29.最值问题(含答案)-

合集下载

最值问题(4年级培优)教师版

最值问题(4年级培优)教师版

(1)如果两个正整数的和一定,那么这两个正整数的差越小,它们的乘积越大;两个正整数的差越大,它们的乘积越小。

(2)如果两个正整数的乘积一定,那么这两个正整数的差越小,那么它们的和也越小;两个正整数的差越大,那么它们的和也越大。

(3)把一个正整数分拆成若干个正整数之和,如果要使这若干个正整数的乘积最大,这些正整数应该都是2或3,且2最多不要超过两个。

(4)遇到一些其他类似的问题,求最大或最小还要根据实际的条件解决问题。

a 、b 是1,2,3,…,99,100中两个不同的数,求)-()(b a b a ÷+的最大值。

(四年级培优底稿) 分析:要使ba b a -+的值最大,必须让分母最小,分子最大。

可以判断出b a -的最小值应是1,即a 、b 是两个连续自然数;b a +的最大值是199,即100=a ,99=b 。

解:当100=a ,99=b 时,b a b a -+有最大值1999910099100=-+。

(题中a 、b 是两个变量,通过对它们的控制,使得分数的分子最大,分母最小,从而确保分数的值最大。

考察了极端情形的方法)难度系数:Aa 、b 是5,7,9,…,195,197,199中两个不同的数,求(b a +)-(b a -)的最大值。

(底稿) 分析:要使(b a +)-(b a -)的值最大,必须让被减数最大,减数最小。

可以知道b a +的最大值是197+199=396,b a -的最小值是2。

即199=a ,197=b 。

解:当199=a ,197=b 时,(b a +)-(b a -)有最大值 ()()394197199197199=--+ 难度系数:A“12345678910111213……484950”是一个位数很多的多位数,从中划去80个数字,使剩下的数字(先后顺序不变)组成一个多位数,问这个多位数最大是多少?(三年级竞赛底稿)解析:首先注意观察这个多位数,它是由1至50的连续自然数排列而成的,共有数字1×9+2×41=91(个),划去80个数字,剩下的将是一个11位数。

【经典压轴题】三角形面积最值问题30题含详细答案

【经典压轴题】三角形面积最值问题30题含详细答案

试卷第1页,总14页………外…………○…………订…………○……学:___________考号:___________………内…………○…………订…………○……三角形面积最值问题30题含详细答案1.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.2.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C . (1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB ∆面积最大时,求点P 的坐标,并求PAB ∆面积的最大值.3.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+.试卷第2页,总14页……订…………○……※※内※※答※※题※※……订…………○……①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值. ③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.4.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.试卷第3页,总14页…○…………外………………订…………………线…………○……___________考号:______…○…………内………………订…………………线…………○……5.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.6.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点. (1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标: (3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.7.如图,抛物线y =ax 2+bx+c 经过A (0,3)、B (﹣1,0)、D (2,3),抛物线与x试卷第4页,总14页装…………○……………○…………线※要※※在※※装※※订※答※※题※※装…………○……………○…………线轴的另一交点为E ,点P 为直线AE 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的表达式;(2)当t 为何值时,△PAE 的面积最大?并求出最大面积;(3)是否存在点P 使△PAE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.8.如图,四边形ABCD 是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D 重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB 、BA (或它们的延长线)于点E 、F ,∠EDF=60°,当CE=AF 时,如图1小芳同学得出的结论是DE=DF .(1)继续旋转三角形纸片,当CE≠AF 时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E 、F 分别在CB 、BA 的延长线上时,如图3请直接写出DE 与DF 的数量关系;(3)连EF ,若△DEF 的面积为y ,CE=x ,求y 与x 的关系式,并指出当x 为何值时,y 有最小值,最小值是多少?9.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)试卷第5页,总14页…………○………………○………………○…………………○……学校:____:___________班级:____:___________…………○………………○………………○…………………○……(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.试卷第6页,总14页…○…………外………订…………○………………○……※内※※答※※题※※…○…………内………订…………○………………○……10.如图,在平面直角坐标系xOy 中,反比例函数(0)m y x x =>的图像经过点34,2A ⎛⎫⎪⎝⎭,点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点.(1)m =________,点C 的坐标为________;(2)若点D 为线段AB 上的一个动点,过点D 作//DE y 轴,交反比例函数图像于点E ,求ODE 面积的最大值.11.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C . (1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?12.(问题提出)试卷第7页,总14页……○…………外装…………○……姓名:___________班级:____……○…………内装…………○……(1)如图①,在等腰Rt ABC 中,斜边4AC =,点D 为AC 上一点,连接BD ,则BD 的最小值为 .(问题探究)(2)如图2,在ABC 中,5AB AC ==,6BC =,点M 是BC 上一点,且4BM =,点P 是边AB 上一动点,连接PM ,将BPM △沿PM 翻折得到DPM △,点D 与点B 对应,连接AD ,求AD 的最小值.(问题解决)(3)如图③,四边形ABCD 是规划中的休闲广场示意图,其中135BAD ADC ∠=∠=︒,30DCB ∠=︒,AD =,3AB km =,点M 是BC 上一点,4MC km =.现计划在四边形ABCD 内选取一点P ,把DCP 建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP 、MP ,从实用和美观的角度,要求满足PMB ABP ∠=∠,且景观绿化区面积足够大,即DCP 区域面积尽可能小.则在四边形ABCD 内是否存在这样的点P ?若存在,请求出DCP 面积的最小值;若不存在,请说明理由.13.在平面直角坐标系中,点O 是原点,四边形AOBC 是矩形,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O B C ,,的对应点分别为D E F ,,.(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .求点H 的坐标; (3)记K 为矩形AOBC 对角线的交点,S 为KDE 的面积,求S 的取值范围(直接写出结果即可).试卷第8页,总14页……外…………○……………订…………○…※※请※※线※※内※※答※※题※※……内…………○……………订…………○…14.(1)如图1,四边形ABCD 中,//AD BC ,点E 为DC 边的中点,连接AE 并延长交BC 的延长线于点F ,求证:ABF ABCD S S ∆=四边形.(S 表示面积)(2)如图2,在ABC ∆中,过AC 边的中点P 任意作直线EF ,交BC 边于点F ,交BA 的延长线于点E ,试比较EBF ∆与ABC ∆的面积,并说明理由.(3)如图3,在平面直角坐标系中,已知一次函数y kx b =+的图像过点()2,4P 且分别于x 轴正半轴,y 轴正半轴交于点A 、B ,请问AOB ∆的面积是否存在最小值?若存在,求出此时一次函数关系式;若不存在,请说明理由.15.△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点. (1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将△AEF 绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论; (3)连接BN .在△AEF 绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出△ADN 的面积.16.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.试卷第9页,总14页…外…………○………………○…………订………○……学校:_____名:___________班级:___________考号…内…………○………………○…………订………○……(1)求x 的取值范围; (2)求ABC 面积的最大值.17.在平面直角坐标系中,抛物线265y x mx =-+与y 轴的交点为A ,与x 轴的正半轴分别交于点B (b ,0),C (c ,0).(1)当b =1时,求抛物线相应的函数表达式;(2)当b =1时,如图,E (t ,0)是线段BC 上的一动点,过点E 作平行于y 轴的直线l 与抛物线的交点为P .求△APC 面积的最大值;(3)当c =b + n .时,且n 为正整数.线段BC (包括端点)上有且只有五个点的横坐标是整数,求b 的值.18.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式; (2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P试卷第10页,总14页…外…………○…※…内…………○…的坐标;若不存在,请说明理由. 19.综合与实践问题情境:在综合与实践课上,老师让同学们以“两个大小不等的等腰直角三角板的直角顶点重合,并让一个三角板固定,另一个绕直角顶点旋转”为主题开展数学活动,如图1,三角板ABC 和三角板CDE 都是等腰直角三角形,90C ∠=︒,点D ,E 分别在边BC ,AC 上,连接AD ,点M ,P ,N 分别为DE ,AD ,AB 的中点.试判断线段PM 与PN 的数量关系和位置关系.探究展示:勤奋小组发现,PM PN =,PM PN ⊥.并展示了如下的证明方法:∵点P ,N 分别是AD ,AB 的中点,∴PNBD ,12PN BD =. ∵点P ,M 分别是AD ,DE 的中点,∴PM AE ∥,12PM AE =.(依据1)∵CA CB =,CD CE =,∴BD AE =,∴PM PN =. ∵PNBD ,∴DPN ADC ∠=∠.∵PM AE ∥,∴DPM DAC ∠=∠.∵90BCA ∠=︒,∴90ADC CAD ∠+∠=︒.(依据2)∴90MPN DPM DPN CAD ADC ∠=∠+∠=∠+∠=︒.∴PM PN ⊥. 反思交流:(1)①上述证明过程中的“依据1”,“依据2”分别是指什么? ②试判断图1中,MN 与AB 的位置关系,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,把CDE △绕点C 逆时针方向旋转到如图2的位置,发现PMN 是等腰直角三角形,请你给出证明;(3)缜密小组的同学继续探究,把CDE △绕点C 在平面内自由旋转,当4CD =,10CB =时,求PMN 面积的最大值.20.如图,在平面直角坐标系中,四边形 OABC 为菱形,点 C 的坐标为(4,0),∠AOC = 60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 l 与 菱形 OABC 的两边分别交与点 M 、N (点 M 在点 N 的上方).○…………外…………订………………○……级:___________考号:__○…………内…………订………………○……(1)求 A 、B 两点的坐标;(2)设 OMN 的面积为 S ,直线 l 运动时间为 t 秒(0 ≤t ≤6 ),试求 S 与 t 的函数表达 式;(3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少.21.如图,抛物线y=ax 2+bx+c 经过点A (﹣1,0),C (0,3),抛物线的顶点在直线1x =上.(1)求抛物线的解析式;(2)若点P 为第一象限内抛物线上的一点,设△PBC 的面积为S ,求S 的最大值并求出此时点P 的坐标; 22.综合与探究如图,已知抛物线()20y ax bx c a =++≠与x 轴交于A 、()20B ,两点,与y 轴交于点C ,顶点坐标为点1924D ⎛⎫⎪⎝⎭,. (1)求此抛物线的解析式;(2)点P 为抛物线对称轴上一点,当PA PC +最小时,求点P 坐标;(3)在第一象限的抛物线上有一点M ,当BCM ∆面积最大时,求点M 坐标; (4)在x 轴下方抛物线上有一点H ,ABH ∆面积为6,请直接写出点H 的坐标.○…………装………○…………线…………※※请※※不※※要※※在※※○…………装………○…………线…………23.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.二、填空题24.如图,直线AB 交坐标轴于A(-2,0),B(0,-4),点P 在抛物线1(2)(4)2y x x =--上,则△ABP 面积的最小值为__________.25.如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.………○…………装………………订……………线…………○……学校:___________姓名:_级:___________考号:………○…………装………………订……………线…………○……26.如图,30AOB ∠=,C 是BO 上的一点,4CO =,点P 为AO 上的一动点,点D 为CO 上的一动点,则PC PD +的最小值为 ________,当PC PD +的值取最小值时,则OPC ∆的面积为________.27.如图,已知直线433y x =-与x 轴、y 轴分别交于A ,B 两点,P 是以(0,1)C 为圆心,1为半径的圆上一动点,连接PA ,PB ,当PAB ∆的面积最大时,点P 的坐标为__________.28.如图,在Rt ABC ∆中,90ACB ∠=︒,4AB =,点D ,E 分别在边AB ,AC 上,且2DB AD =,3AE EC =连接BE ,CD ,相交于点O ,则ABO ∆面积最大值为__________.…………装…………○…订…………○……线…………○……※请※※不※※要※※在※※装※※订内※※答※※题※※…………装…………○…订…………○……线…………○……29.如图,在△ABC 中,∠ACB =120°,AC =BC =2,D 是AB 边上的动点,连接CD ,将△BCD 绕点C 沿顺时针旋转至△ACE ,连接DE ,则△ADE 面积的最大值=_____.30.如图,∠AOB=45°,点M 、N 分别在射线OA 、OB 上,MN=7,△OMN 的面积为14,P 是直线MN 上的动点,点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,当点P 在直线NM 上运动时,△OP 1P 2的面积最小值为_____参考答案1.(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛-+- ⎝⎭或⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解; (2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解. 【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =, 故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+, ()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =AC = 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =,∴CH 则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:x =故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛-+- ⎝⎭或13,22⎛-+ ⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.2.(1)抛物线的解析式为223y x x =--,直线AB 的解析式为3y x =-,(2)(2,1)-或33(22+-+.(3)当32m =时,PAB∆面积的最大值是278,此时P 点坐标为33(,)22-. 【解析】 【分析】(1)将(0,3)A -、(3,0)B 两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则2CE =,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,可分别得到方程求出点M 的坐标;(3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -,可由12PAB S PG OB ∆=,得到m 的表达式,利用二次函数求最值问题配方即可. 【详解】解:(1)∵抛物线22y ax x c =-+经过(0,3)A -、(3,0)B 两点,∴9603a c c -+=⎧⎨=-⎩,∴13a c =⎧⎨=-⎩,∴抛物线的解析式为223y x x =--, ∵直线y kx b =+经过(0,3)A -、(3,0)B 两点,∴303k b b +=⎧⎨=-⎩,解得:k 1b 3=⎧⎨=-⎩,∴直线AB 的解析式为3y x =-,(2)∵2223(1)4y x x x =--=--,∴抛物线的顶点C 的坐标为(1,4)-, ∵//CE y 轴, ∴(1,2)E -, ∴2CE =,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =, 设(,3)M a a -,则2(,23)N a a a --,∴223(23)3MN a a a a a =----=-+, ∴232a a -+=,解得:2a =,1a =(舍去), ∴(2,1)M -,②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,∴2223(3)3MN a a a a a =----=-, ∴232a a -=,解得:a =,a =(舍去),∴M ,综合可得M 点的坐标为(2,1)-或33(22+-+. (3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -, ∴223(23)3PG m m m m m =----=-+, ∴22211393327(3)3()2222228PAB PGA PGB S S S PG OB m m m m m ∆∆∆=+==⨯-+⨯=-+=--+, ∴当32m =时,PAB ∆面积的最大值是278,此时P 点坐标为33(,)22-.【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.3.①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为;③点N 的横坐标为:4或52+或52.【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-; ②先求出点P 到BC 的高h为sin 45)BP t ︒=-,于是211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC的距离d =N 作x轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN为等腰直角三角形,即NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得152m +=,252m =(舍去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得152m =(舍去),252m =.【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B(﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-;②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=,∴点P 到BC 的高h 为sin 45)2BP t ︒=-,∴211(4)2(2)2222PBE S BE h t t t ∆=⋅=⨯-⨯=-+当2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,∴点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即NQ PQ ==∴4PN =,Ⅰ.4NH HP +=,∴265(5)4m m m -+---=解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,∴4m =;Ⅱ.4NH HP +=,∴()25654m m m ---+-=解得152m =,252m =, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴m =,Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=,解得1m =,2m = ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴52m =,综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或52或52-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.4.(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫ ⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭. 【解析】【分析】(1)将点A (-1,0),B (3,0)代入y=ax 2+bx+2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD=BD ,即可求y 的值; (3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE 是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,-103)或M (-2,-103); 【详解】 解:(1)将点()()1,0,3,0A B -代入22y ax bx =++, 可得24,33a b =-=, 224233y x x ∴=-++; ∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+,∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠CD BD ∴=,22CD BD ∴=()22214y y ∴-+=+14y ∴=, 11,4D ⎛⎫∴ ⎪⎝⎭;(3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=,∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--矩形,()()(),,0,2,1,1E x y C F ,111•222CEF SEQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅- ()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯--- 224233y x x =-++, 21736CEF S x x ∆∴=-+ ∴当74x =时,面积有最大值是4948, 此时755,424E ⎛⎫ ⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x += 2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭ ②四边形CNBM 时平行四边形时,3122x += 2x ∴=,()2,2M ∴;③四边形CNNB 时平行四边形时,1322x +=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭; 综上所述:()2,2M 或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.5.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴==最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大.方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.6.(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DF DO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得; (3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG•MN 列出关于k 的等式求解可得.【详解】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2;(2)由(1)知点D 坐标为(1,0),设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0),则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°,∵∠BDC =90°,∴∠BDO+∠CDF =90°,∴∠BDO =∠DCF ,∴△BDO ∽△DCF , ∴BO DF DO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1,∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N ,由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0.∴x 1+x 2=2+k ,x 1•x 2=k .∴MN =|x 1﹣x 2|=|2﹣k|.则过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,1),所以DG=1,∴S△PDQ=12DG•MN=12×1×|x1﹣x2|=12|2﹣k|,∴当k=0时,S△PDQ取得最小值1.【点睛】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.7.(1)y=﹣x2+2x+3;(2)t=32时,△PAE的面积最大,最大值是278;(3)t的值为1.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线的对称性可求得E点坐标,从而可求得直线EA的解析式,作PM∥y轴,交直线AE于点M,则可用t表示出PM的长,从而可表示出△PAE的面积,再利用二次函数的性质可求得其最大值即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.【详解】解:(1)由题意得:0 4233a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴抛物线对称轴为x=1,∴E(3,0),设直线AE的解析式为y=kx+3,∴3k+3=0,解得,k=﹣1,∴直线AE的解析式为y=﹣x+3,如图1,作PM∥y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),∴PM=﹣t2+2t+3+t﹣3=﹣t2+3t,∴12PAE PMA PMES S S PM OE=+=⋅=()21332t t⨯⨯-+=23327228t⎛⎫--+⎪⎝⎭,∴t=32时,△PAE的面积最大,最大值是278.(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t =﹣t 2+2t+3﹣3,即﹣t 2+t =0,解得t =1或t =0(舍去), ②当∠APE =90°时,如图3,作PK ⊥x 轴,AQ ⊥PK ,则PK =﹣t 2+2t+3,AQ =t ,KE =3﹣t ,PQ =﹣t 2+2t+3﹣3=﹣t 2+2t , ∵∠APQ+∠KPE =∠APQ+∠PAQ =90°, ∴∠PAQ =∠KPE ,且∠PKE =∠PQA , ∴△PKE ∽△AQP , ∴PK KEAQ PQ=, ∴222332t t t t t t-++-=-+,即t 2﹣t ﹣1=0,解得:t 或t 0(舍去),综上可知存在满足条件的点P ,t 的值为1或12+. 【点睛】本题考查了待定系数法求二次函数解析式、二次函数与几何面积最值问题以及二次函数与特殊三角形的问题,解题的关键是灵活运用二次函数的性质及几何知识.8.(1)成立,证明见解析;(2)DF=DE .(3)当x=0时,y 最小值 【分析】(1)如图1,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE (ASA ),得DF=DE ;(2)如图2,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE(ASA ),得DF=DE ;(3)根据(2)中的△ADF ≌△BDE 得到:S △ADF =S △BDE ,AF=BE .所以△DEF 的面积转化为:y=S △BEF +S △ABD .据此列出y 关于x 的二次函数,通过求二次函数的最值来求y 的最小值. 【详解】(1)DF=DE .理由如下: 如图1,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(2)DF=DE .理由如下: 如图2,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(3)由(2)知,△ADF ≌△BDE .则S △ADF =S △BDE ,AF=BE=x . 依题意得:y=S △BEF +S △ABD =12(2+x )xsin60°+12×2×2sin60°x+1)2.即x+1)20, ∴该抛物线的开口方向向上, ∴当x=0即点E 、B 重合时,y 最小值=29.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【分析】(1)由DE ∥BC ,得到DB ECAB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可. 【详解】[初步感知](1)∵DE ∥BC , ∴DB ECAB AC=, ∵AB=AC , ∴DB=EC , 故答案为:=, (2)成立.理由:由旋转性质可知∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形, ∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ,∠ABD=∠ACE , ∵∠BOD=∠AOC , ∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形, ∴∠AED=45°, ∴∠AEC=135°, 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴∠ADB=∠AEC=135°,BD=CE , ∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高, ∴AM=EM=MD , ∴AM+BD=CM ;故答案为:90°,AM+BD=CM ; 【拓展提升】 (5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变, △ADE 与△ADC 面积的和达到最大, ∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变, ∴要△ADC 面积最大, ∴点D 到AC 的距离最大, ∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7. 【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.10.(1)m=6,()2,0;(2)当a=1时,ODE 面积的最大值为278【分析】(1)将点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数解析式求出m ,根据坐标中点公式求出点C 的横坐标即可;(2)由AC 两点坐标求出直线AB 的解析式为3342y x =-,设D 坐标为33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭,则6,E a a ⎛⎫⎪⎝⎭,进而得到2327(1)88ODESa =--+,即可解答【详解】解:(1)把点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数(0)m y x x=>,得:324m =,解得:m=6,∵A 点横坐标为:4,B 点横坐标为0,故C 点横坐标为:4022+=, 故答案为:6,(2,0);(2)设直线AB 对应的函数表达式为y kx b =+.将34,2A ⎛⎫ ⎪⎝⎭,(2,0)C 代入得34220k b k b ⎧+=⎪⎨⎪+=⎩,解得3432k b ⎧=⎪⎪⎨⎪=-⎪⎩. 所以直线AB 对应的函数表达式为3342y x =-. 因为点D 在线段AB 上,可设33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭, 因为//DE y 轴,交反比例函数图像于点E .所以6,E a a ⎛⎫ ⎪⎝⎭. 所以221633333273(1)2428488ODESa a a a a a ⎛⎫=⋅⋅-+=-++=--+ ⎪⎝⎭. 所以当a =1时,ODE 面积的最大值为278. 【点睛】本题考查了函数与几何综合,涉及了待定系数法求函数解析式、三角形面积、坐标中点求法、二次函数的应用等知识点,解题关键是用函数解析式表示三角形面积.11.(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m --,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M在整个运动过程中用时最少是3秒. 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;。

2023年中考高频数学专题突破--二次函数的最值问题(含解析)

2023年中考高频数学专题突破--二次函数的最值问题(含解析)

2023年中考高频数学专题突破--二次函数的最值问题1.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?2.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?.3.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?4.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现:每月的销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数y=-10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元/件)之间的函数表达式,并确定自变量x的取值范围;(2)当销售单价定为多少元/件时,每月可获得最大利润?每月的最大利润是多少?5.自2020年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线()2=-+表示.y a x30100(1)a=;(2)求图1表示的售价P与时间x的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?6.2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示,设每月获得的利润为W(元).(1)求出每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)这种文化衫销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?(3)为了扩大冬奥会的影响,物价部门规定这种文化衫的销售单价不高于60元,该商店销售这种文化衫每月要获得最大利润,销售单价应定为多少元?每月的最大利润为多少元?7.我市绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外贸商李经理按市场价格10元/千克在我市收购了2000千克香菇存放入冷库中.请根据李经理提供的预测信息(如下图)帮李经理解决以下问题:(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额.....为y 元,试写出y与x之间的函数表达式;(销售总金额=销售单价×销售量)(2)将这批香菇仔放多少天后出售可获得最大利润..?最大利润是多少?8.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元已知拔标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同。

双曲线函数的最值问题举例(附练习、答案)

双曲线函数的最值问题举例(附练习、答案)

双曲线函数的最值问题举例(附练习、答案)双曲线函数是数学中常见的一类函数,对于这类函数的最值问题,我们可以通过一些实际例子来加深理解。

下面提供了一些练题和相应的答案,帮助读者更好地掌握双曲线函数的最值问题。

练题1. 设函数 $f(x) = e^x - e^{-x}$,求函数 $f(x)$ 在定义域内的最小值和最大值。

2. 函数 $g(x) = \sinh(x)$ 在 $[-1, 1]$ 区间上是增函数还是减函数?并求其最小值和最大值。

3. 对于任意正实数 $a$,函数 $h(x) = \cosh(ax)$ 在定义域内的最大值是否存在?如果存在,是多少?答案1. 解答:首先求函数的一阶导数:$$f'(x) = e^x + e^{-x}$$然后求导数为零的点,即:$$e^x + e^{-x} = 0$$由于 $e^x$ 恒大于零,所以 $e^x + e^{-x}$ 恒大于零,即不存在导数为零的点。

因此函数 $f(x)$ 在定义域内没有极值点,也就是没有最小值和最大值。

2. 解答:首先求函数的一阶导数:$$g'(x) = \cosh(x)$$函数 $g(x)$ 的一阶导数为 $\cosh(x)$,根据双曲函数的性质可知 $\cosh(x) > 0$,即在定义域内函数 $g(x)$ 是增函数。

当 $x = 0$ 时,$\sinh(0) = 0$,所以函数 $g(x)$ 在 $[-1, 1]$ 区间上最小值为 0。

当 $x = 1$ 时,$\sinh(1) \approx 1.1752$,所以函数 $g(x)$ 在$[-1, 1]$ 区间上最大值为约 1.1752。

3. 解答:函数 $h(x) = \cosh(ax)$ 为双曲余弦函数,其定义域为实数集。

双曲余弦函数的最大值为 $\cosh(0) = 1$,当且仅当 $ax = 0$ 时取到最大值。

因此,函数 $h(x)$ 在定义域内的最大值为 1。

初中数学二次函数的最值问题--练习题+答案

初中数学二次函数的最值问题--练习题+答案

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a-,无最小值. 【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =.【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值.解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:【例3】当0x ≥时,求函数(2)y x x =--的取值范围.解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.可以看出:当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.【例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数21522y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 1511322y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1) 由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.2 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤(2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下 ∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.练习A 组1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ .3.求下列二次函数的最值:(1) 2245y x x =-+; (2) (1)(2)y x x =-+.4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.6.求函数3y =7.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?B 组1.已知关于x 的函数222y x ax =++在55x -≤≤上.(1) 当1a =-时,求函数的最大值和最小值;(2) 当a 为实数时,求函数的最大值.2.函数223y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围.3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b 的值.4.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.5.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).答案解析A 组1.4 14或2,322.2216l m 3.(1) 有最小值3,无最大值;(2) 有最大值94,无最小值. 4.当34x =时,min 318y =;当2x =-时,max 19y =.5.5y ≥- 6.当56x =时,min 36y =-23x =或1时,max 3y =. 7.当54t =-时,min 0y =. B 组1.(1) 当1x =时,min 1y =;当5x =-时,max 37y =.(2) 当0a ≥时,max 2710y a =+;当0a <时,max 2710y a =-.2.21m -≤≤-. 3.2,2a b ==-.4.14a=-或1a=-.5.当0t≤时,max22y t=-,此时1x=;当0t>时,max 22y t=+,此时1x=-.。

2022年 浙教版九年级数学中考复习 最值问题—阿氏圆 专题突破训练

2022年 浙教版九年级数学中考复习 最值问题—阿氏圆 专题突破训练

2022年春浙教版九年级数学中考复习《最值问题—阿氏圆》专题突破训练(附答案)1.如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则P A+PB的最小值为.2.如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接P A,PB,则3P A+PB的最小值为.3.如图,在△ABC中,BC=6,∠BAC=60°,则2AB+AC的最大值为.4.【新知探究】新定义:平面内两定点A,B,所有满足=k(k为定值)的P点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC中,CB=4,AB=2AC,则△ABC面积的最大值为.5.如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC =2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为.6.如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD﹣PC的最大值为.7.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P 是⊙B上一动点,连接PD、PC,则PD+PC的最小值为.8.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是上一动点,则PC+PD的最小值为.9.如图所示的平面直角坐标系中,A(0,4),B(4,0),P是第一象限内一动点,OP=2,连接AP、BP,则BP+的最小值是.10.如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P为圆O上一动点,过点P 作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+2PN的取值范围为.11.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则P A+PB的最小值为.12.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.13.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则AD+BD的最小值是.14.如图,在Rt△ABC中,∠ABC=90°,BC=4,AB=6,在线段AB上有一点M,且BM =2,在线段AC上有一动点N,连接MN,BN,将△BMN沿BN翻折得到△BM′N,连接AM′,CM′,则2CM′+AM′的最小值为.15.已知:等腰Rt△ABC中,∠ACB=90°,AC=BC=8,O是AB上一点,以O为圆心的半圆与AC、BC均相切,P为半圆上一动点,连PC、PB,如图,则PC+PB的最小值是.16.如图,等边△ABC的边长为6,内切圆记为圆O,P是圆O上一动点,则PB+2PC的最小值为.17.如图,在平面直角坐标系中,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是△AOB 外部的第一象限内一动点,且∠BP A=135°,则2PD+PC的最小值是.18.如图,在平面直角坐标系xOy中,A(6,﹣1),M(4,4),以M为圆心,2为半径画圆,O为原点,P是⊙M上一动点,则PO+2P A的最小值为.19.如图,在△ABC与△DEF中,∠ACB=∠EDF=90°,BC=AC,ED=FD,点D在AB上.(1)如图1,若点F在AC的延长线上,连接AE,探究线段AF、AE、AD之间的数量关系,并证明你的结论;(2)如图2,若点D与点A重合,且AC=3,DE=4,将△DEF绕点D旋转,连接BF,点G为BF的中点,连接CG,在旋转的过程中,求CG+BG的最小值;(3)如图3,若点D为AB的中点,连接BF、CE交于点M,CE交AB于点N,且BC:DE:ME=7:9:10,请直接写出的值.20.在△ABC中,∠CAB=90°,AC=AB.若点D为AC上一点,连接BD,将BD绕点B 顺时针旋转90°得到BE,连接CE,交AB于点F.(1)如图1,若∠ABE=75°,BD=4,求AC的长;(2)如图2,点G为BC的中点,连接FG交BD于点H.若∠ABD=30°,猜想线段DC与线段HG的数量关系,并写出证明过程;(3)如图3,若AB=4,D为AC的中点,将△ABD绕点B旋转得△A′BD′,连接A′C、A′D,当A′D+A′C最小时,求S△A′BC.21.已知,AB是⊙O的直径,AB=,AC=BC.(1)求弦BC的长;(2)若点D是AB下方⊙O上的动点(不与点A,B重合),以CD为边,作正方形CDEF,如图1所示,若M是DF的中点,N是BC的中点,求证:线段MN的长为定值;(3)如图2,点P是动点,且AP=2,连接CP,PB,一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,到达点B后停止运动,求点Q的运动时间t的最小值.22.如图1,在四边形ABCD中,AC交BD于点E,△ADE为等边三角形.(1)若点E为BD的中点,AD=4,CD=5,求△BCE的面积;(2)如图2,若BC=CD,点F为CD的中点,求证:AB=2AF;(3)如图3,若AB∥CD,∠BAD=90°,点P为四边形ABCD内一点,且∠APD=90°,连接BP,取BP的中点Q,连接CQ.当AB=6,AD=4,tan∠ABC=2时,求CQ+BQ的最小值.23.阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.24.如图,在每个小正方形的边长为1的网格中,△OAB的顶点O,A,B均在格点上,点E在OA上,且点E也在格点上.(I)的值为;(Ⅱ)是以点O为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°)连接E'A,E'B,当E'A+E'B 的值最小时,请用无刻度的直尺画出点E′,并简要说明点E'的位置是如何找到的(不要求证明).25.如图,等边△ABC的边长为6,内切圆记为⊙O,P是圆上动点,求2PB+PC的最小值.26.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP.求①AP+BP;②2AP+BP;③AP+BP;④AP+3BP的最小值.27.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.28.【问题探究】(1)如图1,点A是⊙O外一点,点B在⊙O上运动,OA=4,OB=2,则AB的最小值是.(2)如图2,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,求PD+PC的最小值;【问题解决】(3)如图3,四边形ABCD是某湿地公园的鸟瞰图,其中∠DCB=∠D=90°,AD=千米,CD=3千米,BC=4千米,公园内有一个形状是扇形的天然湖泊BMN,扇形BMN以BM长为半径,BM=BC,为湖岸,其余部分为滩地.为了便于游客观赏,公园管理方现计划在景区中确定两点P、Q,建玻璃栈道PQ和观赏小路CQ,根据规划,点P在AC右侧且满足∠APC=120°,点Q在上,已知建玻璃栈道PQ每千米的造价是2万元,建观赏小路CQ每千米的造价是1万元,求建玻璃栈道PQ和观赏小路CQ至少需多少费用?(玻璃栈道以及观赏小路的宽度忽略不计)29.问题提出:(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:问题探究:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,P A=3,求PC+PD的最小值;问题解决:(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD最小时,画出点M的位置,并求出MC+MD的最小值.30.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连接AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2P A+PB的最小值,画出示意图并写出求解过程.31.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE',旋转角为α(0°<α<90°),连接E'A、E'B,求E'A+E'B的最小值.32.如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B,且OA=OB,在x轴上有一动点D(m,0)(0<m<4),过点D作x轴的垂线交直线AB于点C,交抛物线于点E,(1)求抛物线的函数表达式.(2)当点C是DE的中点时,求出m的值.(3)在(2)的条件下,将线段OD绕点O逆时针旋转得到OD′,旋转角为α(0°<α<90°),连接D′A、D′B,直接写出D′A+D′B的最小值.33.如图1,在平面直角坐标系xOy中,半⊙O交x轴与点A、B(2,0)两点,AD、BC 均为半⊙O的切线,AD=2,BC=7.(1)求OD的长;(2)如图2,若点P是半⊙O上的动点,Q为OD的中点.连接PO、PQ.①求证:△OPQ∽△ODP;②是否存在点P,使PD+PC有最小值,若存在,试求出点P的坐标.34.问题提出(1)如图①,线段在OA=4,OB=2,将OB绕点O在平面内旋转360°,AB的最大值是,最小值是;问题探究(2)如图②,已知在△BPC中,BP=2,BC=4,在BC上取一点D,当BD的长为多少时,PD=PC,说明理由.问题解决(3)在一次“激流勇进,冲关我最棒”活动中,最后一关示意图如图③,活动区域为菱形ABCD和⊙B的部分.已知菱形的边长为4m,∠ABC=60°,⊙B的半径为2m,点P 为转动的圆盘B上的一个动点(P为⊙B上一点),D为冲关起点,参赛者沿上坡路线DP冲到圆盘边上一动点P,再沿下坡路线PC快速下滑到点C.其中,DP,PC的长度随点P的位置伸缩,若上坡的平均速度为v,下坡的平均速度为2v,求冲关者冲关的最短时间(用含v的式子表示).参考答案1.解:在AC上截取CQ=1,连接CP,PQ,BQ,∵AC=9,CP=3,∴=,∵CP=3,CQ=1,∴=,∴△ACP∽△PCQ,∴PQ=AP,∴P A+PB=PQ+PB≥BQ,∴当B、Q、P三点共线时,P A+PB的值最小,在Rt△BCQ中,BC=4,CQ=1,∴QB=,∴P A+PB的最小值,故答案为:.2.解:如图,在y轴上取点H(0,9),连接BH,∵点A(0,1),点B(2,0),点H(0,9),∴AO=1,OB=2,OH=9,∵,∠AOP=∠POH,∴△AOP∽△POH,∴,∴HP=3AP,∴3P A+PB=PH+PB,∴当点P在BH上时,3P A+PB有最小值为HB的长,∴BH===,故答案为:.3.解:∵2AB+AC=2(AB+),∴求2AB+AC的最大值就是求2(AB+)的最大值,过C作CE⊥AB于E,延长EA到P,使得AP=AE,∵∠BAC=60°,∴EA=,∴AB+=AB+AP,∵EC=,PE=2AE,由勾股定理得:PC=,∴sin P=,∴∠P为定值,∵BC=6是定值,∴点P在△CBP的外接圆上,∵AB+AP=BP,∴当BP为直径时,AB+AP最大,即BP',∴sin P'=sin P=,解得BP'=2,∴AB+AP=2,∴2AB+AC=2(AB+AP)=4,故答案为:4.4.解:以A为顶点,AC为边,在△ABC外部作∠CAP=∠ABC,AP与BC的延长线交于点P,∵∠CAP=∠ABC,∠BP A=∠APC,AB=2AC,∴△APC∽△BP A,,∴BP=2AP,CP=AP,∵BP﹣CP=BC=4,∴2AP﹣AP=4,解得:AP=,∴BP=,CP=,即点P为定点,∴点A的轨迹为以点P为圆心,为半径的圆上,如图,过点P作BC的垂线,交圆P 与点A1,此时点A1到BC的距离最大,即△ABC的面积最大,S△ABC=BC•A1P=×4×=.故答案为:.5.解:延长OB到T,使得BT=OB,连接MT,CT.∵OM=6,OD=DB=3,OT=12,∴OM2=OD•OT,∴=,∵∠MOD=∠TOM,∴△MOD∽△TOM,∴==,∴MT=2DM,∵CM+2DM=CM+MT≥CT,又∵在Rt△OCT中,∠COT=90°,OC=4,OT=12,∴CT===4,∴CM+2DM≥4,∴CM+2DM的最小值为4,∴答案为4.6.解:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.∵PB=4,BG=2,BC=8,∴PB2=BG•BC,∴=,∵∠PBG=∠CBP,∴△PBG∽△CBP,∴==,∴PG=PC,∵四边形ABCD是菱形,∴AB∥CD,AB=CD=BC=8,∴∠DCH=∠ABC=60°,在Rt△CDH中,CH=CD•cos60°=4,DH=CD•sin60°=4,∴GH=CG+CH=6+4=10,∴DG===2,∵PD﹣PC=PD﹣PG≤DG,∴PD﹣PC≤2,∴PD﹣PC的最大值为2.7.解:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.∵四边形ABCD是正方形,∴∠DCT=90°,∵CD=4,CT=3,∴DT===5,∵PB=2,BT=1,BC=4,∴PB2=BT•BC,∴=,∵∠PBT=∠PBC,∴△PBT∽△CBP,∴==,∴PT=PC,∵PD+PC=PD+PT≥DT=5,∴PD+PC的最小值为5,故答案为:5.8.解:如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C,D分别是OA,OB的中点,∴OE=12,OP=6,OC=AC=3,∴==,且∠COP=∠EOP∴△OPE∽△OCP∴==,∴EP=2PC,∴PC+PD=(2PC+PD)=(PD+PE),∴当点E,点P,点D三点共线时,PC+PD的值最小,∵DE===13,∴PD+PE≥DE=13,∴PD+PE的最小值为13,∴PC+PD的值最小值为.故答案为:.9.解:如图,取点T(0,1),连接PT,BT.∵T(0,1),A(0,4),B(4,0),∴OT=1,OA=4,OB=4,∵OP=2,∴OP2=OT•OA,∴=,∵∠POT=∠AOP,∴△POT∽△AOP,∴==,∴PT=P A,∴PB+P A=PB+PT,∵BT==,∴PB+PT≥,∴BP+AP≥∴BP+PB的最小值为.故答案为:.10.解:作MH⊥NP于H,作MF⊥BC于F,∵PM⊥AC,PN⊥CB,∴∠PMC=∠PNC=90°,∴∠MPN=360°﹣∠PMC﹣∠PNC﹣∠C=120°,∴∠MPH=180°﹣∠MPN=60°,∴HP=PM•cos∠MPH=PM•cos60°=PM,∴PN+PM=PN+HP=NH,∵MF=NH,∴当MP与⊙O相切时,MF取得最大和最小,如图1,连接OP,OG,可得:四边形OPMG是正方形,∴MG=OP=2,在Rt△COG中,CG=OG•tan60°=2,∴CM=CG+GM=2+2,在Rt△CMF中,MF=CM•cos C=(2+2)×=3+,∴HN=MF=3+,PM+2PN=2()=2HN=6+2,如图2,由上知:CG=2,MG=2,∴CM=2﹣2,∴HM=(2﹣2)×=3﹣,∴PM+2PN=2()=2HN=6﹣2,∴6﹣2≤PM+2PN≤6+2.11.解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB﹣BE=3,∴AI==,∴AP+PB最小值=AI=,∵P A+PB=(P A+PB),∴P A+PB的最小值是AI==2.故答案是2.12.解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,∴∠ACB=90°,∵CD=4,∴==,∴△CED∼△CDB,∴==,∴ED=BD,∴AD+BD=AD+ED≥AE,当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.13.解:在CA上截取CM,使得CM=4,连接DM,BM.∵CD=6,CM=4,CA=9,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴AD+BD=DM+BD,∵DM+BD≥BM,在Rt△CBM中,∵∠MCB=90°,CM=4,BC=12,∴BM==4,∴AD+BD≥4,∴AD+BD的最小值为4.故答案为4.14.解:如图,在BA上取一点T,使得BT=,连接TM′,TC.∵BM′=BM=2,BT=,BA=6,∴M′B2=BT•BA,∴=,∵∠ABM′=∠M′BT,∴△BAM′∽△BM′T,∴==,∴TM′=AM′,∵2CM′+AM′=2(CM′+AM′)=2(CM′+TM′),∵CM′+TM′≥CT,CT===,∴2CM′+AM′≥,∴2CM′+AM′的最小值为.故答案为.15.解:如图,方法一:设半圆与AC、BC的切点为D、E,连接OP、OC、OD、OE,则OE=OD,OD⊥AC,OE⊥BC,所以CO平分∠ACB,∵AC=BC=8,∠ACB=90°∴AB=8,∴OC=OA=OB=AB=4,∴OP=OD=OE=AC=BC=4,取OB的中点F,连接PF、CF,则OF=OB=2,∴==,==,在△OPF和△OBP中,=,∠POF=∠BOP,∴△OPF∽△OBP,∴==,∴PF=PB,∴PC+PB=PC+PF≥CF,当且仅当C、P、F三点共线时,PC+PB取得最小值CF==2.方法二:连接OP、OC,取OB的中点F,连接PF、CF,∵Rt△ABC等腰直角三角形,所以CO平分∠ACB,∵AC=BC=8,∠ACB=90°∴AB=8,∴OC=OA=OB=AB=4,∴OP=OD=OE=AC=BC=4,则OF=OB=2,∴==,==,在△OPF和△OBP中,=,∠POF=∠BOP,∴△OPF∽△OBP,∴==,∴PF=PB,∴PC+PB=PC+PF≥CF,当且仅当C、P、F三点共线时,PC+PB取得最小值CF==2.故答案为2.16.解:如图,⊙O与AB的切点记作D,连接OD,OB,OP,可知OB平分∠ABC,∠BDO=90°,BD==3,∠ABO=30°,∴OP=OD=,OD=BD•tan30°=,在OB上截取OI=,∴=,又∠POI是公共角,∴△POI∽△BOP,∴=,∴PI=BP,∴PC+=PC+PI≥IC,∴当C、P、I共线时,PC+PI最小=IC,作IH⊥BC于H,∴IH=BI===,BH=BI•cos∠OBC=×=,∴CH=CB﹣BH=6﹣=,在Rt△ICH中,CH=,IH=,∴IC==,∴PC+最小最=IC=,∴PB+2PC=2(PC+)的最小值是2•IC=3,故答案是3.17.解:如图,取一点T(1,0),连接OP,PT,TD,∵A(2,0)、B(0,2)、C(4,0),∴OA=OB=2,OC=4,以O为圆心OA为半径作⊙O,在优弧AB上取一点Q,连接QB,QA,∵∠Q=AOB=45°,∠APB=135°,∴∠Q+∠APB=180°,∴A、P、B、Q四点共圆,∴OP=OA=2,∵OP=2,OT=1,OC=4,∴OP2=OC•OT,∵∠POT=∠POC,∴△POT∽△POC,∴,∴PT=,∴2PD+PC=2(PD+PC)=2(PD+PT),∵PD+PT≥DT,DT==2,∴2PD+PC,∴2PD+PC的最小值是4.故答案为:4.18.解:连接OM,在OM上截取MN,使得MN=,连接PN,AN.∵M(4,4),∴OM==4,∵PM=2,MN=,∴PM2=MN•MO,∴=,∵∠PMN=∠OMP,∴△PMN∽△OMP,∴==,∵N(3,3),A(6,1),∴AN==5,∴OP+2OA=2(OP+P A)=2(PN+P A),∵PN+P A≥AN,∴PN+P A≥5,∴OP+2OA≥10,∴OP+2OA的最小值为10,故答案为:10.19.解:(1)线段AF、AE、AD之间的数量关系:,证明如下:过F作FH⊥AB于H,过E作EG⊥AB于G,如图:∵FH⊥AB,EG⊥AB,∠EDF=90°,∴∠FHD=∠DGE=90°,∠FDH=90°﹣∠EDG=∠DEG,且DF=DE,∴△FHD≌△DGE(AAS),∴FH=DG=AD+AG,∵∠ACB=∠EDF=90°,BC=AC,ED=FD,∴∠F AB=∠FED=45°,∴点F、D、A、E四点共圆,∴∠F AE=∠FDE=90°,∠EAG=∠DFE=45°,∵FH⊥AB,EG⊥AB,∠BAC=45°,∴△F AH和△EAG为等腰直角三角形,∴AF=FH,AE=AG,∴AF=(AD+AG)=AD+AG=AD+AE;(2)取AB的中点O,连接OG,在OB上取OH=,连接GH,如图:∵G为BF的中点,O为AB中点,∴OG是△ABF的中位线,∴OG=AF=DF=DE=2,∵AC=3,∴AB=AC=6,OB=AB=3,∴=,而==,∴=,又∠HOG=∠GOB,∴△HOG∽△GOB,∴==,∴HG=BG,∴,要使CG+BG的最小,需CG+HG最小,∴当H、G、C三点共线时,CG+BG的最小,CG+BG的最小值是CH,如图:∵OC=AB=3,OH=,∴CH==,∴CG+BG的最小值是CH=×=.(3)过点C作BF平行线,点F作BC平行线交于点G;过点G作GH⊥BF于点H,过点K作KI⊥FG;如图:∵∠BDC=∠FDE=90°,∴∠BDC+∠CDF=∠FDE+∠CDF,即∠BDF=∠CDE,且CD=BD,DE=DF,∴△BDF≌△CDE(SAS),∴BF=CE,∠DEC=∠DFB,∵∠DEC+∠DPE=90°,∠DPE=∠MPF,∴∠DFB+∠MPF=90°,∴∠FME=90°由BC:DE:ME=7:9:10,设BC=7t,则DE=9t,ME=10t;∴EF=DE=9t,∵CG∥BF,FG∥BC,∴四边形BFGC为平行四边形,∴CE=BF=CG,∠ECG=∠FME=90°,∴△ECG为等腰直角三角形,∴∠CGE=45°=∠GKH,∴△GKH为等腰直角三角形,∴=,==,=,∴,∴△CDE∽△GFE,∴∠DCE=∠FGE,∴;Rt△MFE中,MF==t,∴FK=MK﹣MF=ME﹣MF=10t﹣t,FG=BC=7t,设∠GFH=α,∠KGI=∠NCD=β,∴=,Rt△FKI中,sinα=,∴,∵GH=,∴KI=FK•=,∴sinβ=====,∴.20.解:(1)过D作DG⊥BC,垂足是G,如图1:∵将BD绕点B顺时针旋转90°得到BE,∴∠EBD=90°,∵∠ABE=75°,∴∠ABD=15°,∵∠ABC=45°,∴∠DBC=30°,∴在直角△BDG中有DG==2,=,∵∠ACB=45°,∴在直角△DCG中,CG=DG=2,∴BC=BG+CG=,∴AC=BC=;(2)线段DC与线段HG的数量关系为:HG=,证明:延长CA,过E作EN垂直于CA的延长线,垂足是N,连接BN,ED,过G作GM ⊥AB于M,如图:∴∠END=90°,由旋转可知∠EBD=90°,∴∠EDB=45°∴∠END=∠EBD=90°,∴E,B,D,N四点共圆,∴∠BNE=∠EDB=45°,∠NEB+∠BDN=180°∵∠BDC+∠BDN=180°,∠BCD=45°,∴∠BEN=∠BDC,∴∠BNE=45°=∠BCD,在△BEN和△BDC中,,∴△BEN≌△BDC(AAS),∴BN=BC,∵∠BAC=90°,在等腰△BNC中,由三线合一可知BA是CN的中线,∵∠BAC=∠END=90°,∴EN∥AB,∵A是CN的中点,∴F是EC的中点,∵G是BC的中点,∴FG是△BEC的中位线,∴FG∥BE,FG=BE,∵BE⊥BD,∴FG⊥BD,∵∠ABD=30°,∴∠BFG=60°,∵∠ABC=45°,∴∠BGF=75°,设AC=a,则AB=a,在Rt△ABD中,AD=,BD=BE=,∴FG=BE,∴FG=,∵GM⊥AB,∴△BGM是等腰三角形,∴MG=MB=,在Rt△MFG中,∠MFG=60°,∴MF=MG,∴MF=,∴BF=BM+MF=,在Rt△BFH中,∠BFG=60°,∴FH==a,∴HG=FG﹣FH=﹣a=,又∵CD==,∴=,∴HG=;(3)设AB=a,则BC=,取BC的中点N,连接A′D,A′C,A′N,连接DN,如图3,由旋转可知A′B=AB=a,∵==,==,∴,又∠A'BN=∠CBA',∴△A′BN∽△CBA′,∴=,∴A'N=A'C,根据旋转和两点之间线段最短可知,最小,即是A'D+A'N最小,此时D、A'、N共线,即A'在线段DN上,设此时A'落在A''处,过A''作A''F⊥AB于F,连接AA'',如图4,∵D,N分别是AC,BC的中点,∴DN是△ABC的中位线,∴DN∥AB,∵AB⊥AC,∴DN⊥AC,∵∠A=∠A''F A=∠A''DA=90°,∴四边形A''F AD是矩形,∴AF=A''D,A''F=AD=2,∵又A''B=AB=4,设AF=x,在直角三角形A''FB中,A''B2=A''F2+BF2,∴42=22+(4﹣x)2,解得x=.∴此时S△A''BC=S△ABC﹣S△AA''B﹣S△A''AC=AB•AC﹣AB•A''F﹣AC•A''D=×4×4﹣×4×2﹣×4×(4﹣2)=4﹣4.21.解:(1)∵AB是⊙O的直径,∴∠ABC=90°,∵AC=BC,∴△ABC是等腰直角三角形,∠CAB=45°,∵AB=4,∴BC=AB•sin45°=4;(2)连接AD、CM、DB、FB,如图:∵△ABC是等腰直角三角形,四边形CDEF是正方形,∴CD=CF,∠DCF=∠ACB=90°,∴∠ACD=90﹣∠DCB=∠BCF,又AC=BC,∴△ACD≌△BCF(SAS),∴∠CBF=∠CAD,∴∠CBF+∠ABC+∠ABD=∠CAD+∠ABC+∠ABD=∠DAB+∠CAB++∠ABC+∠ABD=∠DAB+45°+45°+∠ABD,而AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∴∠CBF+∠ABC+∠ABD=180°,∴D、B、F共线,∵四边形CDEF是正方形,∴△DCF是等腰直角三角形,∵M是DF的中点,∴CM⊥DF,即△CMB是直角三角形,∵N是BC的中点,∴MN=BC=2,即MN为定值;(3)以A为圆心,AP为半径作圆,在AC上取点M,使AM=1,连接PM,过M作MH⊥AB于H,连接BM交⊙A于P',如图:一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,∴Q运动时间t=+BP,∵AM=1,AP=2,AC=BC=4,∴==,又∠MAP=∠P AC,∴△MAP∽△P AC,∴==,∴PM=,∴+BP最小,即是PM+BP最小,此时P、B、M共线,即P与P'重合,t=+BP最小值即是BM的长度,在Rt△AMH中,∠MAH=45°,AM=1,∴AH=MH=,∵AB=4,∴BH=AB﹣AH=,Rt△BMH中,BM==5,∴点Q的运动时间t的最小值为5.22.(1)解:如图1中,过点C作CH⊥BD于H,设EH=x.∵△ADE是等边三角形,∴AD=DE=4,∠AED=∠CEH=60°,∵∠CHE=90°,∴CH=EH•tan60°=x,∵CD2=CH2+DH2,∴25=3x2+(x+4)2,∴4x2+8x﹣9=0∴x=或(舍弃),∴CH=,∴S△BEC=×4×=﹣2.解法二:过点B作BJ⊥AC交AC的延长线于J,过点D作DT⊥AE于T.证明BJ=DT,求出DT,即可解决问题.(2)证明:如图2中,延长AF到G,使得FG=AF,连接DG,CG,延长GC交BD 于T,过点C作CH⊥BD于H.∵AF=FG,CF=FD,∴四边形ACGD是平行四边形,∴AC∥DG,GC∥AD,∴∠CAD+∠ADG=180°,∵△ADE是等边三角形,∴AE=AD,∠AED=∠ADE=∠EAD=60°,∴∠AEB=∠ADG=120°,∴∠CGD=∠EAD=60°=∠GDT,∴△DGT是等边三角形,∴DG=DT,∠CTE=∠CET=60°,∴△CET是等边三角形,∴CT=CE,∠CTE=∠CET=60°,∵CB=CD,CH⊥BD,∴BH=DH,TH=EH,∴BT=DE,∴BE=DT=DG,∴△AEB≌△ADG(SAS),∴AB=AG=2AF.(3)解:如图3中,取AD的中点O,连接OP,OB,OC,取OB的中点J,连接QJ,CJ,过点C作CF⊥AB于F,在JB上取一点T,使得JT=,连接QT,TC.∵AB∥CD,∠BAD=90°,∴∠ADC=90°,∵CF⊥AB,∴∠CF A=90°,∴四边形AFCD是矩形,∴AD=CF=4,∵tan∠CBA==2,∴BF=2,∵AB=6,∴AF=4,∴AD=AF,∴四边形AFCD是正方形,∵BC===2,CO===2,OB==4,∴CB=CO,∵CF=CD,∠CFB=∠CDO=90°,∴Rt△CFB≌Rt△CDO(HL),∴∠BCF=∠DCO,∴∠BCO=∠DCF=90°,∵BJ=JO,∴CJ=OB=2,∴CT===,∵BQ=QP,BJ=JO,∴QJ=OP=,∵QJ2=2,TJ•JB=×2=2,∴QJ2=JT•JB,∴=,∵∠QJT=∠QJB,∴△QJT∽△BJQ,∴===,∴QT=BQ,∴CQ+BQ=CQ+QT≥CT=,∴CQ+BQ的最小值为.23.解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得.(2)∵AC=m=4,=,在CB上取一点M,使得CM=CD=,∴的最小值为.24.解:(1)由题意OE=2,OB=3,∴=,故答案为:.(2)如图,取格点K,T,连接KT交OB于H,连接AH交于E′,连接BE′,点E′即为所求.故答案为:通过取格点K、T,使得OH:OD=2:3,构造相似三角形将E′B转化为E′H,利用两点之间线段最短即可解决问题.25.解:如图,连接OB交⊙O于点D,延长BO交⊙O于点G,取OD的中点F,连接PF,CF,OC,∵,,∴,∵∠FOP=∠POB,∴△OPF∽△OBP,∴BP=2PF,∴2PB+PC=2(PC+PB)=2(PC+PF)=2CF,∵BC=6,∠BOC=120°,∴BO=CO=2,又∵∠COG=60°,CG⊥OB,∴GO==,CG=GO=3,∵OD=,OF=,∴GF=GO+OF=,∴CF==,∴2PB+PC=2CF=3.26.解:①取CE的中点F,连结PF,AF,∵CF=1,CB=4,CP=2,∴,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴,∴,∴,=AP+PF,当P在AF上时,AP+PF最小,最小值为AF的长,,=,的最小值为,②∵2AP+BP=2,∴2AP+BP的最小值为,③在DC取一点G,使CG=∵,∴,∵∠ACP=∠PCG,∴△CGP∽△CP A,∴,∴,∴,=GP+BP⩾BG,当P在BG上B,GP+BP=BG,==,∴的最小值为,④∵,∴AP+3BP的最小值为.27.解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.28.解:(1)由图可知,OA﹣OB≤AB≤OA+OB,当点O,A,B三点共线时,AB有最小值,∵OA=4,OB=2,∴AB的最小值为4﹣2=2.故答案为:2.(2)如图2,在BC上取一点G,使得BG=1,连接PG,DG,∵==2,==2,∴,∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG=5;(3)如图3,在BC上截取点E,使得BE=千米,连接EQ、BQ,∵∠D=90°,AD=千米,CD=3千米,∴∠ACD=30°,∠CAD=60°,。

2023年九年级中考数学专题练习 二次函数的最值问题(含解析)

2023年九年级中考数学专题练习 二次函数的最值问题(含解析)

2023年中考数学专题练习--二次函数的最值问题1.如图,抛物线 212y x bx c =-++ 与 x 轴交于 A 、 B 两点,与 y 轴交于点 C ,且 2OA = , 3OC = .(1)求抛物线的解析式;(2)已知抛物线上点 D 的横坐标为 2 ,在抛物线的对称轴上是否存在点P ,使得 BDP ∆ 的周长最小?若存在,求出点 P 的坐标;若不存在,请说明理由.2.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y 与x 之间的函数关系式;(2)写出每天的利润W 与销售单价x 之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?3.阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)当x为何值时,S有最大值?并求出最大值.4.在环境创优活动中,某居民小区要在一块靠墙(墙长25米)的空地上修建一个矩形养鸡场,养鸡场的一边靠墙,如果用60m长的篱笆围成中间有一道篱笆的养鸡场,设养鸡场平行于墙的一边BC的长为x(m),养鸡场的面积为y(m2)(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)养鸡场的面积能达到300m2吗?若能,求出此时x的值,若不能,说明理由;(3)根据(1)中求得的函数关系式,判断当x取何值时,养鸡场的面积最大?最大面积是多少?5.市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=40时,y=120;x =50时,y=100.在销售过程中,每天还要支付其他费用500元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大.最大获利是多少元.6.抛物线y1=x2+bx+c与直线y2=2x+m相交于A(1,4)、B(﹣1,n)两点.(1)求y1和y2的解析式;(2)直接写出y1﹣y2的最小值.7.某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种新型商品成本为20元/件,第x天销售量为p件,销售单价为q元.经跟踪调查发现,这40 p-与x成正比,前20天(包含第20天),q与x的关系满足关系式天中50=+;从第21天到第40天中,q是基础价与浮动价的和,其中基础价保持q ax30不变,浮动价与x成反比,且得到了表中的数据:的值为;直接写出这天中p与x的关系式为;(2)从第21天到第40天中,求q与x满足的关系式;(3)求这40天里该网店第几天获得的利润最大?最大为多少?8.如图,一次函数y=kx+2的图象分别交y轴,x轴于A,B两点,且tan∠ABO=1,抛物线y=-x2+bx+c经过A,B两点.2(1)求k的值及抛物线的解析式.(2)直线x=t在第一象限交直线AB于点M,交抛物线于点N,当t取何值时,线段MN的长有最大值?最大值是多少?(3)在(2)的情况下,以A,M,N,D为顶点作平行四边形,求第四个顶点D 的坐标,并直接写出所有平行四边形的面积,判断面积是否都相等.9.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为15米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S.(1)求S与x的函数关系式;(2)并求出当AB的长为多少时,花圃的面积最大,最大值是多少?10.如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH∠AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,∠AEF的面积最大?11.2021年春节,不少市民响应国家号召原地过年.为保障市民节日消费需求,某商家宣布“今年春节不打烊”,该商家以每件80元的价格购进一批商品,规定每件商品的售价不低于进价且不高于100元,经市场调查发现,该批商品的日销售量y (件)与每件售价x(元)满足一次函数关系,其部分对应数据如下表所示:(2)当每件商品的售价定为多少元时,该批商品的日销售利润最大?日销售最大利润是多少?12.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y箱与销售价x元/箱之间的函数关系式.(2)当每箱苹果的销售价x为多少元时,可以使获得的销售利润w最大?最大利润是多少?13.某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额一年销售产品的总进价一年总开支金额)当销售单价x为何值时,年获利最大最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?14.我市某工艺厂设计了一款成本为10元 / 件的工艺品投放市场进行试销,经过调查,得到如下数据:(2)若用 W( 元 ) 表示工艺厂试销该工艺品每天获得的利润,试求 W( 元 ) 与 x( 元 / 件 ) 之间的函数关系式.(3)若该工艺品的每天的总成本不能超过2500元,那么销售单价定为多少元时,工艺厂试销工艺品每天获得的利润最大,最大是多少元?15.已知抛物线y =x 2﹣bx +c (b ,c 为常数)的顶点坐标为(2,﹣1).(1)求该抛物线的解析式;(2)点M (t ﹣1,y 1),N (t ,y 2)在该抛物线上,当t <1时,比较y 1与y 2的大小;(3)若点P (m ,n )在该抛物线上,求m ﹣n 的最大值.16.地摊经济开放以来,小王以每个40元的价格购进一种玩具,计划以每个60元的价格销售,后来为了尽快回本决定降价销售.已知这种玩具销售量 y (个)与每个降价 x (元)( 020x << )之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数解析式.(2)该玩具每个降价多少元时,小王获利最大?最大利润是多少元?17.如图,抛物线y=23 x 2+bx+c 经过点B (3,0),C (0,﹣2),直线l :y=﹣ 23x ﹣23交y 轴于点E ,且与抛物线交于A ,D 两点,P 为抛物线上一动点(不与A ,D 重合).(1)求抛物线的解析式;(2)当点P 在直线l 下方时,过点P 作PM∠x 轴交l 于点M ,PN∠y 轴交l 于点N ,求PM+PN 的最大值.(3)设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.18.如图,抛物线 2y ax bx c =++ 的图象过点 (10)(30)(03)A B C ﹣,、,、, .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得∠PAC 的周长最小,若存在,请求出点P 的坐标及∠PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 PAM PAC S S ∆∆= ?若存在,请求出点M 的坐标;若不存在,请说明理由.19.如图,抛物线y =12 x 2+bx+c 与直线y = 12x+3分别相交于A,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC,BC.已知A(0,3),C(-3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB-MC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ∠PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与∠ABC相似?若存在,请求出所有符合条件的点P的坐标;若还在存在,请说明理由.20.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S∠AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ∠x轴,交抛物线于点D,求线段DQ长度的最大值.答案解析部分1.【答案】(1)解:2OA = ,∴ 点 A 的坐标为 (2,0)- .3OC = ,∴ 点 C 的坐标为 ()0,3 .把 ()2,0- , ()0,3 代入 212y x bx c =-++ ,得0223b cc =--+⎧⎨=⎩, 解得 123b c ⎧=⎪⎨⎪=⎩ . ∴ 抛物线的解析式为 211322y x x =-++ .(2)解:存在. 把 0y = 代入 211322y x x =-++ , 解得 12x =- , 23x = ,∴ 点 B 的坐标为 ()3,0 .点 D 的横线坐标为 2211223222∴-⨯+⨯+= .故点 D 的坐标为 ()2,2 .如图,设 P 是抛物线对称轴上的一点,连接 PA 、 PB 、 PD 、 BD ,PA PB = ,BDP ∴∆ 的周长等于 BD PA PD ++ ,又BD 的长是定值,∴ 点 A 、 P 、 D 在同一直线上时, BDP ∆ 的周长最小,由 ()2,0A - 、 ()2,0A - 可得直线 AD 的解析式为 112y x =+ , 抛物线的对称轴是 12x =, ∴ 点 P 的坐标为 15,24⎛⎫⎪⎝⎭,∴ 在抛物线的对称轴上存在点 15,24P ⎛⎫⎪⎝⎭,使得 BDP ∆ 的周长最小.【解析】【分析】(1)由题意先求出A 、C 的坐标,直接利用待定系数法即可求得抛物线的解析式;(2)根据题意转化 PA PB = ,BD 的长是定值,要使 BDP ∆ 的周长最小则有点A 、 P 、 D 在同一直线上,据此进行分析求解.2.【答案】(1)解:设y 与x 之间的函数关系式为y=kx+b (k≠0),由所给函数图象可知,{130k +b =50150k +b =30, ,解得 {k =−1b =180,.故y 与x 的函数关系式为y=﹣x+180 (2) 解:∵y=﹣x+180,∴W=(x ﹣100)y=(x ﹣100)(﹣x+180) =﹣x 2+280x ﹣18000 =﹣(x ﹣140)2+1600, ∵a=﹣1<0,∴当x=140时,W 最大=1600,∴售价定为140元/件时,每天最大利润W=1600元【解析】【分析】(1)由图像可知 销售单价x(元/件)与每天销售量y(件)之间满足 一次函数关系,设出该函数的一般式,再将(130,50)与(150,30)代入即可得出关于k,b 的二元一次方程组,求解得出k,b 的值,从而得出函数解析式;(2)每件商品的利润为(x-100)元,根据总利润等于单件的利润乘以销售的数量即可得出 W=(x ﹣100)y ,再将(1)整体代入,然后配成顶点式即可得出答案。

最值问题-答案

最值问题-答案

最值问题加强篇1. 在五位数22576的某一位数码后面再插入一个该数码,能得到的六位数中最大的是几? 答:2257762. 把小正方体的六个面分别写上1、2、3、4、5、6。

拿两个这样的正方体,同时掷在桌子上。

每次朝上的两个面上的数的和,最小可能是多少?最大可能是多少?可能出现次数最多的两个面的数的和是多少?答:最小可能是1+1=2最大可能是6+6=12,可能出现次数最多的两个面的数的和7。

3. 在下面的一排数字之间添上五个加号,组成一个连加算式,求这个连加算式的结果的最小值。

1 2 +3 4 +5 6 + 7 + 8 + 9=1264. 把16拆成两个自然数的和,要求这些自然数的乘积尽量大,应如何拆? 答:16=8+85. 把50拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆? 答:16503332=+++6. 有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,如246,1347等等,这类数中最大的自然数是几?答:101123587. 一把钥匙只能开一把锁。

现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?答:3+2+1=68. 从十位数7677782980中划去5个数字,使剩下的5个数字(先后顺序不改变)组成的五位数最小。

这个五位数最小的五位数是多少?答:629809. 下图九个数中取出三个数来,这三个数都不在同一横行,也不在同一纵行.问:怎样取才能使这三个数之和最大,最大数是 20 .10. 一个三角形的三条边长是三个两位的连续偶数,它们的末位数字和能被7整除,这个三角形的最大周长等于 264 .86+88+90=264最值问题巩固篇1. 两个自然数的和为18,那么,这两个自然数的积的最大值为多少?答:9×9=812. 有一类自然数,它的各个数位上的数字之和为8888,这类自然数中最小的是几? 答:987599993. 有4袋糖块,其中任意3袋的总和都超过60块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29.最值问题知识纵横求某个量、或者几个量的和、差、积、商的最大值和最小值,是数学问题中的一种常见类型,又在实际生活与生产实践中,我们经常碰到一些带有“最”字的问题,如投入最少、路程最短、材料最省等,这些问题我们称之为最值问题,•在现阶段,解这类问题的基本知识与基本方法有:1.穷举获取;2.运用非负数的性质;3.利用不等分析逼近求解;4.使用几何公理、定理、性质等.解这类问题时,既要说明最值可以达到,又要证明不可能比所求的值更大(•或更小),前者需构造一个恰当的例子,后者需要详细说理.例题求解【例1】设自然数x,y,m,n满足条件58x y my m n===,则x+y+m+n的最小值是_____.(湖北省黄冈市竞赛题) 思路点拨把连等式拆开用,用一个字母的代数式表示另一个字母,利用隐含整除条件,分别求出x,y,m,n的最小值.解:1157 提示:x=58y,m=85y,n=85m=6425y,因25│y,8│y,故y有最小值200.【例2】设a、b、c满足a2+b2+c2=9,那么代数式(a-b)2+(b-c)2+(c-a)2的最大值是( • ).A.27B.18C.15D.12 (全国初中数学联赛题)思路点拨利用乘法公式,把代数式变形成与已知条件关联的式子,进而求出最大值.解:选A 提示:原式=3(a2+b2+c2)-(a+b+c)2≤27【例3】已知n、k均为自然数,且满足不等式761311nn k<<+,若对于某一给定的自然数n,只有惟一的一个自然数k使不等式成立,求所有符合要求的自然数n中的最大数和最小数.(“希望杯”邀请赛试题) 思路点拨解关于k的不等式组,利用已知条件的约束,通过穷举求出n的最大数与最小数.解:提示:由761311nn k<<+,得111367n kn+<<5667kn<<, ①5667n nk<<②因k 为自然数,且对于给定的n 来说,k 的值只有一个. 故6576n n ≤2 ,得n ≤84 当n=84时,代入②有 70<k<72,惟一的k 值为71,又由①得 n>7当n=8,n=9,n=10,…,n=12时,有623<k<667,712<k<757,813<k<847,916<k<937,10<k<1027,• 没有符合条件的整数k当n=13时,有1056<k<1117,得k=11 综上知n 的最大值为84,n 的最小值为13.【例4】某人租用一辆汽车从A 城前往B 城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:小时)如图所示,若汽车行驶的平均速度为80千米/时,而汽车每行驶1千米需要的平均费用为1.2元,试指出此人从A 城出发到B 城的最短路线,并求出所需费用最少为多少元? (2003年全国初中数学竞赛题)思路点拨 即要求出此人从A 城出发到B 城的最短时间,而从A 城到B•城有多条线路,故只需一一列举,比较就可得出结论.解:从A 城出发到B 城的路线有如下两类:(1)从A 城出发到达B 城,经过O 城,因从A 城到O 城所需最短时间为26小时,从O 城到B 城所需最短时间为22小时,故此类路线所需最短时间为26+22=48小时. (2)从A 城出发到达B 城,不经过O 城,这时从A 城到B 城,必定经过C 、D 、E 城或F 、G 、H 城,所需时间至少为49小时,综上,从A 城到达B 城所需的最短时间为48小时,所走的路线为A →F →O →E →B,所需的费用最少为80×48×1.2=4608(元)【例5】某家电生产企业根据市场调查分析,决定调整产品方案,•准备每周(•按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,•已知生产这些家问:(以千元为单位)? (2003年河南省竞赛题)思路点拨 设每周生产空调器、彩电、冰箱各x 台、y 台、z 台,产值为s ,可得关于x 、y 、z 的混合方程组,通过消元,建立一元不等式组,通过解不等式组,•确定相应字母取值范围,进而求出s 的最大值。

解:依题意得360111120 23460432x y zx y zzS x y z++=⎧⎪⎪++=⎪⎨⎪≥⎪=++⎪⎩由①,②得1233602 x zy z ⎧=⎪⎪⎨⎪=-⎪⎩代入④,整理得S=1080-12z,因S随z的增大而减小,故由③知当z=60时,S=1050(千元),此时x=30,y=270.学力训练一、基础夯实1.多项式x2+y2-6x+8y+7的最小值为________. (第17届江苏省竞赛题)2.在式子│x+1│+│x+2│+│x+3│+│x+4│中,用不同的x值代入,得到对应的值,在这些对应的值中,最小的值为_______.3.如果把分数97的分子、分母分别加上正整数a,b结果等于913,那么a+b•的最小值是________. (第15届江苏省竞赛题)4.当x=_______且y=______时,代数式-x2-2y2-2x+8y-5•有最大值,•这个最大值是_______.5.若a、b、c、d为整数,且b是正整数,满足b+c=d,c+d=a,a+b=c,那么a+b+c+d的最大值是( ).A.-1B.-5C.0D.16.多项式5x2-4xy+4y2+12x+25的最小值为( ).A.4B.5C.16D.25 (“五羊杯”竞赛题)7.已知213x--1≥x-532x-,求│x-1│-│x+3│的最大值和最小值.8.某校举行庆祝“十六大”的文娱汇演,评出一等奖5个,二等奖10个,•三等奖15个,学校决定给获奖的学生发奖品,同一等次的奖品相同,•并且只能从下表所列物品中选取(1)如果获奖等次越高,奖品单价就越高,那么学校最少要花多少钱买奖品?(2)学校要求一等奖的奖品单价是二等奖奖品单价的5倍,•二等奖的奖品单价是三等奖奖品单价的4倍,在总费用不超过1000元的前提下,有几种购买方案?花费最多的一种方案需要多少钱? (2003年江苏泰州市试题)9.现有某物质73吨,计划用载重量分别为7吨和5吨的两种卡车一次运走,且每辆车都要装满,已知载重量7吨的卡车每台车运费65元,•载重量5•吨的卡车每台车运费50元,问最省运费是多少元? (2002年重庆市竞赛题)三、能力拓展10.设m,n是非零自然数,并且19n2-98n-m=0,则m+n的最小值是________.(国家理科实验班招生试题)11.设a1,a2,…,a k为k个互不相同的正整数,且a1+a2+…+a k=1995,那么,k•的最大值是_________.12.a、b、c是非负数,并且满足3a+2b+c=5,2a+b-3c=1,设m=3a+b-7c,设x为m•的最小值,y为m的最大值,则xy=________. (2003年北京市竞赛题)13.甲、乙两个粮库分别存粮600吨、1400吨,A、B两市分别用粮1200吨、800吨,需从甲、乙两粮库调运,由甲库到A、B两市的运费分别为6元/吨、5元/吨;由乙库到A、B两市的运费分别是9元/吨、6元/吨,则总运费最少需______元.(北京市“迎春杯”竞赛题)14.设a、b、c、d都是整数,且a<3b,b<5c,c<7d,d<30,则a的最大可能值是( • ).A.3026B.3029C.3045D.3150 (“数学新蕾”竞赛题)15.某种出租车的收费标准是:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米以后,每增加0.5千米,加收0.9元(不足0.5千米按0.5千米计),某人乘坐这种出租车从甲地到乙地共支付车费19.4元,•则此人从甲地到乙地经过的路的最远可能值是( )千米.A.12B.11C.10D.9 (2002年重庆市竞赛题)16.把一根1m长的金属线材,截成长为23cm和13cm的两种规格,•用怎样的方案截取材料利用率最高?求出最高利用率.(利用率=实际利用材料长度原材料长度×100%,截口损耗不计)17.已知.a1,a2,…a2002的值都是+1或-1,设S是这2002个数的两两乘积之和,(1)求S的最大值和最小值,并指出能达到最大值,最小值的条件;(2)求S的最小正值,并指出能达到最小正值的条件.(2002年“我爱数学”夏令营竞赛题)三、综合创新18.6盒火柴按“规则方式”打包,所谓“规则方式”是指每相邻2•盒必须是以完全重合的面对接,最后得到的包装形状是一个长方体,已知火柴盒的长、宽、高尺寸分别是:a=46mm,b=36mm,c=16mm,请你给出一种能使表面积最小的打包方式,•并画出其示意图。

19.永强加工厂接到一批订单,为完成订单任务,需用a米长的材料440根,b•米长的材料480根,可采购到的原料有三种,一根甲种原料可截得a米长的材料4根,b•米长的材料8根,成本为60元;一根乙种原料可截得a米长的材料6根,b米长的材料2根,•成本为50元;一根丙种原料可截得a米长的材料4根,b米长的材料4根,成本为40元,问怎样采购,可使材料成本最低? (第六届北京市数学知识应用竞赛试题)答案1.-18 提示:原式=(x-3)2+(y+4)2-182.43.28 提示:由9+a7+b=913,得b=6+13a94.-1,-2,4 提示:原式=4-(x+1)2-2(y+2)25.B6.C 提示:原式=(x-2y)2+(2y+3)2+167.提示:解不等式,得x≤711,原式=≥⎧⎪≤⎨⎪⎩-4 (x1)-2x-2 (-3x<1)4 (x<-3),从而知最大值为4,最小值为-33 11.8.(1)最少花钱数为6×5+5×10+4×15=140(元)(2)有两种购买方案.方案1:三等奖、二等奖、一等奖分别选4元、16元、80•元单价的奖品;方案2:三等奖、二等奖、一等奖分别选6元、24元、120元单价的奖品.花费最多的是后者,为930元.9.7吨卡车一吨运费为65÷7=9 (元/吨),5吨卡车一吨运费为50÷5=10(元/吨),因此,应尽量使用7吨卡,设7吨卡车x辆,5吨卡车y辆,则7x+5y=73,x=7357y-,当y=2时,x•最大值为9,此时运费为9×65+2×50=685(元)10.102 提示:m=n(19n-98)≥0,19n-98≥011.62 提示:不妨设a1<a2<…<a k,又因a1,a2,…a k都为正整数,可知a1≥1,a2≥2,…a k≥k,则有1+2+…+k≤a1+a2+…+a k=1995,即(1)2k k+≤1995,得1≤k≤62,另一方面,当a1=1,a2=2,…a6=6,a62=104时,这样的a1,a2,…,a k确实满足条件12. 5 7713.13800元提示:设由甲库调运x吨粮食到B市,总运费为y,则y=5x+6(600-x)+6(800-x)+9(600+x)=13800+2x(0≤x≤600)14.A 提示:设整数a,b,若a<b,则a+b≤b 15.B16.提示:设1m的金属线材截取长为23cm的线材x根,截取长为13cm的线材y根,则材料的利用率η=2313100x y+×100%,由题意,知23x+13y≤100,0≤x≤4,0≤y≤7,x,y都是整数,•且23x+13y尽可能接近100, 当x=4时,y=0, η=92%;当x=3时,y=2, η=95%; 当x=2时,y=4,η=98%; 当x=1时,y=5,η=88%; 当x=0时,η=91%,可见将1m 长的金属线材,截成23cm•的2•根,13cm 的4根时, 材料利用率最高,最高利用率为98%.17.(1)(a 1+a 2+…+a 2002)2=a 12+a 22+…+a 20022+2m=2002+2m ·m=2122002()20022a a a ++⋅⋅⋅+- ,当a 1=a 2=…=a 2002=1或-1时,m•取最大值2003001,当a 1,a 2,…a 2002中恰有1001个1,1001个-1时,m 取最小值-1001.(2)因为大于2002的最小完全平方数为452=2025,且a 1+a 2+…+a 2002必为偶数, 所以,•当a 1+a 2+…+a 2002=46或-46,即a 1,a 2,…a 2002中恰有1024个1,978个-1或恰有1024个-1,978个1•时, m 取最小值为12(462-2002)=57. 18.提示:一盒火柴的图形如图甲所示, 则三个面的面积记为C=ab,B=ac,A=bc• 考虑到6盒火柴,6=1×6=2×3,因此,规则方式打包有两类:“1×6”和“2×3”(1)•a>b>c,在1×6的方式下,表面积最小的打包形式为如图乙: 这时,•表面积S 1=•2C+•12B+12A(2)a>b>c,在2×3的方式下,表面积最小的打包形式应如图丙:• 这时,•表面积S 2=4C+6B+12A分别将a=46mm,b=36mm,c=16mm 代入,通过计算,得S 1=2×46×36+12×46×16+12×36×16=19056(mm )2S 2=4×16×36+6×46×16+12×36×16=17952(mm )2因S 1>S 2,故最小表面积的打包方式为2×3. 19.设甲种取x 根,乙种取y 根,丙种取z 根,则464440824480x y z x y z ++=⎧⎨++=⎩,又设总成品为P•元,•则求P=•60x+50y+40z 的最小值,由①,②得x=50-25z,y=40-25z,于是P=5000-4z由x>0,y>0,得0≤z•≤100,5│z, 当z=100时,此时x=10,y=0,P最小=4600(元)。

相关文档
最新文档