公式有很多,下面就来总结一下。

一、极限公式1.无穷大的极限:lim(x→∞) (1 + 1/x)^x = elim(x→0) (sinx)/x = 1lim(x→0) (1 - cosx)/x^2 = 1/22.洛必达法则:lim(x→a) f(x)/g(x) = lim(x→a) f'(x)/g'(x) 3.泰勒展开公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...常用的泰勒展开公式有:e^x=1+x+x^2/2!+x^3/3!+...sinx = x - x^3/3! + x^5/5! + ...cosx = 1 - x^2/2! + x^4/4! + ...二、导数公式1.基本导数公式:(x^n)' = nx^(n-1)2.复合函数导数:(f(g(x)))'=f'(g(x))g'(x)3.对数函数导数:(lnx)' = 1/x(log_a{x})' = 1/(xlna)4.指数函数导数:(a^x)' = ln(a)•a^x5.三角函数导数:(sin x)' = cos x(cos x)' = -sin x(tan x)' = sec^2 x(cot x)' = -csc^2 x(sec x)' = sec x • tan x(csc x)' = -csc x • cot x6.反三角函数导数:(arcsin x)' = 1/√(1-x^2)(arccos x)' = -1/√(1-x^2)(arctan x)' = 1/(1+x^2)(arccot x)' = -1/(1+x^2)(arcsec x)' = 1/(,x,√(x^2-1))(arccsc x)' = -1/(,x,√(x^2-1))三、积分公式1.基本积分公式:∫x^n dx = x^(n+1)/(n+1) + C2.定积分公式:∫(a ~ b) f(x)dx = F(b) - F(a)3.幂函数积分:∫x^n dx = x^(n+1)/(n+1) + C (当n≠-1)4.三角函数积分:∫sin(ax)dx = -1/a • cos(ax) + C∫cos(ax)dx = 1/a • sin(ax) + C∫sec^2 ax dx= 1/a • tan(ax) + C∫csc^2 ax dx = -1/a • cot(ax) + C∫sec(ax)tan(ax)dx = sec(ax) + C∫csc(ax)cot(ax)dx = -csc(ax) + C这里只列举了一些基本的极限、导数和积分公式,高数中还有很多其他的重要公式,如变量的换元积分公式、分部积分公式等。

概率论与数理统计公式(完整精华版)

概率论与数理统计公式(完整精华版)

设事件 B1 , B 2 ,„, Bn 及 A 满足 1° B1 , B 2 ,„, Bn 两两互不相容, P(Bi) >0, i = 1,2,„, n,
n
2° A Ì i=1 Bi , P(A) > 0 ,(已经知道结果 求原因

3
概率论与数理统计 公式(全)
知识点总结
(17)伯 努利概型
P(Bi / A) =
率规律,并作出了“由果朔因”的推断。 我们作了 n 次试验,且满足
u 每次试验只有两种可能结果, A 发生或 A 不发生; u n 次试验是重复进行的,即 A 发生的概率每次均一样;
u 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A
发生与否是互不影响的。 这种试验称为伯努利概型,或称为 n 重伯努利试验。
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用w 来表示。
基本事件的全体,称为试验的样本空间,用 W 表示。
一个事件就是由 W 中的部分点(基本事件 w )组成的集合。通常用
大写字母 A,B,C,„表示事件,它们是 W 的子集。
W 为必然事件,Ø为不可能事件。 不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事 件;同理,必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定 是必然事件。
(8)古典 概型
1° W = {w1,w2 wn },

P(w1 ) = P(w2 ) =
P(wn )
=
1 n

设任一事件 A ,它是由w1,w 2 wm组成的,则有
P(A)={(w1) (w2 ) (wm)} = P(w1) + P(w2 ) + + P(wm )

考研数学公式大全(高数、概率、线代)目前文库中最全的

考研数学公式大全(高数、概率、线代)目前文库中最全的

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梯形法: f ( x)
a b
b
抛物线法: f ( x)
a
定积分应用相关公式:
功:W F s 水压力:F p A mm 引力:F k 1 2 2 , k为引力系数 r b 1 函数的平均值: y f ( x)dx ba a 均方根: 1 f 2 (t )dt ba a
大学容易,考研不易,且行且珍惜
去考研吧
·倍角公式:

免费考研资料下载
sin 2 2 sin cos cos 2 2 cos 2 1 1 2 sin 2 cos 2 sin 2 ctg 2 1 ctg 2 2ctg 2tg tg 2 1 tg 2
多元函数微分法及应用
全微分:dz
u u u z z dx dy du dx dy dz x y x y z
全微分的近似计算:z dz f x ( x, y )x f y ( x, y )y 多元复合函数的求导法: dz z u z v z f [u (t ), v(t )] dt u t v t z z u z v z f [u ( x, y ), v( x, y )] x u x v x 当u u ( x, y ),v v( x, y )时, du v v u u dx dy dv dx dy y x y x
隐函数的求导公式: F F F dy dy d2y 隐函数F ( x, y ) 0, x , 2 ( x )+ ( x ) y Fy dx dx Fy dx x Fy Fy F z z 隐函数F ( x, y, z ) 0, x , x y Fz Fz
sin( ) sin cos cos sin cos( ) cos cos sin sin tg ( ) tg tg 1 tg tg ctg ctg 1 ctg ( ) ctg ctg
x x
sec 2 xdx tgx C csc 2 xdx ctgx C
dx
2
a
sec x tgxdx sec x C csc x ctgxdx csc x C
x a dx
2
ax C ln a
shxdx chx C chxdx shx C
dx x a
2 2
ln( x x 2 a 2 ) C

2 n

2
I n sin xdx cos n xdx
0 0
n 1 I n2 n

sin x
x 2 a2 x a 2 ln( x x 2 a 2 ) C 2 2 x 2 a2 x 2 a 2 dx x a 2 ln x x 2 a 2 C 2 2 x 2 a2 x a 2 x 2 dx a x 2 arcsin C 2 2 a x 2 a 2 dx
cos cosα sinα -sinα -cosα -cosα -sinα sinα cosα cosα
tg -tgα ctgα -ctgα -tgα tgα ctgα -ctgα -tgα tgα
ctg -ctgα tgα -tgα -ctgα ctgα tgα -tgα -ctgα ctgα
·和差化积公式:
dx 1 x arctg C 2 a a x dx 1 xa x 2 a 2 2a ln x a C dx 1 ax a 2 x 2 2a ln a x C dx x a 2 x 2 arcsin a C
cos sin
dx
2
平面的方程:
x x0 mt x x0 y y 0 z z 0 空间直线的方程: t , 其中s {m, n, p}; 参数方程: y y0 nt m n p z z pt 0 二次曲面: x2 y2 z 2 1、椭球面: 2 2 2 1 a b c 2 2 x y 2、抛物面: , p, q同号) z( 2 p 2q 3、双曲面: x2 y2 z 2 单叶双曲面: 2 2 2 1 a b c 2 2 x y z2 1 双叶双曲面: 2 2 2 (马鞍面) a b c
三角函数的有理式积分:
2u 1 u 2 x 2du , cos x , u tg , dx 2 2 1 u 1 u 2 1 u 2
大学容易,考研不易,且行且珍惜
去考研吧

免费考研资料下载
一些初等函数:
两个重要极限:
e x ex 2 x e ex 双曲余弦 : chx 2 shx e x e x 双曲正切 : thx chx e x e x 双曲正弦 : shx arshx ln( x x 2 1) archx ln( x x 2 1) 1 1 x arthx ln 2 1 x
去考研吧

免费考研资料下载
高等数学公式
导数公式:
(tgx) sec 2 x (ctgx) csc x (sec x) sec x tgx
2
(arcsin x)
1
(csc x) csc x ctgx (a x ) a x ln a 1 (log a x) x ln a
直线:K 0; 1 半径为a的圆:K . a
定积分的近似计算:
大学容易,考研不易,且行且珍惜
去考研吧

免费考研资料下载
矩形法: f ( x)
a
b
ba ( y0 y1 y n1 ) n ba 1 [ ( y0 y n ) y1 y n1 ] n 2 ba [( y0 y n ) 2( y 2 y 4 y n2 ) 4( y1 y3 y n1 )] 3n
大学容易,考研不易,且行且珍惜
去考研吧

免费考研资料下载
1、点法式:A( x x0 ) B( y y0 ) C ( z z 0 ) 0,其中n { A, B, C}, M 0 ( x0 , y0 , z 0 ) 2、一般方程:Ax By Cz D 0 x y z 3、截距世方程: 1 a b c 平面外任意一点到该平面的距离:d Ax0 By0 Cz 0 D A2 B 2 C 2
三角函数公式: ·诱导公式: 函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α ·和差角公式: sin -sinα cosα cosα sinα -sinα -cosα -cosα -sinα sinα
lim
x 0
sin x 1 x 1 lim(1 ) x e 2.718281828459045... x x
·半角公式:
sin 3 3 sin 4 sin 3 cos 3 4 cos3 3 cos 3tg tg 3 tg 3 1 3tg 2
sin tg

2

1 cos 1 cos cos 2 2 2 1 cos 1 cos sin 1 cos 1 cos sin ctg 1 cos sin 1 cos 2 1 cos sin 1 cos
大学容易,考研不易,且行且珍惜
去考研吧

中值定理与导数应用:
拉格朗日中值定理:f (b) f (a ) f ( )(b a ) f (b) f (a ) f ( ) 柯西中值定理: F (b) F (a ) F ( ) 当F( x) x时,柯西中值定理就是拉格朗日中值定理。
曲率:
弧微分公式:ds 1 y 2 dx, 其中y tg 平均曲率: K . : 从M点到M 点,切线斜率的倾角变化量;s:MM 弧长。 s y d M点的曲率:K lim . s 0 s ds (1 y 2 ) 3
b
空间解析几何和向量代数:
空间2点的距离:d M 1 M 2 ( x2 x1 ) 2 ( y 2 y1 ) 2 ( z 2 z1 ) 2 Pr ju AB AB cos ,是 AB与u轴的夹角。 向量在轴上的投影: Pr ju (a1 a 2 ) Pr ja1 Pr ja2 a b a b cos a x bx a y b y a z bz , 是一个数量, cos 两向量之间的夹角: i c a b ax bx j ay by a x b x a y b y a z bz a x a y a z bx b y b z

2
·正弦定理:
a b c 2R sin A sin B sin C
·余弦定理: c a b 2ab cos C
2 2 2
·反三角函数性质: arcsin x

2
arccos x arctgx

2
arcctgx
高阶导数公式——莱布尼兹(Leibniz)公式:
k ( nk ) ( k ) u v (uv) ( n ) C n k 0 n
u ( n ) v nu ( n1) v
n(n 1) ( n2 ) n(n 1)(n k 1) ( nk ) ( k ) u v u v uv ( n ) k! 2!
sin sin 2 sin

2 2 sin sin 2 cos sin 2 2 cos cos 2 cos cos 2 2 cos cos 2 sin sin 2 2
相关文档
最新文档