几何光学基本原理习题及答案
[指导]几何光学第一次参考答案
![[指导]几何光学第一次参考答案](https://img.taocdn.com/s3/m/7505b51402d8ce2f0066f5335a8102d276a261f2.png)
几何光学第一次作业第1题:一折射球面r=150mm ,n=1,n ’=1.5。
当物方截距分别为- 、-1000mm 、-100mm 、0mm 、100mm 、150mm 、200mm 时,求像方截距及垂轴放大率各为多少?解:由'''n n n n l l r--= 得像方截距为'''n l n n n r l=-+又因为''nl n lβ=所有当l = - 时,'l =450mm ,β=0当l = -1000mm 时,'l =643mm ,β=-3/7 当l = -100mm 时,'l =-225mm ,β=1.5当l = 0mm 时,'l =0mm , β=1当l = 100mm 时,'l =50mm , β=1/3 当l = 150mm 时,'l =150mm ,β=2/3 当l = 200mm 时,'l =180mm ,β=0.6第2题:在曲率半经r=200mm 的凸面镜前l= -1000 mm 处有一物高为y=100mm 的物体,求该物体经球面镜后所成像的位置和大小。
解:由'''n n n n l l r--=,令'1n n =-=得,'112l l r +=所以当r=200mm ,l= -1000 mm 时,'l =90.9mm ,则'l lβ==-0.091 'y y β== -9.1mm第4题:已知一个透镜将一物放大-3X 投影在屏幕上,当透镜向物体移近18mm 时,物体将被放大-4X ,求透镜的焦距。
解:因为f xβ=-所以根据题意有:3fx-=- ①418fx -=-+ ②解得物方焦距f = -216mm ,像方焦距'f = -f =216mm第2次作业第1题:某物镜由两个薄光组组成:f 1’=100mm ,f 2’=200mm ,d=0;在第一光组前x= —50mm 处有一物高为y=20mm的物体,求:(1)该物镜的焦距;(2)像的位置;(3)像高。
应用光学习题

' 2
)x
(l1'
xF'
dxF'
f
' 2
xF'
f
' 2
2
)
0
当d 21.13时
x
' F
f2
f
' 2
2500 78.87
86.595
x2 58.725x 86.597 0
x1 1.51 x2 57.2115
12. 由两个透镜组成的一个倒像系统,设第一组透 镜的焦距为f1′,第二组透镜的焦距 为f2′, 物平面位于第一组透镜的物方焦面上,求该倒像 系统的垂轴放大率。
5010 1.5163(40 50) _(1.5163 1) 10
50
l'H
n(r1
r2d r2 ) (n 1)d
40
11 1
l
' 2
l2
f
' 2
l2'
L
(d
)
xF'
f
' 2
1
l
' 2
1 l2
1
f
' 2
f
' 2
(l
2
l
' 2
)
l
2
l
' 2
f
' 2
(l1'
d
x
x
前六章工程光学习题及解答

第一章几何光学基本原理1. 作图分析下列光学元件对波前的作用:(1) 图1.1中(a )、(b )中所示,各向均匀同性介质中的点光源P 发出球面波,P '为其共轭理想像点.假设在相同时间间隔内形成的球面波前间距为d .求该波前入射到折射率大于周围介质的双凸透镜或凹透镜上,波前在透镜内和经透镜折射后的波前传播情况.(2) 图1.1中(c )所示,各向均匀同性介质中的无限远点光源发出平面波,求该波前入射到折射率大于周围介质的棱镜上,波前在棱镜内和经棱镜折射后的波前传播情况.Pd图1.1(b)图1.1(c)P '图1.1(a)解:(1)P d dd 'd 'P 'd(2)2. 当入射角很小时,折射定律可以近似表示为ni=n′i′,求下述条件的结果:(1) 当n =1,n′=1.5时,入射角的变化范围从0~65º.表格列出入射角每增加5º,分别由实际与近似公式得到的折射角,并求出近似折射角的百分比误差.请用表格的形式列出结果.(2) 入射角在什么范围时,近似公式得出的折射角i′的误差分别大于0.1%,1%和10%. 解:(1) 当1n =,1.5n '=时,由折射定律:sin sin n I n I ''=,得:11sin sin sin sin 1.5n I I I n --⎛⎫⎛⎫'==⎪ ⎪'⎝⎭⎝⎭由折射定律近似公式:ni n i ='',得: 1.5ni ii n '==' 入射角在0~65º范围内变化时,折射角和折射角近似值以及近似折射角的百分比误差如下表所示:(2) ()/=0.1%i I I '''-时,=5.7I ︒;()/=1%i I I '''-时,=18.2I ︒=53.3I ︒.3.由一玻璃立方体切下一角制成的棱镜称为三面直角棱镜或立方角锥棱镜,如图1.2所示.用矢量形式的反射定律试证明:从斜面以任意方向入射的光线经其它三面反射后,出射光线总与入射光线平行反向.同时,说明这种棱镜的用途.解:(法一)如下图所示,设光线沿ST 方向入射经T 、Q 、R 点反射后,由RS '方向出射,设1A 、2A 、3A 、4A 分别为ST 、TQ 、QR 和RS 的单位矢量,射向反射面AOB 的入射光线1A 的单位矢量可表示为1=A li mj nk ---,式中l 、m 、n 为光线1A 在x 、y 、z 轴上的方向数,2221l m n ++=,光线1A 经AOB 面反射后,射向反射面BOC ,反射面AOB 的法线单位矢量为1n k =-,则反射光线2A 单位矢量可由矢量反射定律决定,即2112()2[()]A A A k k li mj nk li mj nk k k li mj nk =-=-------=--+反射面BOC 的法线方向单位矢量为2n i =-,光线2A 射向BOC 后的反射光线3A 的单位矢量为3222()2[()]A A A i i li mj nk li mj nk i i li mj nk =-=-------=-+反射面COA 的法线方向单位矢量为3n j =-,光线3A 射向COA 反射后的光线经4A 的单位矢量为4332()2[()]+A A A j j li mj nk li mj nk j j li mj nk =-=-------=+对光线1A 和4A 作点积,得22214()()()1A A li mj nk li mj nk l m n =-++++=-++=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角.(法二)如下图所示,入射光线从斜面进入棱镜后的折射光线方向为1A ,且1=(,,)A l m n ,然后经过AOB 面的反射后的折射方向为2A ,再依次经过BOC 反射面、COA 反射面后的方向分别为3A 、4A .其中,反射面AOB 、BOC 、COA 的法线单位矢量分别为1=N (0,0,1),2=N (1,0,0),3=N (0,1,0).这样由矢量形式的反射定律,有图 1-21A R)a 3A 4A 2A S '第一次AOB 面反射式,21111=-2()(,,)A A N N A l m n ⋅=- 第二次BOC 面反射式,32222=-2()(,,)A A N N A l m n ⋅=-- 第三次COA 面反射式,433133=-2()(,,)A A N N A l m n A ⋅=---=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角. 4.已知入射光线cos cos cos A i j k αβγ=++,反射光线cos cos cos A i j k αβγ''''''''++=,求此时平面反射镜法线的方向. 解:反射定律为=-2()''A A N N A ,在上式两边对A 做标积,有212()''=-A A A N , 由此可得12''=-A A A N ,将上式代入反射定律得cos =α=''A N A A) ()5. 发光物点位于一个透明球的后表面,从前表面出射到空气中的光束恰好为平行光如图1.3所示,求此透明材料的折射率的表达式.当出射光线为近轴光线时,求得的折射率是多少? 解:设空气折射率为0n ,透明球的折射率为1n ,则由折射定律01sin sin n i n i '=,得此透明球的折射率表达式为:10sin =sin i n n i'由三角关系有2i i '=,那么上式可以写作10=2cos n n i .近轴成像时,sin sin i i '、分别被i i '、代替,从而可得1022n n == 6.设光纤纤芯折射率1 1.75n =,包层折射率2 1.50n =,试求光纤端面上入射角在何值范围内变化时,可保证光线发生全反射通过光纤.若光纤直径40μm D =,长度为100m ,求光线在光纤内路程的长度和发生全反射的次数. 解:图1.3011sin 0.901464.34n I I ====光线在光纤内路程长度116.7m L '===发生全反射次数21502313()N ==次7.如图1.4所示,一激光管所发出的光束扩散角为7',经等腰直角反射棱镜(=1.5163n ')转折,是否需要在斜面上再镀增加反射率的金属膜? 解:由折射定律得:11sin sin 3.5sin 0.0006714421.5163n i i n ''==='解之得10.03847i '= 而1=90=89.96153i β'- 根据平面几何关系有2==89.9615345=134.961539044.96153i αβγα++=-=而第二面临界角11211sin sin 41.261751.5163m I i n --===<' 所以,不需要镀膜.8.一厚度为200mm 的平行平板玻璃 1.5n =,下面放一直径为1mm 的金属片,如图1.5所示.若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,求纸片的最小直径?解:要使圆形纸片之外都看不到金属片,只有在这些方向上发生全反射.由几何关系可得纸片最小直径1tan 2+=a L d由于发生了全反射,所以有sin 1/1/1.52/3a n ===,tan =sin 2a a =得367.7709mm d =9.折射率为1 1.5n =,12 1.6n n '==,21n '=的三种介质,被两平行分界面分开,试求当光图1.5线在第二种介质中发生全反射时,光线在第一种界面上的入射角1I .解:由折射定律sin sin n I n I ''=,光线从光密进入光疏介质时发生全反射90I '=由题意知221sin /cos m I n n I ''==又知1111sin sin n I n I n ''===11.5sin I =解得156.374I=10.如图1.6所示,有一半径为R 厚度为b 的圆板,由折射率n ,沿径向变化的材料构成,中心处的折射率为n 0,边缘处的折射率为n R ..用物点理想成像的等光程条件推导出圆板的折射率n r 以何种规律变化时,在近轴条件下,平行于主光轴的光线将聚焦?此时的焦距f′又为多少?解:如图1.6所示,离轴r 的光程为r n b A +=即r n b f A +=其中A 为常数,与轴上光线的光程比较,得2201122r R r Rr R n b f A n b f n b f f f='''++=−−−→++=+''故202()R R f n n b '=-或202()r rf n n b'=-220002()2'R r r n n r n n n bf R-=-=- 11.试用费马原理推导光的折射定律解:设任一折射路径的光程为OPL11OPL n OP n PL n '=+=由费马原理1111sin sin 0dOPL OPL n n n i n i dx δ''==-=-= 故1111sin sin n i n i ''= 12. 已知空气中一无限远点光源产生的平行光从左入射到形状未知的凹面镜上,该光束经会图1.6聚后在凹面镜顶点的左方成一理想像点,试用等光程原理确定该凹面镜的形状. 解:如右图所示,以凹面镜的顶点为原点建立(,)z y 坐标系.由等光程原理知,光线①与光线②的光程相等,则22()2 4 4f z f y y fz z f++=⇒=-=-或13. 举例说明正文中图1.4.2中所示四种成像情况的实际光学系统.解:(a )实物成实像:照相机、显微镜的物镜、望远镜的物镜、投影仪、幻灯机 (b )虚物成实像:对着镜子自拍、拍摄水中的鱼(c )实物成虚像:平面镜、眼镜、放大镜、显微镜的目镜、倒车镜(d )虚物成虚像:出现在海市蜃楼(虚像)中的水面上的倒影(虚物)、潜望镜的第二个反射镜对第一个反射镜中的像成像、多光学元件系统.14.如何区分实物空间、虚物空间以及实像空间和虚像空间?是否可按照空间位置来划分物空间和像空间?解:光学系统前面的空间为实物空间.光学系后面的空间为实像空间.光学系统后面的空间为实像空间.光学系统前面的空间为虚像空间.物空间和像空间在空间都是可以无限扩展的,不能只按照空间位置划分.15.假设用如图1.7所示的反射圆锥腔使光束的能量集中到极小的面积上.因为出口可以做到任意小,从而射出的光束能流密度可以任意大.验证这种假设的正确性.解:如图所示,圆锥的截面两母线是不平行的,从入口进入的光线,在逐次反射过程中入射角逐渐减小,必然会在某一点处光线从法线右侧入射,从而使光线返回入口.显然,仅从光的反射定律来分析,欲用反射圆锥腔来聚焦光束能流的设想是不现实的.第二章球面成像系统1. 用近轴光学公式计算的像具有什么实际意义?解:近轴光学是通过光线追迹确定光学系统一阶成像特性和成像系统基本性质的光学.近轴光学公式表示理想光学系统所成像的位置和大小,也作为衡量实际光学系统成像质量的标准.2.有一光学元件,其结构参数如下: (mm)r (mm)t n 1003001.5 ∞(1) 当l =∞时,求像距l '.(2) 在第二个面上刻十字线,其共轭像在何处?(3) 当入射高度10mm y =时,实际光线和光轴的交点在何处?在高斯像面上的高度是多少?该值说明什么问题?解:(1)由近轴折射公式(2.1.8)1100 1.5 300mm 1.51n n n n rn l l l r n n '''-⨯'-=⇒===''-- 2123003000l l t l ''=-=-==(2)由光路可逆,共轭像在无限远处.(3)当10mm y =时:由式(2.1.5),10sin 0.1100y I r ===光线入射角: 5.739170I =︒由式(2.1.2),s i n 10.1si n 0.06671.5n I I n ⨯'==='折射角: 3.822554I '=︒由式(2.1.3),像方孔径角:0 5.739170 3.822554 1.916616U U I I ''=-+=︒-︒+︒=-︒由式(2.1.4),像方截距:sin sin 3.82255411001299.332(mm)sin sin( 1.916616I L r U '⎛⎫︒⎛⎫'=-=-= ⎪ ⎪'-︒)⎝⎭⎝⎭在高斯面上的高度:()299.332300tan(| 1.9166167|)0.022(mm)y '=-⨯-=-,该值说明点物的像是一个弥散斑.3.一个直径为200mm 的玻璃球,折射率为1.53,球内有两个小气泡,看上去一个恰好在球心,另一个从最近的方向看去,好像在表面和球心的中间,求两气泡的实际位置. 解:如右图:A 的像A '在球心,则A 仍在球心. B '在球面和球心中间,/250mm Bl r '==-,则 1 1.531 1.53 60.474mm 50100B B B B n n n n l l l r l ''---=⇒-=⇒=-'--B 离球心39.526mm.4.在一张报纸上放一平凸透镜,眼睛通过透镜看报纸.当平面朝着眼睛时,报纸的虚像在平面下13.3mm 处;当凸面朝着眼睛时,报纸的虚像在凸面下14.6mm 处.若透镜中央厚度为20mm ,求透镜材料的折射率和凸球面的曲率半径.解:如右图(a)(b):对第一面10l =,10l '=.故仅需计算第二面.第一种情况:,20mm,13.3mm,1r l l n ''=∞=-=-=第二种情况:20mm,14.6mm,1l l n ''=-=-=故有:1111 13.32014.620n n n nr---=-=--∞-- 联立求解得:75.282mm 1.504r n =-=所以,透镜材料的折射率为1.504,凸球面的曲率半径为75.282mm.5.一个等曲率的双凸透镜,放在水面上,两球面的曲率半径均为50mm ,中心厚度为70mm ,玻璃的折射率为1.5,透镜下100mm 处有一个物点Q ,如图2.1所示,试计算最后在空气中成的像.解:由光线近轴计算基本公式n n n nl l r''--=' 对于面1,11.5 1.33 1.5 1.3310050l --=-' 解得1151.515mm l '=-对于面2,21 1.51 1.5151.5157050l --='---解得2309.746mml '=,所以最后在空气中成的像在第二面顶点后309.746mm 的位置。
《几何光学的基本原理》练习题(可编辑)

《几何光学的基本原理》练习题几何光学练习题一、填空题1.光的直线传播定律指出光在介质中沿直线传播。
2.全反射的条件是大于 ,光从光密介质射向光疏介质产生全反射。
3.虚物点是的的交点。
4.光学系统的物方焦点的共轭象点在 ,象方焦点的共轭点在。
5.某种透明物质对于空气的临界角为45°,该透明物质的折射率等于。
6.半径为r的球面,置于折射率为n的介质中,系统的焦距与折射率关,光焦度与折射率关。
7.共轴球面系统主光轴上,物方无限远点的共轭点定义为 ;象方无限远的共轭点定义为。
8.几何光学的三个基本定律是 , 和。
9.光学系统在成象过程中,其β-1.5,则所成的象为的象。
10.在符号法则中(光线从左向右入射)规定:主光轴上的点的距离从量起,左负右正;轴外物点的距离上正下负;角度以为始边,顺时针旋转为正,反之为负,且取小于π/2的角度;在图上标明距离或角度时,必须用。
11.当光从光密媒质射向媒质时,且满足入射角大于 ,就可以发生全反射现象。
12.当物处于主光轴上无穷远处,入射光线平行于主光轴,得到的象点称为 ,薄透镜成象的高斯公式是。
13.主平面是理想光具组的一对共轭平面;节点是理想光具组的一对共轭点。
14.在几何光学系统中,唯一能够完善成象的是系统,其成象规律为。
15.理想成象的条件是和。
16.曲率半径为R的球面镜的焦距为 ,若将球面镜浸入折射率为n的液体内,该系统的焦距为。
17.通过物方主点的光线,必通过象方 ,其横向放大率为。
18.将折射率n1.5的薄透镜浸没在折射率为1.33的水中,薄透镜的焦距等于空气中焦距的倍。
19.实象点是的光束的交点。
20.实物位于凹球面镜的焦点和曲率中心之间,象的位置在与之间。
21.筒内装有两种液体,折射率分别为n1和n2,高度分别为h1和h2,从空气(n1)中观察到筒底的像似深度为。
22.在符号法则中,反射定律的数学式为。
23.薄透镜置于介质中,物、象方焦距分别为和,光线通过薄透镜中心方向不变的条件是。
第三章-几何光学

第三章、几何光学的基本原理一、选择题1.如图,直角三角形ABC 为一透明介质制成的三棱镜的截面,且30=∠A 0,在整个AC 面上有一束垂直于AC 的平行光线射入,已知这种介质的折射率n>2,则( ) A .可能有光线垂直AB 面射出 B .一定有光线垂直BC 面射出 CC .一定有光线垂直AC 面射出D .从AB 面和BC 面出射的光线能会聚一点 A 300 B2.如图所示,AB 为一块透明的光学材料左侧的端面。
建立直角坐标系如图,设该光学材料的折射率沿y 轴正方向均匀减小。
现有一束单色光a 从原点O 以某一入射角θ由空气射入该材料内部,则该光线在该材料内部可能的光路是下图中的哪一个 ( )A. B. C. D.3.如图,横截面为等腰三角形的两个玻璃三棱镜,它们的顶角分别为α、β,且α < β。
a 、b 两细束单色光分别以垂直于三棱镜的一个腰的方向射入,从另一个腰射出,射出的光线与入射光线的偏折角均为θ。
则ab 两种单色光的频率υ1、υ2间的关系是( )A 、 υ1 = υ2B 、 υ1 > υ2C 、 υ1 < υ2D 、 无法确定 D 、4、发出白光的细线光源ab ,长度为L ,竖直放置,上端a 恰好在水面以下,如图所示,现考虑线光源ab 发出的靠近水面法线(图中虚线)的细光束经水面折射后所成的像,由于水对光有色散作用,若以1L 表示红光成的像长度,2L 表示蓝光成的像的长度,则( ) A 、L L L <<21B 、L L L >>21C 、L L L >>12D 、L L L <<125、如图所示,真空中有一个半径为R ,质量分布均匀的玻璃球,频率为0υ的细激光束在真空中沿直线BC 传播,并于玻璃球表面C 点经折射进入玻璃球,且在玻璃球表面D 点又经折射进入真空中,0120=∠COD ,已知玻璃对该激光的折射率为3,则下列说法中正确的是( )A 、 一个光子在穿过玻璃球的过程中能量逐渐变小B 、 此激光束在玻璃球中穿越的时间cRt 3=(c 为真空中光速) 水 a b O CDB α1200y a θ xo A ByxoyxoyxoyxoC 、 改变入射角α的大小,细激光可能在玻璃球的内表面发生全反射D 、 图中的激光束的入射角045=α6、如图所示,两束单色光A 、B 自空气射向玻璃,经折射形成复合光束C ,则下列说法中正确的是:( )A 、 A 光子的能量比B 光子的能量大 B 、 在空气中,A 光的波长比B 光的波长短C 、 在玻璃中,A 光的光速小于B 光的光速D 、 玻璃对A 光的临界角大于对B 光的临界角7、如图所示,激光液面控制仪的原理是:固定的一束光AO 以入射角i 照射到液面上,反射光OB 射到水平的光屏上,屏上用一定的装置将光信号转变为电信号,电信号输入控制系统用以控制液面高度,如果发现光点B 在屏上向右移动了Δs 的距离到B ˊ,则可知液面升降的情况是( )A 、 升高了2S ∆·tan i B .降低了2S ∆·tan i D 、 升高了2S ∆·cot i D 、 降低了2S∆·cot i8.人类对光的本性的认识经历了曲折的过程。
几何光学课后部分习题答案

部分作业答案 几何光学部分第一章 几何光学基本定律与成像16、一束平行细光束入射到半径为30r mm =、折射率为 1.5n =的玻璃球上,求其会聚点的位置。
如果在凸面镀上反射膜,其会聚点应在何处?如果凹面镀反射膜,则反射光束在玻璃中的会聚点在何处?反射光束经前表面折射后,会聚点又在何处?解:玻璃球可以看作两个折射球面组合在一起,设凸面为第一面,凹面为第二面 (1)首先考虑光束射入玻璃球第一面时的状态,使用单折射球面物像关系公式1111111n n n n l l r ''--=' 由11111.5;1;;30n n l r mm '==→-∞=,得190l mm '=。
对于第二面,由于两球面顶点距离260d r mm ==,所以222121.0; 1.5;30;30n n l l d mm r mm ''===-==-,由物像关系 2222222n n n n l l r ''--=' 得215l mm '=,即会聚点位于第二面顶点右侧15mm 处。
(2) 将第一面镀膜,形成反射镜,就相当于凸面镜,则11111;1;;30n n l r m m '==-→-∞=,得到115l mm '=,即会聚点位于第一面顶点右侧15mm 处。
(3)光线经过第一面折射后第二面镀膜则22221.5; 1.5;30;30n n l mm r mm '==-==-,得到210l mm '=-,即反射光束在玻璃球内的会聚点位于第二面顶点左侧15mm 处。
(4)再经过第一面折射,将其记为第三面,则333231.5; 1.0;2106050;30n n l l r mm r mm ''===+=-+== 由物像关系3333333n n n n l l r ''--=' 得375l mm '=,即光束从玻璃球出来后的会聚点位于第一面顶点右侧75mm 处,也是第二面顶点右侧15mm 处。
(最新)第三章几何光学的基本原理2

29 一厚透镜的焦距为60mm ,其两焦点间的距离为125mm ,若(1)物点放在光轴上焦点左方20mm 处;(2)物点放在光轴上物方焦点右方20mm 处;(3)虚物落在光轴上象方主点右方20mm 处,问在这三种情况下象的位置各在何处?象的性质如何?并作光路图。
解:(1)将f =-60毫米,60='f 毫米,=1x -20毫米代入牛顿公式得: ),( 240180601802060)60(111实象毫米毫米P s x f f x '=+='=-⨯-='='其光路图如图所示。
(2)将f =-60毫米,60='f 毫米,=1x 20毫米代入牛顿公式得:),( 120601801802060)60(222虚象毫米毫米P s x f f x '-=+-='-=⨯-='='(3)将f=-60毫米,8520560,603=++=='x f 毫米毫米代入牛顿公式得: ),( 65.1735.426035.428560)60(333实象毫米毫米P s x f f x '=-='-=⨯-='='30 一个会聚透镜和一个发散透镜互相接触构成一复合光具组,,当物距为-80cm 时,实象距镜60cm ,若会聚透镜的焦距为10cm ,问发散透镜的焦距为多少?解:设会聚透镜的焦距1f ',发散透镜的焦距2f ',复合系统的焦距f ' 因复合光具组在物距为-80cm 时,实象距为60cm 由:ss f 111-'=',解出复合光具组的焦距:cm f 7/240=' 因两透镜互相接触,有:21111f f f '-'=',已知:cm f 101=' 解出发散透镜的焦距:cm f 1.142-='31 试述测定会聚透镜焦距的几种方法。
第三章__几何光学的基本原理

第三章 几何光学的基本原理3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(如图所示),平板的厚 度d 为30cm 。
求物体PQ 的像Q P ''与物体PQ 之间的距离2d 为多少? 已知:1=n ,51.='n ,cm d 30=求:?=2d 解:由图可知 12i QNQ Q d sin ='=,设x QN =,即光线横向的偏移,则 12i xd sin = (1)在入射点A 处,有 21i n i n sin sin '=在出射点B 处,有 12i n i n '='sin sin ,因此可得 11i i '= 即出射线与入射线平行,但横向偏移了x 。
由图中几何关系可得: ()()21221i i i di i AB x -=-=sin cos sin又因为 1i 和2i 很小,所以 12≈i cos , ()2121i i i i -≈-sin 而 21i n ni '= ,所以 1121i ni n ni '='=则 ()⎪⎭⎫ ⎝⎛'-=-=11211i n i d i i d x ,即 ⎪⎭⎫ ⎝⎛'-'=n n di x 11 (2) (2)式代入(1)式得 cm d d n n i i d d 1031511511112==⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛'-'≈.. 6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,并作光路图。
已知:cm y 5=, cm s 12-=,cm f 10-=' 求:?='s ?='y 作光路图解:根据 f s s '='+111得601121101111-=+-=-'='s f s ,cm s 60-='∴又据 n ns s y y '⋅'=' ,而 n n -='所以得 cm y s s y 2551260-=⨯---='-=' 光路图(cm r cm rf 20102-=∴-==',)C为圆心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 几何光学基本原理1.证明反射定律符合费马原理。
证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。
⎰=BAnds或恒值max .min ,在介质n 与'n 的界面上,入射光A 遵守反射定律11i i '=,经O 点到达B 点,如果能证明从A 点到B 点的所有光程中AOB 是最小光程,则说明反射定律符合费马原理。
设C 点为介质分界面上除O 点以外的其他任意一点,连接ACB 并说明光程∆ ACB>光程∆AOB由于∆ACB 与∆AOB 在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB 与AOB 的大小。
从B 点到分界面的垂线,垂足为o ',并延长O B '至 B ′,使B O B O '='',连接 B O ',根据几何关系知B O OB '=,再结合11i i '=,又可证明∠180='B AO °,说明B AO '三点在一直线上,B AO ' 与AC 和B C '组成ΔB AC ',其中B C AC B AO '+〈'。
又∵CBB C AOB OB AO B O AO B AO ='=+='+=',ACB CB AC AOB =+〈∴即符合反射定律的光程AOB 是从A 点到B 点的所有光程中的极小值,说明反射定律符合费马原理。
2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。
证明:由QB A ~FBA 得:OF\AQ=BO\BQ=f\s同理,得OA\BA=f '\s ',BO\BA=f\s由费马定理:NQA+NQ A '=NQ Q '结合以上各式得:(OA+OB)\BA=1得证 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmnd p p 10)321(30)11(=-=-=',即像与物的距离为cm 10题3.3图4.玻璃棱镜的折射棱角A 为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角.解:由最小偏向角定义得 n=sin2A0+θ/sin 2A,得θ0=46゜16′由几何关系知,此时的入射角为:i=2A0+θ=53゜8′当在C 处正好发生全反射时:i 2’= sin-16.11=38゜41′,i 2=A- i 2’=21゜19′∴i 1= sin -1(1.6sin 21゜19′)= 35゜34′ ∴imin =35゜34′5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r.求证:如果2sin 1n=θ则12θθ=,且光束i 与 r 垂直(这就是恒偏向棱镜名字的由来). 解: i nsin sin 11=θ若θ1sin = 2n , 则 sini 1 = 21, i 1=30。
则i 2=30。
,而i nsin2sin 2=θ∴ θθ21==+αθ1190。
,而θθ21=∴ =+αθ1290。
,∴i⊥γ得证。
6.高5cm 的物体距凹面镜的焦距顶点12cm ,凹面镜的焦距是10cm,求像的位置及高度,并作光路图.解:∵cm s cm f 12,10-=-='又f s s'='+111∴1011121-='+-s ,即cm s 60-=',ss yy '='-=β ∴s s y y '-='=-25cm即像在镜前60cm 处,像高为25cm7.一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像.求(1)此像的曲率半径;(2)此镜是凸面镜还是凹面镜?解:由题知物体在球面镜前成虚象,则其为反射延长线的交点,∵ss y y '-='=β∴cmys y s 2='-=', 又r s s211='+, ∴05〉=cm r ,所以此镜为凸面镜。
8.某观察者通过一块薄玻璃板去看凸面镜中他自己的像.他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起,若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离灵40cm,问玻璃板观察者眼睛的距离为多少?解:根据题意,由凸面镜成像公式得:cms s f ss81014011111='⇒=-'⇒'=+'∴凸透镜物点与像点的距离cm s s d 48='+=, 则玻璃距观察者的距离为cmd242=。
9.物体位于凹面镜轴线上焦点之外,在焦点与凹面镜之间放一个与轴线垂直的两表面互相平行的玻璃板,其厚度为d1,折射率为n.试证明:放入该玻璃板后使像移动的距离与把凹面镜向物体移动d(n-1)/n 的一段距离的效果相同。
解:证明:将玻璃板置于凹面镜与焦点之间,玻璃折射成像,由三题结果得d0=d(1-1\n),即题中所求。
10.欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率为多少?解:设球面半径为r ,物距和相距分别为s 和s ',由物像公式: rn 'n sn 's 'n -=-S=∞,s '=2r,n=1,得'n =211.有一折射率为1.5,半径为4cm 的玻璃球,物体在距球表面6cm 处,求(1)物所在的像到球心之间的距离;(2)像的横向放大率.解:cmr n n rn n sn s n 4,1,5.1,==='-'=-'' 的玻璃球。
对第一个球面,cm s 6-=415.1615.1-=--'∴s ,cm s 36-='∴对第二个球面 cm s 448362-=--=∴45.11445.112--=--'s ∴112='s∴从物成的像到球心距离cm r s ol 152=+'=5.121=''==sn s n βββ12.一个折射率为1.53,直径为20cm 的玻璃球内有两个小气泡.看上去一个恰好在球心,另一个从最近的方向看去,好像在表面与球心连线的中点.求两气泡的实际位置解 :由球面镜成像公式:rn n sn s n -'=-'',当s '=日时,s= r, 气泡在球心。
当s '=2r时,s=6.05cm ,气泡在距球心3.95 cm 处。
13.直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外观察者所看到的小鱼的表观位置和横向放大率.解:由: rn n sn s n -'=-'', 又 s=r , ∴s '=r=15cm, 即鱼在原处。
β= y y '=''n ns s =1.3314.玻璃棒一端成半球形,其曲率半径为2cm.将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图.解: rn n s n s n -'=-''233.15.1833.15.1-=--'s ∴cm s 18-='2)8(5.1)18(33.1=-⨯-⨯=''=sn s n β∵rn n -'=φcmn nn r n f 65.1717.0333.15.125.1==-⨯='=-''='φcmnnn nr f 65.1517.066.233.15.1233.1-==-⨯=-=-'-=φ15.有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm.一物点在主轴上距离20cm 处,若物和镜均浸在水中,分别用作图法和计算法求像点的位置.设玻璃的折射率为1.5,水的折射率为1.33.解:(!)对于凸透镜:由薄透镜焦距公式得:'f f -= =-39.12 ,由透镜成像公式:1''=+sf s f ,s=20cm, 得s '=-40.92(2)对于凹透镜:由薄透镜焦距公式得: f= -'f =39.12由透镜成像公式:1''=+sf s f ,s=20cm, 得s '=-13.216.一凸透镜在空气中的焦距为40cm,在水中时焦距为136.8cm,问此透镜的折射率为多少(水的折射率为1.33)?若将此透镜置于CS 2中(CS 2的折射率为1.62),其焦距又为多少?解:由题意知凸透镜的焦距为:)(22111r n n r n n n f -+--=又∵在同一介质中21n n =,'f f -= 设n n n '==21 ∴)11)(1(12r n n n f --'-='因为对同一凸透镜而言211r n-是一常数,设tn n f )1(1-'-==',当在空气中时 40,111=='f n ,在水中时 8.136,33.122=='f n∴ tn )11(401-= ,tn )133.1(8.1361--= 两式相比,可n=1.54,将其代入上式得0463.0=t ∴在2CS中即时62.1='n , 0463.0162.154.11⨯-=')(f,得cm f 4.437-='.即透镜的折射率为1.54,在CS 2中的焦距为-437.4cm17.两片极薄的表玻璃,曲率半径分别为20cm 和25cm.将两片的边缘粘起来,形成内含空气的双凸透镜,把它置于水中,求其焦距为多少?解:由薄透镜焦距公式:)(22111r n n r n n n f -+--= ,其中n=1,n 1=n 2=1.33, r 1=20cm,r 2=25cm,得'f f -==-44.8cm18.会聚透镜和发散透镜的焦距都是10cm,求(1)与主轴成30度的一束平行光入射到每个透镜上,像点在何处?(2)在每个透镜左方的焦平面上离主轴1cm 处各置一发光点,成像在何处?作出光路图.解:(1)由1''=+s f s f ,s =∞, 对于会聚透镜:s 'x ='f =10cm, s 'y =s 'x tg30。