必修四_平面向量知识点梳理 ppt课件

合集下载

高中数学必修四《平面向量》PPT

高中数学必修四《平面向量》PPT

B、e1和3e2 D、e1和e1 e2
2、指出下列两个向量的夹角。
120
0
1200
600
思维拓展
1、如图所示,在平行四边形ABCD中,
AD =a,AB=b,E、M分别是AD、DC的中
点,点F在BC上,且BC=3BF,以a,b为
基底分别表示向量 AM
B

F
EF
.
C
M
A ED
思维拓展 2、如图在平行四边形ABCD中, AC =a,BD =b,以a,b为基底分别表示 向量 AB 和 BC 。
AB 1 a- 1 b 22
BC 1 a+ 1 b 22
DF
C
M
AEB
思维拓展
3、设 e1, e2 是平面 的一组基底,如果 AB 3e1 2e2, BC 4e1 e2,CD=8e1 9e2 求证:A、B、D 三点共线.
2.3.1 平面向量基本定理
复习回顾
1.两向量的加法和减法有哪些几何法 则?
2.怎样理解向量的数乘运算 a?
(1)|λa|=|λ||a|;
(2)λ>0时,λa与 a方向相同;
λ<0时,λa与 a方向相反; λ=0时,λa=0.
3.平面向量共线定理是什么?
b与非零a共线
存在唯一实数λ,使b=λa.
思维引领
问题1:给定平面内任意两个向量e1,e2, 如何求作向量3e1+2e2和e1-2e2?
e1-2e2
B
e2
2e2
C
e1
O e1 D
3e1 A
3e1+2e2
思维引领
问题2:已知 e1 :
e2 :
分别用 e1,e2 表示下列向量:

人教A版数学必修4PPT课件平面向量4

人教A版数学必修4PPT课件平面向量4
数λ1,λ2 ,使
a 1e1 2 e2
说明:① e1 ,e2 是两个不共线的向量; ② a 是平面内的任意向量; ③ λ1,λ2为实数,且唯一确定.
人 教 A 版 数学 必修4 PPT课件 平面向 量4
人 教 A 版 数学 必修4 PPT课件 平面向 量4
我们把不共线的向量 e1 ,e2 叫做这一平面内所有向量 的一组基底.
一对实数
1, 2,使
a
1 e1
2
e
.
2
不共线的向量 e1,e2 叫做表示这一平面内 所有向量的一组基底.
言论的花,开得愈大;行为的果子,结得愈小. ——冰心
2.在等边三角形 ABC 中,A→B与B→C的夹角等于( C )
A.60°
B.90°
C.120°
D.150°
3.已知 e1 和 e2 是表示平面内所有向量的一组基底, 那么下面四组向量中不能作为一组基底的是 ( C)
A.e1 和 e1+e2 B.e1-2e2 和 e2-2e1 C.e1-2e2 和 4e2-2e1 D.e1+e2 和 e1-e2 【解析】分析四个选项知,在 C 中,4e2-2e1= -2(e1-2 e2).∴e1-2 e 2 与 4 e 2-2 e 1 共线,应选 C.
种表示是否唯一?请说明理由.
1.理解平面向量的基底的意义与作用. (重点) 2.能够在具体问题中适当地选取基底,使其他 向量都能够用基底来表达. (难点) 3.初步利用定理解决问题(如相交线交成线段 比的问题等).
人 教 A 版 数学 必修4 PPT课件 平面向 量共线的向量 e1,e2 与该
平面内的任一向量 a 之间的关系.
a
e1
e2
人 教 A 版 数学 必修4 PPT课件 平面向 量4

高中数学必修四第2章《平面向量》ppt课件

高中数学必修四第2章《平面向量》ppt课件

[解析] 解法一:2a-3b=2(5,4)-3(3,2)=(1,2). 设与 2a-3b 平行的单位向量为(x,y), 则xy2-+2yx2==01 ,
解得 x1=
5 5
,或 x2=-
5 5
.
y1=2 5 5
y2=-2 5 5
∴所求的单位向量为 55,2 55或- 55,-25 5.
解法二:与 2a-3b 平行的单位向量是
±|22aa--33bb|=±1,52=±
55,2
5
5
∴所求的单位向量为 55,2 55或- 55,-25 5.
▪ [例3] 设|a|=|b|=1,|3a-2b|=3,求|3a +b|的值.
▪ [分[解析析]] 解本法题一:考因查为|向3a-量2b的|=模3,的求法及有关 数所量以积9a的2-运12a算·b+.4b2=9.
章末归纳总结
▪ 1.向量运算 ▪ (1)加法运算 ▪ 加法法则:
▪ 运算性质:a+b=b+a,(a+b)+c=a+(b +c),a+0=0+a=a.
▪ 坐标运算:设a =(x1,y1),b=(x2,y2),则 a+b=(x1+x2,y1+y2).
▪ (2)减法运算: ▪ 减法法则:
▪ 坐标运算:
▪ 设a =(x1,y1),b=(x2,y2),则
▪ ▪
a设-Ab、A→=B=B(两x(x12--点xx1的,2,y坐2-y标1y-1)分.y2别).为(x1,y1),(x2,y2),
▪ (3)实数与向量的积
▪ 定义:λa,其中λ>0时,λa与a同向,当λ <0时,λa与a反方向,当λ=0时,0a=0.
▪ 其中正确命题的序号为___a·b=0,故①不正 确;
▪ ②由向量加减法的平行四边形法则知, a⊥b时,平行四边形为矩形,故对角线相 等,②正确.也可由a·b=0证得|a+b|= |a-b|;

必修四_平面向量知识点梳理58页PPT

必修四_平面向量知识点梳理58页PPT
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
必修四_平面向量知识点梳理
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是ห้องสมุดไป่ตู้毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

人教A版高中数学必修四课件:第二章2.3.1平面向量基本定理 (共16张PPT)

人教A版高中数学必修四课件:第二章2.3.1平面向量基本定理 (共16张PPT)

x
e2
O
a 3e1 2e2
3 a x 4y 2
yn
A
a 3m 2n
当a 0时, 有且只有1 2 0时可使 0 1 e1 2 e2 , (e1 , e2不共线).
若1与2中只有一个为零 , 情况会是怎样?
若2 0, 则a 1 e1 ,即a与e1共线, 若1 0, 则a 2 e2 ,即a与e2共线,
本题在解决过程中用到了两向量共 线的等价条件这一定理,并用基向量表 示有关向量,用待定系数法列方程,通 过消元解方程组。这些知识和考虑问题 的方法都必须切实掌握好。
课堂总结 1.平面向量基本定理可以联系物理 学中的力的分解模型来理解,它说明在
同一平面内任一向量都可以表示为不共
线向量的线性组合,该定理是平面向量
D
A
N M B
C
例2.用向量的方法证明: 1 平行四边形OACB中, BD BC , OD与BA 3 1 相交于E , 求证 : BE BA. 4 D B C E
O
A
例3.证明: 向量OA, OB, OC的终点A, B, C共线 的等价条件是存在实数 、 且 1, 使得 OC OA OB.

问题 3 : 设 e1 , e2 是同一平面内两个不共 线的向量, a是这一平面内的任一向 量, 我们来通过作图研 究a与e1 , e2 之间的关系?
平面向量基本定理: 如果e1 , e2 是同一平面内两个不共 线的向量, 那 么对于平面内的任一向 量a , 有且只有一对实数
1 , 2 , 使得a 1 e1 2 e2 .
坐标表示的基础,其本质是一个向量在
其他两个向量上的分解。
2. 在实际问题中的指导意义在于

高中数学必修四《平面向量的基本定理》PPT

高中数学必修四《平面向量的基本定理》PPT
栏目 导引
第二章 平面向量
想一想 1.判断两个向量能否作为基底的关键是什么? 提示:判断两个向量能否作为基底的关键是看它们是否共 线,若共线,则不能作为基底,否则可以作为基底.
栏目 导引
第二章 平面向量
2.两向量的夹角与垂直
(1)夹角:已知两个__非__零__向__量___a 和 b,作O→A=a,O→B =b,则∠__A_O__B__=θ 叫做向量 a 与 b 的夹角.
【答案】 30° 60°
栏目 导引
第二章 平面向量
【名师点评】 两向量夹角的实质和求解 (1)明确两向量夹角的定义,实质是从同一起点出发的两 个非零向量构成的不大于平角的角,结合平面几何知识 加以解决. (2)求两个向量的夹角关键是利用平移的方法使两个向量 起点重合,作出两个向量的夹角,按照“一作二证三 算”的步骤求出.
栏目 导引
第二章 平面向量
跟踪训练
2.如图所示,已知等边三角形 ABC. (1)求向量A→B与向量B→C的夹角; (2)若 E 为 BC 的中点,求向量A→E与E→C的夹角.
栏目 导引
第二章 平面向量
解:(1)∵△ABC 为正三角形, ∴∠ABC=60°.延长 AB 至点 D,使|A→B|=|B→D|, ∴A→B=B→D, ∴∠DBC 为向量A→B与B→C的夹角,且∠DBC=120°. (2)∵E 为 BC 的中点,∴AE⊥BC, ∴A→E与E→C的夹角为 90°.
已知向量 a 与 b 的夹角为 60°,则向量-3a 和-12b 的夹 角为________.
答案:60°
栏目 导引
第二章 平面向量
典题例证技法归纳
题型探究
题型一 对基底概念的理解 例1 设e1,e2是不共线的两个向量,给出下列四组向量:

高中数学复习课件-高中数学必修4课件 第二章总结平面向量

高中数学复习课件-高中数学必修4课件  第二章总结平面向量
专题一 向量的综合运算
向量的运算有:加法、减法、数乘及两个向量的数量积,常见的有两种方法: 定义法和坐标法.特别是利用坐标进行向量的运算时,由于转化为实数的运算, 因此比利用定义运算方便、简捷.
应用 1 若向量 AB =(3,-1),n=(2,1),n· AC =7,则 n· BC 的值为( ).
A.-2
相等向量 : 长度相等且方向相同的两个向量
相反向量 : 长度相等而方向相反的两个向量
表示
几何表示 : 用有向线段表示向量
字母表示
:
用一个小写英文字母或两个大写英文字母表示向量
坐标表示 : 用有序实数对表示向量,等于终点坐标减去起点坐标
线性运算
加法
法则
: 三角形法则和平行四边形法则,结果是向量 运算律 : 交换律、结合律
应用 1 已知向量 a,b 满足|a|=3,|b|=2,a 与 b 的夹角为 60°,则 a·b= ; 若(a-mb)⊥a,则实数 m= .
解析:a·b=|a||b|cos 60°=3×2×1 =3. 2
∵(a-mb)⊥a,∴(a-mb)·a=0. ∴a2-mb·a=0.∴9-3m=0.∴m θ.因此求向量的夹角应先转化为求向量夹角的余弦值,再
结合夹角的范围确定夹角的大小.
应用 1 已知向量 a=(1,2),b=(-2,-4),|c|= 5 ,若(c- b)·a= 15 ,则 a 与 c 的夹 2
角为( ).
A.30°
B.60°
C.120°
D.150°
解析:a·b=-10,则(c- b)·a=c·a- b·a=c·a+10= 15 ,所以 c·a=- 5 .
B.BE D.CF
解析:在正六边形 ABCDEF 中,由于 CD∥AF,且|CD|=|AF|,故 CD = AF .同理

高中数学人教A版必修4PPT课件:平面向量的基本定理及坐标表示

高中数学人教A版必修4PPT课件:平面向量的基本定理及坐标表示
的坐标.
必修4
首页
上一页 下一页
2020年12月27日星期日
解:1OP 1 2
OP1 OP2
x1
2
x2
,
y1
2
y2

所以点P的坐标为
x1
2
x2
,
y1
2
y2
.
必修4
首页
上一页 下一页
2020年12月27日星期日
2 如果P1P
1 2
PP2,那么
OP
OP1
P1P
OP1
1 2
P1P2
首页
上一页 下一页
2020年12月27日星期日
高中数学人教A版必修4PPT课件:平面 向量的 基本定 理及坐 标表示
向量的坐标表示
• 在直角坐标系中,分别取与x轴、y轴方 向相同的两个单位向量i、j作为基底, 则对于平面内的一个向量a,有且只有
一对实数x、y使得a=xi+yj,
• 把有序数对(x,y)叫做向量a的坐标,记 作a=(x,y),其中x叫做a在x轴上的坐标,y 叫做a在y轴上的坐标,显然, i=(1,0),j=(0,1),0=(0,0).
必修4
首页
上一页 下一页
2020年12月27日星期日
练一练 • 已知O是坐标原点,点A在第 • 一象限,xOA 60 ,
| OA | 4 3 ,求向量 OA 的坐标.
解:设点A x, y ,则
x 4 3 cos 60 2 3, y 4 3 sin 60 6
即A 2 3, 6 ,所以OA 2 3, 6 .
必修4 高中数学人教A版必修4PPT课件:平面向量的基本定理及坐标表示
首页
上一页 下一页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填空:
A B B D _ _ A_ D_ _ ;
B A B C _ _ C_ _A_ _ ;
B C C A _ _ B_ A_ _ _ ;
O D O A _ _A_ D_ _ _ ; O A O B _ _ B_ A_ _ _ .
练 习 、 如 图 ,已 知 向 量 A B a ,A D b , D A B 1 2 0 o , 且 |a | |b | 3 , 求 |a b |和 |a b |
例 2. 已知平行四边O形 ADB中, OAa,OBb,
AB与OD交于C.且| BM| 1| BC|, 3
| CN| 1| CD|,用a、b表示OM,ON,MN.
向 量 几何表示 : 有向线段
的 表
字母表示 :a、 AB等
示 坐标表示 : (x,y)
若 A(x1,y1), B(x2,y2) 则 AB = (x2 - x1 , y2 - y1)
一、平面向量概念
向量的模(长度)
1. 设 a = ( x , y ), 则 a
x2 y2
2. 若表示向量 a 的起点和终点的坐标分别 为A(x1,y1)、B (x2,y2) ,则
由 于 菱 形 对 角 线 互 相 垂 直 平 分 , 所 以 A O D 是 直 角 三 角 形 ,
|O D | |A D |sin6 0o3333 所 |a b | 3 , 以 |a b | 23 3 2
return
一、平面向量概念 4.实数λ与向量 a 的积
定义:λa是一个 向量.
a1e12e2
(四) 数量积
1、平面向量数量积的定义:a b | a| | b| cos
2、数量积的几何意义:
等 于 a 的 长 度 | a | 与 b 在 a 方 向 上 的 投 影 | b | c o s 的 乘 积 .
3、数量积的坐标运算B Nhomakorabeaabx1x2y1y2
θ
4、运算律: (1) abba O
一、平面向量概念
向量定义:既有大小又有方向的量叫向量。
重要概念:
(1)零向量: 长度为0的向量,记作0. (2)单位向量:长度为1个单位长度的向量. (3)平行向量:也叫共线向量,方向相同或相反
的非零向量. (4)相等向量:长度相等且方向相同的向量. (5)相反向量:长度相等且方向相反的向量.
一、平面向量概念
(2)aba•bx1x2y1y20
(3)两个向量相等的充要条件是两个向量的
坐标相等.
即那:么aa (xb 1 ,y 1)x ,1 bx 2 且 (x2y ,1 y2 )y 2
三、平面向量的基本定理
如果 e1 , e 2是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
量a ,有且只有一对实数1,2,使
① 当a,b不共线时,由三角边形小一于 其他两边之和,大他于两其边之差O,
a
b
A
O AAB OB O AABab abab
② 若 a, b同 向O , B O 则 A AB 若 a, b反向O , BO 则 AAB
a 、 b 共a 线 b a 时 b 或 a , b a b
综上所述:原命题成立
它的长度 |λa| = |λ| |a|;
它的方向 (1) 当λ≥0时,λa 的方向 与a方向相同; (2) 当λ<0时,λa 的方向 与a方向相反.
其实质就是向量的伸长或缩短! 坐标运算: 若a = (x , y), 则λa = λ (x , y)
= (λ x , λ y)
一、平面向量概念
定理1:两个非零向量 a与 b平行 (方向相同或相反)
C
O
D
`
120o
b
B a
A
解:以AB、AD为邻边作平行四边AB形CD,
由于| AD|| AB|3,故此四边形为菱形
由向量的加减法知
AC a
b,DB
a
b
C
故|
AC||
a
b
|,| DB||
a
b|
D
因为 DAB12O0,所以 DAC60O
O
12`0o b
A
B a
所以 AD是 C 正三角|形 AC|, 3则
4cosab x1x2y1y2
ab x12y12 x22y22 (a, b是两个非零向量 )
5ab a b
例 1 .证明 a 、 b 对 有 a 任 : ba 意 bab
证明:(1)若a, b有一个0,为 结论显然成立。B
(2 )若 a , b 都0 不 ,作 O为 A a ,A B b ,则OBab
必修四 平面向量
知识点梳理
知 识
向量的概念
零向量、单位向量、 共线向量、相等向量
解决

图形

平 面
加法、减法
向量平行的充要条件
的平 行和 比例
向 量
数乘向量
平面向量基本定理
问题 的

向 量
坐标表示
两向量的夹角公式
解决 步 图形 应
的垂 用
两向量数量积
向量垂直的充要条件 直和 角度,
两点的距离公式
长度 问题
一、平面向量概念
2.向量的减法运算
B
1)减法法则: OA-OB = BA
2)坐标运算:
O
A
若 a=( x1, y1 ), b=( x2, y2 ) 则a - b= (x1 - x2 , y1 - y2)
3.加法减法运算律
1)交换律: a+b=b+a 2)结合律: (a+b)+c=a+(b+c)
练习
a AB x1x22y1y22
一、平面向量概念
1.向量的加法运算 三角形法则
平行四边形法则
CB
C
AB+BC= AC
OA+OB= OC
A
BO
A
重要结论:AB+BC+CA= 0
坐标运算: 设 a = (x1, y1), b = (x2, y2)
则a + b = ( x1 + x2 , y1 + y2 )
存在唯一实数,使得 a b .
结论: 设 a表示与非零向量 a同向的单位向量.

a
a
|a|
二、平面向量之间关系
向量平行(共线)充要条件的两种形式:
(1)a//b(b0)ab;
(2)a//b(a(x1,y1),b(x2,y2),b0) x1y2x2y1 0
向量垂直充要条件的两种形式:
(1)aba•b0
B
A
( 2 )( a ) b( ab ) a( b ) 1
( 3)a( b) cacbc
5、数量积的主要性质及其坐标表示:
1 a b a b 0 x 1 x 2 y 1 y 2 0 2.当a//b时a, bab,当 a, b同向时
ab,当 a, b反向时
2
(3 )aaa,aaax1 2y1 2
相关文档
最新文档