高一数学平面向量知识点复习PPT课件
合集下载
高中数学高一平面向量优秀课件(精品).ppt

练习: 在质量、重力、速度、加速度、身 高、面积、体积这些量中,哪些是 数量?哪些是向量?
数量有:质量、身高、面积、体积
向量有:重力、速度、加速度
2020/3/20
BACK
在下列结论中,哪些是正确的? (1)如果两个向量相等,那么它们的起点和终
点分别重合; (2)模相等的两个平行向量是相等的向量; (3)如果两个向量是单位向量,那么它们相等; (4)两个相等向量的模相等。
• 最先使用有向线段表示向量的是英国大 科学家牛顿。
2020/3/20
2020/3/20
复习回顾: 平面向量
这是什么? 向量
1、定义:既有大小又有方向的量。
几何表示法:用有向线段表示
字母表示法: 用小写字母表示,或者用表示向量的 有向线段的起点和终点字母表示。 相等向量:长度相等且方向相同的向量
A
段表示的向量中请分别写出
(1)与向量CD共线的向量有__7_个, E
F
分别是__D_C_,D_B_,_B_D_,F_E_,E_F_, _C_B_, B__C____;
(2)与向量DF的模一定相等的向 B
量有_5_个,分别是___F_D_,E__B_,B_E__,E_A_,_A_E__;
D
C
(3)与向量DE相等的向量有__2个,
不一定
2020/3/20
BACK
练习
1、与零向量相等的向量一定是什么向量?
零向量
2、与任意向量都平行的向量是什么向量?
零向量
2020/3/20
BACK
练习 1、若两个向量在同一直线上,则这两个
向量是什么向量?
共线向量 或者说平行向量
2、共不线一向定量一定在一条直线上吗?
高一数学《平面向量基本定理》(课件)

A
C
a
e1
e1
OB
A' e 2
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
C
B' a
e
2
A
e1
e1
OB
A' e 2
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
C
B' a
e
2
A
e1
e1
O A'
M
e
2
B
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
N
M
C
B' a
e
2
A
e1
e1
O A'
M
e
2
B
C
a
A
e1
a
O
C'
e2B
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
N
M
C
B' a
e
2
A
e1
e1
O A'
M
e
2
B
Cห้องสมุดไป่ตู้
a
A
e1
a
O
C'
e2B
N
平面向量基本定理:
平面向量基本定理:
N
C
B' a
e
2
A
e1
e1
O A'
M
e
2
B
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
高一数学平面向量PPT精品课件

5.1
如图中的小船,由A地向 西北方向航行15n mile (海里)到达B地。在这 里,如果仅指出“由A地 航行15n mile”,而不 指明“向西北方向”航 行,那么小船就不一定 到达B地了。
位移是一个既有大小又有方向的量,这种量就是本 章所要研究的向量。
有向线段:在线段的两个端
点中,规定一个顺序,假设 A为起点,B为终点,就说 线段AB具有方向,具有方 向的线段叫做有向线段。
汇报人:XXX
时间:20XX.XX.XX
2021/02/23
7
a
b
C
O BA
c
例 如图,设O是正六边形的中心,分别写出图 中与向量 OA,OB相,OC 等的向量.
解:
B
A
O A C B D O ;
O D F O .
D
F E
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
有关向量的概念:
➢ 向量长度:向量的大小,亦称模.
➢ 零向量:长度为零的向量. ➢ 单位向量:长度等于1个单位长度的向量. ➢ 相等向量:长度相等且方向相等的向量.
平行向量:方向相同或相反的非零向量. 共线向量:即平面向量. 如图,任作一条与a所在直线平行的直线l,在l上任 取一点O,则可在l上分别作出 O A a ,O B b ,O C c 任一组平行向量都可平移到同一直线上.
B(终点) A(起点)
表示方法:以A为起点,B为终点的有向线段记作 AB
三要素:起点—起点一定在终点前面 方向—在有向线段的终点处画上箭头表 示方向
长度—已知AB,线段AB的长度,记作| AB |
如图中的小船,由A地向 西北方向航行15n mile (海里)到达B地。在这 里,如果仅指出“由A地 航行15n mile”,而不 指明“向西北方向”航 行,那么小船就不一定 到达B地了。
位移是一个既有大小又有方向的量,这种量就是本 章所要研究的向量。
有向线段:在线段的两个端
点中,规定一个顺序,假设 A为起点,B为终点,就说 线段AB具有方向,具有方 向的线段叫做有向线段。
汇报人:XXX
时间:20XX.XX.XX
2021/02/23
7
a
b
C
O BA
c
例 如图,设O是正六边形的中心,分别写出图 中与向量 OA,OB相,OC 等的向量.
解:
B
A
O A C B D O ;
O D F O .
D
F E
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
有关向量的概念:
➢ 向量长度:向量的大小,亦称模.
➢ 零向量:长度为零的向量. ➢ 单位向量:长度等于1个单位长度的向量. ➢ 相等向量:长度相等且方向相等的向量.
平行向量:方向相同或相反的非零向量. 共线向量:即平面向量. 如图,任作一条与a所在直线平行的直线l,在l上任 取一点O,则可在l上分别作出 O A a ,O B b ,O C c 任一组平行向量都可平移到同一直线上.
B(终点) A(起点)
表示方法:以A为起点,B为终点的有向线段记作 AB
三要素:起点—起点一定在终点前面 方向—在有向线段的终点处画上箭头表 示方向
长度—已知AB,线段AB的长度,记作| AB |
高一数学平面向量知识点复习课件.ppt

P1P PP2,则
x
x1 x2 1
y
y1 y2 1
1
x
x1
x2 2
中点公式
y
y1 y2 2
2、平移公式
如果点P(x1,y2)按向量 a (h, k)
平移至 P(x, y),则
x x h
y
y
k
例5 设P1(2,-1),P2(0,5),且P在直线
P1P2上使
,求点P 的坐标。
例3 设 a (3,2),b (,7),c (2, ),若
a 2b c,求,的值。
解:由已知条件,得:
a 2b =(3,2)-2(λ,7)
=(3-2λ,-12) =(-2,μ) ∴ 3-2λ=-2 μ=-12
∴ λ= 5 ,μ=-12 2
三、两个重要定理
1、向量共线充要条件
一个向实量数λb,与使非得零向量 a 共线的充要条件是有且只有
(2)当 k a b 与 a 3b平行时,存在唯一实数λ, 使 k a b=λ (a 3b,) 由(k-3,2k+2)= λ(10,-4)
k 3 10 2k 2 4
解得 k 1 , 1
3
3
反向
五、两个重要公式
1、定比分点坐标公式
设P(x,y),P1(x1,y1),P2(x2,y2),且
一、向量及其有关概念
有向线段
向量的几何表示 向量的模 零向量 单位向量 平行向量 向 共线向量 量 相等向量 相反向量
二、向量的运算
几 加法 何 减法 方 实数与向量的积
向法
量
的
运 算
坐 标
加法 减法 实数与向量的积
方 平面向量数量积
法
几何方法:
x
x1 x2 1
y
y1 y2 1
1
x
x1
x2 2
中点公式
y
y1 y2 2
2、平移公式
如果点P(x1,y2)按向量 a (h, k)
平移至 P(x, y),则
x x h
y
y
k
例5 设P1(2,-1),P2(0,5),且P在直线
P1P2上使
,求点P 的坐标。
例3 设 a (3,2),b (,7),c (2, ),若
a 2b c,求,的值。
解:由已知条件,得:
a 2b =(3,2)-2(λ,7)
=(3-2λ,-12) =(-2,μ) ∴ 3-2λ=-2 μ=-12
∴ λ= 5 ,μ=-12 2
三、两个重要定理
1、向量共线充要条件
一个向实量数λb,与使非得零向量 a 共线的充要条件是有且只有
(2)当 k a b 与 a 3b平行时,存在唯一实数λ, 使 k a b=λ (a 3b,) 由(k-3,2k+2)= λ(10,-4)
k 3 10 2k 2 4
解得 k 1 , 1
3
3
反向
五、两个重要公式
1、定比分点坐标公式
设P(x,y),P1(x1,y1),P2(x2,y2),且
一、向量及其有关概念
有向线段
向量的几何表示 向量的模 零向量 单位向量 平行向量 向 共线向量 量 相等向量 相反向量
二、向量的运算
几 加法 何 减法 方 实数与向量的积
向法
量
的
运 算
坐 标
加法 减法 实数与向量的积
方 平面向量数量积
法
几何方法:
6.1平面向量的概念课件共34张PPT

探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA
,
O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2
高一数学 平面向量 ppt

与直线MN相交于P, 7,2若直线l:kx - y 1 0 与线段MN相交,求k 的取值范围
线段MN 的延长线
5、平面向量的数量积—知识回忆(一) 非零向量OA=a, OB=b, (1) a,b夹角∠AOB=θ (0≤θ≤π) ① θ=0同向②θ=π反向③两向量首尾相接 形成的角为夹角的补角④两向量终点 相同形成的角与夹角相等 (2)a与b夹角90。,a⊥b。 (3)a·b=|a|·|b|cosθ (0·a=0) (4) a⊥b a· b=0 (5)a· b几何意义,θ为a与b夹角则 |a|cosθ叫a在b上投影。
方向相同或相反的非零向量叫做平行向量,零 向量与任何向量平行.
(3)相等向量
长度相等且方向相同的向量叫做相等向量
(4)加法、减法
三角形法则(首尾相接),平行四边形法则(共起点)
(5)运算性质:
a+b=b+a, (a+b)+c=a+(b+c)
一、知识回顾:
a b a b a b
B B C
平行交差
例1 :a 3,2,b 1,2,c 4,1
1求满足a m b nc的实数m,n 2若a kc//2b a,求实数k 3设d x,y 满足d c//b a,
且 d c 1,求d
4、线段的定比分点—知识回忆
例2:设e1、e2是两个不共线的向量,已知向量 =2e1+ke2,
AB
CB =e1+3e2, CD
=2e1-e2,
若A、B、D三点共线,求k的值。
例4、若G为 ABC的重心, 则GA GB GC
例4、已知平行四边形OAD B的对角线OD, AB相交于点C, 线段BC上有一点M,满足BC 3BM,线段CD上有点N,满足
线段MN 的延长线
5、平面向量的数量积—知识回忆(一) 非零向量OA=a, OB=b, (1) a,b夹角∠AOB=θ (0≤θ≤π) ① θ=0同向②θ=π反向③两向量首尾相接 形成的角为夹角的补角④两向量终点 相同形成的角与夹角相等 (2)a与b夹角90。,a⊥b。 (3)a·b=|a|·|b|cosθ (0·a=0) (4) a⊥b a· b=0 (5)a· b几何意义,θ为a与b夹角则 |a|cosθ叫a在b上投影。
方向相同或相反的非零向量叫做平行向量,零 向量与任何向量平行.
(3)相等向量
长度相等且方向相同的向量叫做相等向量
(4)加法、减法
三角形法则(首尾相接),平行四边形法则(共起点)
(5)运算性质:
a+b=b+a, (a+b)+c=a+(b+c)
一、知识回顾:
a b a b a b
B B C
平行交差
例1 :a 3,2,b 1,2,c 4,1
1求满足a m b nc的实数m,n 2若a kc//2b a,求实数k 3设d x,y 满足d c//b a,
且 d c 1,求d
4、线段的定比分点—知识回忆
例2:设e1、e2是两个不共线的向量,已知向量 =2e1+ke2,
AB
CB =e1+3e2, CD
=2e1-e2,
若A、B、D三点共线,求k的值。
例4、若G为 ABC的重心, 则GA GB GC
例4、已知平行四边形OAD B的对角线OD, AB相交于点C, 线段BC上有一点M,满足BC 3BM,线段CD上有点N,满足
平面向量的概念课件(共34张PPT)-高一下学期数学人教A版(2019)必修第二册

(1)向量的几何表示:向量可以用有向线段来表示, 有向线段的
长度
方向
______表示向量的大小,有向线段的______表示向量的方向.如
, .
(2)向量的字母表示:向量可以用黑体小写字母,,,…表示,书写时,
→ → →
用带箭头的小写字母 , , ,…表示.
课前预习
3.向量的相关概念
=
(5 2)2 − 52 = 5 m .
△ 是直角三角形,其中∠ = 90∘ , = 3 m, = 5 m,
所以 = 32 + 52 = 34(m),故|| = 34 m.
课中探究
[素养小结]
在画图时,向量是用有向线段来表示的,用有向线段的长度表示向
量的大小,用箭头所指的方向表示向量的方向.应该注意的是有向
课前预习
知识点三 相等向量与共线向量
相同或相反
非零向量
1.平行向量:方向____________的__________叫作平行向量.向量与
//
平行,记作______.规定:零向量与任意向量平行.
相等
相同
2.相等向量:长度______且方向______的向量叫作相等向量.向量与
相等,记作 = .
课中探究
[解析] 因为,,为非零向量,且//,所以与方向相同或相反,
又//,所以与方向相同或相反,因此与方向相同或相反,所
以//,故A正确;
两个相等的非零向量的起点与终点也可能在一条直线上,故B不正确;
易知C正确;有相同起点的两个非零向量有可能是平行向量,故D不正确.
以//,且 = .
由图可知,与向量相等的向量有.
课中探究
,
(2)与向量相反的向量有_________;
长度
方向
______表示向量的大小,有向线段的______表示向量的方向.如
, .
(2)向量的字母表示:向量可以用黑体小写字母,,,…表示,书写时,
→ → →
用带箭头的小写字母 , , ,…表示.
课前预习
3.向量的相关概念
=
(5 2)2 − 52 = 5 m .
△ 是直角三角形,其中∠ = 90∘ , = 3 m, = 5 m,
所以 = 32 + 52 = 34(m),故|| = 34 m.
课中探究
[素养小结]
在画图时,向量是用有向线段来表示的,用有向线段的长度表示向
量的大小,用箭头所指的方向表示向量的方向.应该注意的是有向
课前预习
知识点三 相等向量与共线向量
相同或相反
非零向量
1.平行向量:方向____________的__________叫作平行向量.向量与
//
平行,记作______.规定:零向量与任意向量平行.
相等
相同
2.相等向量:长度______且方向______的向量叫作相等向量.向量与
相等,记作 = .
课中探究
[解析] 因为,,为非零向量,且//,所以与方向相同或相反,
又//,所以与方向相同或相反,因此与方向相同或相反,所
以//,故A正确;
两个相等的非零向量的起点与终点也可能在一条直线上,故B不正确;
易知C正确;有相同起点的两个非零向量有可能是平行向量,故D不正确.
以//,且 = .
由图可知,与向量相等的向量有.
课中探究
,
(2)与向量相反的向量有_________;
2025届高中数学一轮复习课件《平面向量基本定理及坐标表示》ppt

)
高考一轮总复习•数学
第10页
2.已知平面向量 a=(1,1),b=(1,-1),则向量12a-32b=( )
A.(-2,-1) B.(-2,1)
C.(-1,0)
D.(-1,2)
解析:因为 a=(1,1),b=(1,-1),所以12a-32b=12(1,1)-32(1,-1)=12,12-32,-32 =(-1,2).
∴54<k<32.即 k 的取值范围为54,32.
高考一轮总复习•数学
第23页
题型
平面向量的坐标运算
典例 2(1)已知 A(-2,5),B(10,-3),点 P 在直线 AB 上,且 P→A =-13P→B ,则点 P 的
由线性关系,转化到坐标运算.
坐标是( )
A.(-8,9)
B.(1,3)
C.(-1,-3) D.(8,-9)
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 平面向量基本定理 如果 e1,e2 是同一平面内的两个不共线向量,那么对这一平面内的任一向量 a,有且只 有一对实数 λ1,λ2,使 a=λ1e1+λ2e2,若 e1,e2 不共线,我们把{e1,e2}叫做表示这一平面内 所有向量的一个基底.若 e1,e2 互相垂直,则称这个基底为正交基底;若 e1,e2 分别为与 x 轴、y 轴方向相同的两个单位向量,则称这个基底为单位正交基底.
高考一轮总复习•数学
第22页
解析:如图,分别取 BD,AE 的中点 G,N,连接 GN 交 EF 于 H,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明:两个向量和 与差的坐标分别等
a b (x1 x2, y1 y2 )
于这两个向量相应 坐标的和与差。
a (x1
,
y1)
说明:实数与向量的积的坐标 等于用这个实数乘原来向量的
相应坐标。
a
b
( x1x2 ,
y1 y2
)
说明:两个向量的数量积等 于它们对应坐标的乘积的和。
向量运算律
1、实数与向量的积运算律
设P(x,y),P1(x1,y1),P2(x2,y2),且
P1P PP2,则
x
x1 x2 1
y
y1 y2 1
1
x
x1
x2 2
中点公式
y
y1 y2 2
2、平移公式
如果点P(x1,y2)按向量a (h, k)
平移至 P(x, y),则
x x h
y
y
k
例5 设P1(2,-1),P2(0,5),且P在直线
坐标表示:a x2 y2
2、两点间距离公式:
AB (x1 x2 )2 ( y1 y2 )2
3、计算两个向量的夹角:
cos a b
ab
4、向量垂直充要条件:a b 0
坐标表示:x1x2+y1y2=0
5、向量共线(平行)充要条件:b a
坐标表示:x1y2-x2y1=0
注意:这两个充要条件分别是判断两个向量(直线) 垂直或平行的重要方法之一。
(1)(a) ()a
(2)( )a a a (3)(a b) a b
2、平面向量数量积的运算律
思考:你能将此 运算律用坐标表 示出来吗?
(1)a b b a
(2)(a) b (a b) a ( b)
(3)(a b) c a c b c
例1 判断下列命题及其逆命题的真假:
P1P2上使 P1P 2 PP2 ,求点P 的坐标。
例6 (1)函数 y log 2 (x 2) 3的图象经过 怎样的平移,可以得到函数 y log 2 x的图象? (2)函数 y cos(x ) 2的图象经过怎样的 平移,可以得到函数 y 3cos x的图象?
六、正弦定理及其变形公式
例3 设 a (3,2),b (,7),c (2, ),若
a 2b c,求,的值。
解:由已知条件,得:
a 2b =(3,2)-2(λ,7)
=(3-2λ,-12) =(-2,μ) ∴ 3-2λ=-2 μ=-12
∴ λ= 5 ,μ=-12 2
三、两个重要定理
1、向量共线充要条件
向量b 与非零向量 a 共线的充要条件是有且只有
一个实数λ,使得 b a
注意:这是判断两个向量共线(平行)的重要方法。
2、平面向量基本定理
如果 e1, e2 是同一个平面内的两个不共线向量, a 那么对于这一平面的任一个向量 ,有且只有一对实
数 1, 2 ,使
a 1e1 2e2
四、数量积的主要应用
2
1、计算向量的模:a a a , a a a
例4 已知 a b =(1,2), =(-3,2),当k为何
值时,
(1) k a b与 a 3b垂直; (2) k a b与 a 3b平行?平行时它们是同向
还是反向?
解:由已知 k a b=(k-3,2k+2),a 3b =(10,-4) (1)当 (ka b) (a 3b) 0时,这两个向量垂直。
高一数学平面向量 知识点复习课件
一、向量及其有关概念
有向线段
向量的几何表示 向量的模 零向量 向 单位向量 量 平行向量 共线向量 相等向量 相反向量
二、向量的运算
几 加法
何 减法 方
向 法 实数与向量的积 量
的
运 算
坐
加法
标 减法
方 实数与向量的积 法 平面向量数量积
几何方法:
B
OA
OB OA AB
a b c 2R sin A sin B sin C
SABC
1 2
bc sin
A
1 2
ca sin
B
1 2
absin C
a 2Rsin A,b 2Rsin B,c 2Rsin C
sin A a ,sin B b ,sin C c
2R
2R
2R
sin A: sin B : sin C a : b : c
六、余弦定理及其变形公式
a2 b2 c2 2bc sin A b2 c2 a2 2ca sin B 变形 c2 a2 b2 2ab sin C
cos A b2 c2 a2 2bc
cosB c2 a2 b2 2ca
cosC a2 b2 c2 2ab
OC OA OB
A
B
C
O
A
O
B
BA OA OB
B
a
a( 0) a( 0)
b a
O MA
实数与向量的积的实质是:向量的伸缩变换。 a b | a | | b | cos
| OM | | OA |
坐标方法
设向量 a (x1,y1),b (x2,y2)则
a b (x1 x2, y1 y2 )
1、若| a|= | b| ,则 a 与 b是共线向量; 2、若 a∥b ,则 a在 b方向上的投影是 a ;
3、若 | a || b |1 ,则 a b 1 ; 4、若a 0,则 0且a 0
例2 判断下列运算律的正误
1、a 0, a b 0 b 0 2、a b b c,b 0 a c 3、(a b) c a (b c)
由(k-3)×10+(2k+2)×(-4)=0,得:k=19
(2)当 k a b 与 a 3b平行时,存在唯一实数λ,
使 k a b=λ (a 3b,) 由(k-3,2k+2)= λ(10,-4)
k 3 10 2k 2 4
解得 k 1 , 1
3
3
反向
五、两个重要公式
1、定比分点坐标公式