平行线的性质1教案
相交线与平行线教案

5.3.1 平行线的性质(第1课时)平行线的性质(一)一.教学目标1.知识与技能:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.过程与方法:经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
3.情感态度与价值观:培养学生合作交流意识和探索精神。
二.重点、难点重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.三.教学过程(一)、引导学生逆向思维现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?(二)、实践探究1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?c b a4321平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定. 平行线的性质平行线的判定因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a ∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a ∥b.6.教师引导学生理清平行线的性质与平行线判定的区别. 学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论. 7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗?结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程. 因为a ∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由. 学生仿照以下说理,说出如何根据性质1得到性质3的道理. 8.平行线性质应用.例 (课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么? 讲解按课本.(三)、巩固练习 1.课本练习(P22). (四)课堂小结: 经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算 (五)课堂作业:练习卷 (六)课堂反馈 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、填空题.1.如图(1),若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.87654321DCBAFEDC B A(1) (2) (3) 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.D C BA3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:因为∠ECD=∠E,所以CD∥EF( )又AB∥EF,所以CD∥AB( ).平行线的性质(第2课时)平行线的性质(二) 教学目标知识与技能:能够综合运用平行线性质和判定解题过程与方法.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论. 情感态度与价值观:推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用.教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么? 二、进行新课已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格.通过上述实践,FECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD. ③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.E D CB AFEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行). 所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离. 教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论。
浙教版数学七年级下册1.4《平行线的性质》教学设计1

浙教版数学七年级下册1.4《平行线的性质》教学设计1一. 教材分析《平行线的性质》是浙教版数学七年级下册1.4节的内容,主要包括平行线的传递性质、同位角、内错角和同旁内角的概念及它们之间的关系。
本节内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经掌握了平行线的概念,但对平行线的性质和角度关系还不够了解。
学生的空间想象力有所不同,逻辑思维能力也各有差异。
因此,在教学过程中,需要关注学生的个体差异,引导学生通过观察、操作、思考、交流和总结,逐步掌握平行线的性质。
三. 教学目标1.知识与技能:使学生掌握平行线的传递性质,理解同位角、内错角和同旁内角的概念及它们之间的关系。
2.过程与方法:培养学生观察、操作、思考、交流和总结的能力,提高空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.教学重点:平行线的传递性质,同位角、内错角和同旁内角的概念及它们之间的关系。
2.教学难点:平行线性质的灵活运用,角度关系的推导和证明。
五. 教学方法1.情境教学法:通过生活实例和几何图形,引导学生发现平行线的性质,激发学生的学习兴趣。
2.动手操作法:让学生通过折纸、拼图等动手操作活动,观察和体验平行线的性质,培养学生的空间想象能力。
3.合作交流法:鼓励学生分组讨论,共同探讨平行线的性质,提高学生的团队协作能力。
4.引导发现法:教师引导学生发现问题,引导学生通过思考和总结,得出平行线的性质,培养学生的逻辑思维能力。
六. 教学准备1.教学素材:准备相关的图片、图形和实例,制作PPT。
2.教学工具:准备黑板、粉笔、直尺、圆规等。
3.学生活动材料:准备折纸、拼图等动手操作材料。
七. 教学过程1.导入(5分钟)通过展示生活中常见的平行线现象,如楼梯、铁路等,引导学生回顾平行线的概念,激发学生的学习兴趣。
平行线的性质教案

平行线的性质教案课题:平行线的性质一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点:平行线的性质公理及平行线性质定理的推导.(二)难点:平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排:1课时五、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.六、教学过程(一)创设情境,复习导入1.如图1,(1)∵ (已知),∴ ().(2)∵ (已知),∴ ().(3)∵ (已知),∴ ().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:[板书]平行线的性质【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.(二)探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线AB 的平行线CD ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位。
五步法教你讲好平行线性质1,2,3的教案

五步法教你讲好平行线性质1,2,3的教案一、教学目标本教学内容旨在让学生了解和掌握平行线性质1、2、3的基本概念和性质,能够熟练应用基本定理解决问题,培养学生的数学思维和创造能力,同时提升学生的数学素养和学习兴趣。
二、教学重难点1. 平行线性质的概念和性质,如何运用基本定理解决问题。
2. 如何引导学生通过实际问题的解决过程,发现和掌握平行线性质。
三、课前准备1. 教师准备好相关的教材、教具和课件,编写好教学PPT。
2. 学生准备好相关的学习材料和习题,做好预习。
四、教学步骤1. 导入利用一些简单的生活例子,让学生感受到平行线性质的重要性和实用性。
例如:铁路的平行轨道、路边的电线塔、电线杆等。
2. 学习要点讲解讲解平行线的定义以及平行线性质1、2和3的概念和性质,引导学生感受到这些概念和性质的内涵和实际操作。
3. 知识巩固利用一些生活中实际问题,让学生通过绘制图形和分析问题,发现和应用平行线性质1、2、3的基本定理,巩固知识点。
例如:问题:如图,长方形ABCD中,AE=BF,DE=CD-5,求CD的长度。
解答:1. 作BF交DE于M;2. 连BM,连接MC;3. △BMC中,BC=BM;4. 四边形ACMD中,对角线AC和MD互相平分,AM=MC,CD=AM+MD;5. △AFB中,AE=BF,△AEM≌△BFM,AM=BM;6. 根据1和3,可以得到CD=MC+MD=BC+MD=BD=AD+AB=AE+BF+DC;7. 根据平行线性质1,AE∥BF,可以得到角ADE=角BDC,△ADE≌△BDC;8. 根据△ADE≌△BDC和2,可以得到DC=AE+DE=BF+CD-5,即CD=DC+5=AE+BF+CD。
4. 创新拓展利用一些拓展问题,让学生深入理解平行线性质的应用和意义,并发展他们的创造力和探究性思维。
例如:以四边形ABCD为底面,侧面为倾斜角为45°的棱锥,利用平行线性质解决棱锥的面积和体积问题。
5.3.1平行线的性质(1)(新版人教版) 4

B
D
4.巩固新知,深化理解
10. 如图,已知AB∥CD,AE∥CF,∠A= 39°,
∠C是多少度?为什么?
E F
A C
G
B D
4.巩固新知,深化理解
方法一
E
解:∵AB∥CD, ∴ ∠C=∠1. ∵ AE∥CF, ∴ ∠A=∠1. ∴ ∠C=∠A. ∵∠A= 39º , ∴∠C= 39º .
A C G
F
1
B D
4.巩固新知,深化理解
方法二
解:∵AB∥CD,
∴ ∠C=∠2. ∵ AE∥CF,
A G
E F
∴ ∠A=∠2. ∴ ∠C=∠A. ∵∠A= 39º , ∴∠C= 39º .
C
2
B D
小结
两直线平行
线的关系
性质 判定
系 法平 的行 线 的 性 区质 同位角相等 和 内错角相等 平 别 行 同旁内角互补 线 与的 角的关系 判 定 联方
A 1 2 4 3 E
B
D
4.巩固新知,深化理解
8. 如图,平行线AB,CD被直线AE所截. (2)从∠1=110º 可以知道∠3是多少度吗?为什么? 答:∠3 =110º .因为AB∥CD ,∠1和∠3是同位角, 根据两直线平行,同位角相等,得到∠1=∠3.因为 ∠1=110º ,所以∠3 =110º . C
1.梳理旧知,引出新课
平行线的判定
结论
判定方法1 同位角相等,两直线平行. 判定方法2 内错角相等,两直线平行. 判定方法3 同旁内角互补,两直线平行.
1 线 平 行
结论
?
1.梳理旧知,引出新课
条件
两条平行线 被第三条直 线所截
《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。
2. 通过实例让学生熟练掌握平行线的性质。
3. 培养学生的空间观念和逻辑思维能力。
二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。
2. 教学难点:如何理解和应用平行线的性质。
三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。
- 提出问题,引导学生思考平行线的相关知识。
2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。
- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。
- 鼓励学生动手操作,亲自验证平行线的性质。
4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。
- 对学生的解答进行点评,帮助他们改正错误,加深理解。
5. 小结与反思:
- 引导学生总结本节课的学习内容。
- 鼓励学生分享自己的学习心得,提出疑问或困惑。
四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。
五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。
- 思考如何改进教学方法,提高教学质量。
人教版七年级数学下册第五章《平行线的性质1

2、问题探索 问当下题直图2线)A,B前与面C所D不发平现行的时式(子如都
不成立。这说明只有AB∥CD 时,前面的式子才能成立.
如果改变AB和CD的 位置关系,即直线AB 与CD不平行,那么你 刚才发现的结论
还成立吗?请同学们 动手画出图形,并用 量角器量一量各角的 大小,验证一下你的 A 结论.
教学内容
平行线的性质
教学目标
1、知识目标:使学生理解平行线的性质,能初步运用平行 线的性质进行有关计算.
2、能力目标:通过本节课的教学,培养学生的概括能力和 “观察-猜想-证明”的科学探索方法,培养学生的辩证思 维能力和逻辑思维能力.
3、情感目标:培养学生的主体意识,向学生渗透讨论的数 学思想,培养学生思维的灵活性和广阔性.
还有一些说不出名字的角, 如 ∠1与 ∠6等,书上没有 定义.
E
A
41 32
B
C
8ห้องสมุดไป่ตู้ 76
D
F
∠1= ∠5, ∠ 2=∠6, ∠ 3=∠7, ∠4= ∠8;
∠2= ∠8, ∠3=∠5, ∠ 1=∠7, ∠4=∠6;
∠2+ ∠5=180°, ∠3+ ∠8=180°, ∠1+ ∠6=180°, ∠4+ ∠7=180°;
问题4
(1)具有相等关系的两个 角,有的是同位角,有的 是内错角,如∠1与 ∠5等
(都1是)同具位有角相; 等∠2关与系∠的8等 两都角是内有错怎角样。的还位有置一些关说 系回不∠呢答出7,名?)∠字(4的与请角∠甲,6组等如.同∠学1与 ((22))互具有补互的补两关角系又的有两个 怎角样,的有位的是置同关旁系内呢角?,如 (∠请2与乙∠组5同等都学是回同答旁)内角;
第七章第3节《平行线的性质》第1课时教学设计-2021-2022学年鲁教版(五四制)六年级数学下册

五、实践应用 巩固深化
若有n个拐点,你能找到规律吗?
A
B
E1
E2 …
En
C
D
当有n个拐点时: ∠A+∠ E1 + ∠ E2 +…+∠ En +∠C = 180°(n+1)
五、实践应用 巩固深化
变式3:如图,若AB∥CD, 则:
A
B
A
BA
B
E
F
C
DC
E
F1
DC
E1 E2 D
当左边有两个角,右边有一个角时: ∠A+∠C= ∠E
六、归纳小结
平行线的性质与判定的区别:
已知
结论
同位角相等 内错角相等 同旁内角互补
判定 性质
两直线平行
结论
已知
六、归纳小结
平行线的性质
同a
位 角
b
图形 1
2
c
已知 a//b
结果 ∠1=∠2
依据
两直线平行 同位角相等
内a
错 角
b
3
2 c
两直线平行 a//b ∠3=∠2 内错角相等
同
旁a
内 角
b
4 2
变式1: 如图,AB//CD,探索∠B、∠D与∠DEB的大小关系 .
解:过点E 作EF//AB. ∴∠B+∠BEF=180°. ∵AB//CD. ∴EF//CD. ∴∠D +∠DEF=180°. ∴∠B+∠D+∠DEB =∠B+∠D+∠BEF+∠DEF =360°. 即∠B+∠D+∠DEB=360°.
A. 20° B. 25° C. 30° D. 35°
选做:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生展示:
l2 l1
l3
.
板书: 平行线的性质 1 两直线平行,同位角相等 数学语言:∵a//b (已知)
∴ ∠1=∠2 (两直线平行,同位角相等)
例 2: 解:∵ ∠1=∠2(已知) ∴a∥b(同位角相等,两直线平行)
∴ ∠3=∠4
∵b⊥m(已知)
∴ ∠4=900( 垂直的定义 )
∴ ∠3=900
∴a⊥m
三、课堂测试
1、已知 a,b,c,d 四条直线如图。
(1)图中哪些直线互相平行? 哪些直线相交?
(2)说出∠α的度数。
2、已知:如图∠ADE=60°,∠B=60°,∠C=80°。
问∠ AED 等于多少度?为什么?
解:∵ ∠ADE=∠B=60° (已知)
∴ DE//BC(
)
∴ ∠AED=∠C=80° (
)
b
76o 77o
a
76o c
α
d
c
12 34 56 78
a D bB
A E C
3. 如 图 AB ∥ CD , ∠ α
C 那么∠ D=
,∠C=
,
∠ B=
。
=45°,∠D=∠
4.如图 AB∥CD, CD ∥EF,∠1 = ∠2=60 ° ,那么 ∠A=
D
C
A
,∠E=
。
B
Aα
B
45
°
C 1 60
2
6°0 E°
D F
5、如图,已知 AE//CF,AB//CD,∠A=40,求∠C 的度数。
E
A C
F 1 G
B D
四、课后提升 如图,把一张长方形纸片 ABCD 沿 EF 折叠,使折叠后夹角∠1=58°,求∠2 的度数。
A
E
D
2
G B1
M
FC N
1、你发现了什么?与其他同学的发现相同吗?
2、在结论的探究过程中,你用了什么方法? 学生归纳总结
归纳性质:如果两条平行直线被第三条直线所截,同位角相等,简记为:两直线平行,同位
角相等
数学语言:∵a//b (已知)
∴ ∠1=∠2 (两直线平行,同位角相等)
c
(二)理解平行线的性质 1
1、辩一辩:
学生思考并回答
的平性行质线 只需 a//b
解:∵ ∠1=∠2(已知) ∴a∥b(同位角相等,两直线平行)
∴ ∠3=∠4
∵b⊥m(已知)
∴ ∠4=900( 垂直的定义 ) ∴ ∠3=900
∴a⊥m
练:如图, l1 ⊥ l3 把直线 l1 沿直线 l2 的任一方向平移,得直线 l3 ,则 l2 ⊥ l3 。请说明理由。
学生小组展示:
12 34 56 78
a
b
1 l3
l1 2 l2
(2)自主学习 P15 页例 2, Ⅰ、思路点拨:①综合法:
∠1=∠2(已知)
的平判行定 线
( ) a⊥m
②分析法:
的平性行质 线 ∠3=∠4= 90
要求 a⊥m
垂定直义的
(
)
∠1=∠2(已知)
Ⅱ、过程整理:
只需∠3=∠4= 90
(1) 凡是同位角相等这句话对吗?
(2) 两直线被第三条直线所截,同位角相等吗?
(3) 两条直线在什么情况下, 同位角会相等呢?
2、比一比:
学生思考并回答
平行线的性质和判定有什么不同?
3、学一学:
学生思考并回答
(1)自主学习 P15 页例 1,思考∠3=∠1 的理由;
练:如图:已知直线 l2 ∥ l3 ,∠1= 40 ,求∠2 的度数。
1.4 平行线的性质(1)教案
知识目标:通过作图探究、归纳并理解平行线性质 1;
能力目标:会运用平行线性质进行角度的计算
情感目标:通过对平行线的性质的探究,使学生认识到数学与现实生活的密切联系,促使学
生在学习活动中培养良好的情感、合作交流、主动参与的意识
学教学重点:掌握平行线性质 1
教学难点:理解例 2 的推理过程
学习过程:
一、知识回顾:
学生独立思考并回答:如何判断两直线平行?
二、知识探究:
(一)得出平行线的性质 1 小组探究交流
活动 1、任意画两条不平行的直线,再任意画一条直线与这两条直线相交。测量同位角的度 Nhomakorabea数;
活动 2、任意画两条互相平行的直线,再任意画一条直线与这两条平行线相交。测量同位角
的度数;
在小组活动 1 和活动 2 中